时间序列平滑预测法
时间序列平滑预测法原理

时间序列平滑预测法原理时间序列平滑预测法是一种常用的预测方法,用于分析和预测时间序列中的趋势和季节性变化。
它基于时间序列中的历史数据,通过对数据进行平滑处理,来推断未来的趋势和变化。
时间序列平滑预测法的基本原理是利用历史数据中的趋势和季节性变化规律,对未来的数据进行预测。
其核心思想是将时间序列中的噪声和随机波动平滑掉,使得数据的变化趋势更加明显和稳定。
在时间序列平滑预测法中,常用的方法包括移动平均法和指数平滑法。
移动平均法是一种简单的平滑方法,它通过计算时间序列中一段时间内的均值来平滑数据。
移动平均法可以平滑掉数据的随机波动,使得数据的趋势更加明显。
移动平均法的核心思想是将多个时间点的数据进行平均,然后将平均值作为预测值。
移动平均法的窗口大小可以根据实际情况来确定,一般选择较小的窗口可以更敏感地反映数据的变化趋势。
指数平滑法是一种基于指数加权的平滑方法,它通过对历史数据进行加权平均来预测未来的数据。
指数平滑法的核心思想是对历史数据进行加权处理,使得近期的数据具有更高的权重。
指数平滑法的优势在于对于不同时间点的数据赋予不同的权重,可以更好地反映数据的变化趋势。
指数平滑法通常需要选择一个平滑系数,该系数决定了近期数据的权重大小,一般情况下,较大的平滑系数可以更快地反应数据的变化趋势。
除了移动平均法和指数平滑法,还有其他一些时间序列平滑预测方法,如加权移动平均法、自适应平滑法等。
这些方法都是基于时间序列平滑的原理,通过对历史数据进行加权平均或其他平滑处理,来预测未来数据的变化趋势。
时间序列平滑预测法在实际应用中有广泛的应用。
它可以用于经济领域的市场预测、销售预测等,也可以用于气象领域的天气预测、水文预测等。
时间序列平滑预测法可以帮助我们更好地理解和预测数据的变化趋势,为决策提供参考和依据。
总结起来,时间序列平滑预测法是一种基于历史数据的预测方法,通过对数据进行平滑处理,来推断未来的趋势和变化。
它可以通过移动平均法、指数平滑法等方法来实现。
时间序列的平滑预测法

时间序列的平滑预测平滑法:简单平均法,移动平均法、指数平滑法。
平滑法既可以用于对时间序列进行平滑以描述序列的趋势,也可对平稳时间序列进行短期预测。
1、 简单平均法根据过去已有的观测值通过简单平均来预测下一期的值;舍时间序列已有的t 期观测值为y1、y2………yt ,那么t+1期的预测值1t F +值为:112111111t+2111(.......),11,1t+2=,t+1tt t i i t t t t t i i F y y y y t t t t e F F y +=+++++==++=++=-∑∑当到了期时,有了期的实际值y 就可以计算误差y 那么期的预测值就为以此类推。
2、 移动平均法通过对时间序列逐期递移求得平均数作为趋势值或者预测值的一种平滑预测方法。
移动平均又包括简单移动平均和加权移动平均。
简单移动平均就是将最近K 期的观测值进行平均,作为下一期的预测值;1<K<t.1211231t+21........,........t k t k t tt t t k t k t t t y y y y F y ky y y y F y k-+-+-+-+-+++++++==++++==同理均方误差MSE 的计算公式为:MSE =误差平方和误差个数移动平均法只使用最近K 期的数据,每次计算都是使用最近K 期数据;这一方法比较适合较为平稳的时间序列数据。
实际中选取不同的K ,比较MSE 的大小来选择合适的步长。
3、 指数平滑法一次指数平滑就是以一段时期的预测值和观测值的线性组合作为t+1期的预测值,预测模型为:说明:通常将11F y =。
1(1)t t t F y F αα+=+-其中,0<<1t t y t t αα为期实际观测值,F 为期的预测值;为平滑系数()。
211111322212433321=(1)(1)=(1)(1)=(1)1-+(1)F y F y y y F y F y y F y F y y F αααααααα∂+-=∂+-=∂+-=∂+-∂+-=∂+-第二期预测值:第三期预测值:第四期预测值:()y 依此类推。
时间序列的指数平滑预测法

第五章时间序列的指数平滑猜测法[习题]・、单项选择题1.当数据的随机因素较大时,选用的N因该()。
A较大B较小 C.随机选择 D.等于n2.当数据的随机因素较小时,选用的N因该()。
A 较大 B..随机选择 C.较小D.等于n3.在移动平均值的计算中包括的过去观看值的实际个数()A.至少有5个B.必需一开头就明确规定C有多少个都可以D至少有3个4温特线性和季节性指数平滑包括的平滑参数个数是()A1个B2个C3个D4个5布朗单一参数线性指数平滑法包括的平滑参数个数是()A1个B2个C3个D4个6序列有季节性时,应选用的猜测法是()A霍尔特双参数线性指数平滑法B布朗单一参数线性指数平滑法C温特线形和季节性指数平滑法D布朗二次多项式指数平滑法7温特线形和季节性指数平滑法中,通常确定a、β和γ的最佳方法是()A反复试验法B最小二乘法C均方差误差最小法D阅历法8 一次指数平滑法中,反复试验查找Ο,是为了()A均方差最小B计算简便C查找合适的权重D序列接近线性猜测9温特线性和季节性指数平滑法中的平滑参数a、β和y ()A 三者和为 1B α, β> 1 , O<γ<lC 三者都在0到1之间D 三者都大于11 0在进行猜测时,最新观看值包含更多信息,权重应()A更大 B 更小C无所谓D随机选择二、多项选择题1下面对一次指数平滑法描述正确的是()A猜测的通式为:B是一种加权猜测C不需要存储全部历史数据D但需要存储一组数据E它供应的猜测值是前一期猜测值加上前期猜测值中产生的误差的修正值2序列有线性趋势时,可选择的猜测法有()A布朗单一参数线性指数平滑法B霍尔特双参数线性指数平滑法C温特线形和季节性指数平滑法D 布朗二次多项式指数平滑法E线性二次移动平均法3 一次指数平滑法的初值得确定有以下几种方法() A 取最初两期的算术平均值为初值 B 取最初三期的加权平均值为初值 C 取第一期的实际值为初值 D 取最初几期的平均值为初值 E 取初值=14下面对一次移动平均法描述不正确的有() A 当数据的随机因素较大时,宜选用较小的N B 当数据的随机因素较小时,宜选用较较大的N C 每一新猜测值是对前一移动平均值的修正 DN 越大平滑效果愈好 E 计算量少5线性二次指数平滑法中主要包括() A 布朗单一参数线性指数平滑法 B 温特线形和季节性指数平滑法 C 霍尔特双参数线性指数平滑法 D 布朗二次多项式指数平滑法 E 线性二次移动平均法6 一次移动平均法的主要限制是() A 计算移动平均法必需具有N 个过去观看值 B N 个过去观看值中每一个权数都相等C 移动平均线不能很好的反映时间序列的趋势及其变化D 计算量大E 当需要猜测大量的数值时,就必需存储大量数据 7关于霍尔特双参数线性指数平滑法的说法正确的是() A 其基本原理与布朗线性指数平滑法相像 B 它不用二次指数平滑 C 它是对趋势直线进行平滑 D 有3个平滑参数E 比布朗单一参数线性指数平滑法敏捷 8 已知9个月的实际数据如下:()则以下说法错误的是()(N=3)得第4期的猜测值为3 (N=3)得第4期的猜测值为2。
时间序列平滑预测法

• 时间序列预测法;是将预测对象的历史数据 按照时间的顺序排列成为时间序列;然后分 析它随时间的变化趋势;外推预测对象的未 来值 这样;就把影响预测对象变化的一切因 素由时间综合起来描述了
• 时间序列分析预测可分为确定性时间序列 预测法和随机性时间序列预测法
第1节 时间序列概述
二 加权移动平均法
在简单移动平均公式中;每期数据在求 平均时的作用是等同的 但是;每期数据所 包含的信息量不一样;近期数据包含着更 多关于未来情况的信息 因此;把各期数据 等同看待是不尽合理的;应考虑各期数据 的重要性;对近期数据给予较大的权重;这 就是加权移动平均法的基本思想
148.69
3.8
150.375
160
150
140 原始值
130三年移动平均 Nhomakorabea四年移动平均 120
110
100
1 3 5 7 9 11
图3 2 1某商店1991年2002年利润及移动平均预测值图
• 在实用上;一个有效的方法是取几个N值
进行试算;比较他们的预测误差;从中选 择最优的
• 简单移动平均法只适合做近期预测;即只 能对后续相邻的那一项进行预测
132.1133
8.41
136.7233
7.51
142.5367
4.06
146.88
1.16
148.3333
0.95
148.98
3.61
150.9767
127.1325
2.49
129.51
4.45
132
8.49
135.1475
8.57
139.4975
6.11
144.045
时间序列平滑预测法

时间序列平滑预测法时间序列平滑预测法是一种常用的预测模型,通过对历史数据进行平滑处理,找出数据中的趋势和周期性变化,并基于这些特征进行未来值的预测。
时间序列平滑预测法适用于各种领域的预测问题,如销售量、股票价格、气温等。
其中,最常见的时间序列平滑预测法包括移动平均法和指数平滑法。
移动平均法是一种基于数据的滚动平均值进行预测的方法。
它通过将数据序列中的每个值与其前一段时间内的几个值进行平均,来得到一个平滑的预测值。
这种方法适用于数据变化比较平稳的情况,能够较好地捕捉到数据的趋势。
指数平滑法是一种基于加权平均进行预测的方法。
它通过对数据序列中的每个值加权,更加重视较近期的值,来得到一个平滑的预测值。
这种方法适用于数据变化比较有规律的情况,能够较好地捕捉到数据的周期性变化。
在进行时间序列平滑预测时,我们首先需要对历史数据进行平滑处理,以消除可能存在的噪声和异常值。
然后,根据数据的趋势和周期性变化,选择合适的平滑方法进行预测。
最后,通过比较预测结果和实际值,评估模型的准确性,并对模型进行调整和优化。
时间序列平滑预测法具有较好的稳定性和可解释性,能够较好地预测未来值。
但是,它也存在一些限制,如对数据的假设性要求较高,对异常值的敏感性较大等。
因此,在实际应用中,我们需要根据具体问题选择合适的模型,并结合其他方法进行预测。
总之,时间序列平滑预测法是一种常用的预测模型,通过对历史数据进行平滑处理,能够较好地预测未来值。
它具有较好的稳定性和可解释性,并在各个领域得到广泛应用。
通过不断改进和优化,时间序列平滑预测法有望在未来的预测中发挥更大的作用。
时间序列平滑预测法是一种常用的预测模型,它通过对历史数据进行平滑处理来预测未来值。
在实际应用中,时间序列平滑预测法可以帮助企业和个人做出更准确的决策,并规划未来的发展方向。
一种常见的时间序列平滑预测方法是移动平均法。
移动平均法通过计算一定时间段内数据的平均值来平滑数据。
这种方法可以消除短期内的噪声和波动,从而更好地揭示出数据的趋势和长期变化。
第六章 - 平均(平滑)预测法

第二节 简单平均法
环比发展速度:
Ri
xi xi 1
RG n1 R2 R3 Rn n1
Ri
X G xn RG
第二节 简单平均法
▪ [例6-4]根据91年-96年我国水产品产量的历史数据,
预测97年我国人均水产品产量。
年份
1991 1992 1993 1994 1995 1996
人均水产品产量 11.74 13.37 15.47 17.98 20.89 23.10
2一)条水平0 时线,上x。1
x2
...
x n
x
说明历史数据在
3) 值越大,说明历史数据波动越大。
第二节 简单平均法
▪ 根据标准差计算预测区间:
t是标准差的倍数。
X
A
t
•
x
▪ [例题] 1989年~1996年我国水电消费量在能源消费总量 中所占的比重。
年份 1989 1990 1991 1992 1993 1994 1995 1996
2800.00
340.00 350.00 360.00 370.00 380.00 390.00
900.00 900.00 900.00 900.00 900.00
4500.00
第三节 移动平均法
二次移动平均法的原理 ▪ 现象: ▪ 对于斜坡形历史数据,历史数据、一次移动平均数
和二次移动平均数三者相继滞后。 ▪ 解决步骤: 1.先求出一次移动平均数和二次移动平均数的差值; 2.将差值加到一次移动平均数上; 3.考虑趋势变动值。
2
2
2
2
(5.2 5.3) (5.7 5.3) (6.1 5.3) (5.9 5.3) 1.18
时间序列平滑预测法概述

时间序列平滑预测法概述时间序列平滑预测方法有很多种,常见的方法包括移动平均法、指数平滑法和季节分解法等。
不同的方法适用于不同的时间序列数据,根据数据的特点选择合适的方法可以提高预测的准确性。
移动平均法是最简单的一种平滑预测方法,它通过计算一定时间窗口内的数据平均值来平滑数据。
移动平均法的优点是计算简单,适用于较为稳定的时间序列数据。
然而,移动平均法的缺点是对数据的滞后性响应较慢,无法有效地适应数据的变动。
指数平滑法是一种适用于非常态时间序列的平滑预测方法。
指数平滑法通过对数据加权平均,每一个数据点的权重是前一个数据点权重的乘积,权重随时间变化指数递减。
指数平滑法的优点是对数据变动能够更快做出响应,适用于较为波动的时间序列。
然而,指数平滑法的缺点是对于季节性变动较为敏感,容易受到突发事件的影响。
季节分解法是一种用于处理季节性时间序列的平滑预测方法。
季节分解法将时间序列数据分解为趋势、季节和残差三个部分,分别进行分析和预测。
季节分解法的优点是能够更好地提取数据的季节性规律,对于季节性较为显著的数据预测效果较好。
然而,季节分解法的缺点是对于季节性不明显的数据预测效果较差。
除了上述方法之外,时间序列平滑预测还可以结合其他方法,如回归分析、神经网络等,以进一步提高预测的准确性。
回归分析可以运用于时间序列中的趋势分析,通过建立趋势线的方程进行预测。
神经网络模型则可以通过学习历史数据的模式进行预测,适用于复杂的时间序列预测问题。
总之,时间序列平滑预测是一种重要的数据分析和预测方法,可以帮助企业和个人更好地了解和预测数据的趋势性和季节性。
选择合适的平滑预测方法对于提高预测准确性至关重要,同时结合其他方法可以进一步提高预测的能力。
在时间序列平滑预测中,移动平均法是一种最简单、直观的方法。
它通过计算一定时间窗口内的数据平均值来平滑数据,窗口的大小越大,平滑效果越明显。
移动平均法的优点是计算简单,适用于较为稳定的时间序列数据。
时间序列平滑预测法

理论界一般认为有以下方法可供选择:
经验判断法。这种方法主要依赖于时间序列的发展趋势 和预测者的经验做出判断。 (1)当时间序列呈现较稳定的水平趋势时,应选较小 的α值,一般可在0.05~0.20之间取值; (2)当时间序列有波动,但长期趋势变化不大时,可 选稍大的α值,常在0.1~0.4之间取值; (3)当时间序列波动很大,长期趋势变化幅度较大, 呈现明显且迅速的上升或下降趋势时,宜选择较大的α值, 如可在0.6~0.8间选值,以使预测模型灵敏度高些,能迅速 跟上数据的变化; (4)当时间序列数据是上升(或下降)的发展趋势类 型,α应取较大的值,在0.6~1之间。
【例2-2】一家企业发现在某4个月的期间内,利用当月实际需求额的 40%,倒数第2个月需求额的30%,倒数第3个月需求额的20%和倒数第 4个月的需求额的10%,可以推出下个月的最佳预测结果。假设过去4个 月的实际需求记录如表2-2所示,请预测第5个月的需求。 表2-2 某企业过去4个月的需求数据
2. 简单加权移动平均法
简单移动平均法中的各数据元素的权重都相等,而加权移动平均法
中的权重值可以不同,其权重之和必须等于1。加权移动平均法的计算
公式如下:
式中: x1, x 2 , ..., 设为时间序列观察值;
xt
为最新观察值;
Ft 1 为下一期预测值;
N 为移动步长(即移动平均的时期区间数); wi 为第 i 期的实际数据的权重值。
回总目录 回本章目录
试算法。根据具体时间序列情况,参照经验判断 法,来大致确定额定的取值范围,然后取几个α 值进行试算,比较不同α值下的预测的误差,选 择使预测误差最小的α值。 在统计上预测误差可以有标准差、方差、绝对偏差等 多种表示方法。通常我们采用标准标准差(SE)作为预测 误差的衡量工具。样本标准差得计算公式如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= (1/5) ∑ yt =yM5 5
由于在此段, y5为数据平均值,所有数据应yˆ 6 在y 5 它y6的=上y下5。波y动6 。的因实此际推值出精还品,按课件可前以一用组于值预的测变y 5t化=规6律时在的值
第二段:滑动舍去初始的y1,新一组为
y2 ,y3 ,y4 ,y5 ,y6 :
y6 = (1/5) ∑ yt = M6
80 = xt
xt+T = at+ bt T at= 2 Mt(1} -Mt(2)=
Mt(2)] = 3
bt =2/(N-1)[Mt(1)-
预测模型: xt+T= 80 + 3T 当T = 5精时品课件
移动平均法应用举例------期,股市
中的移动平均 线
日报创办人
一、道。琼斯的理论: 美华尔街
股价运动的三种趋势
精品课件
Mt(1}
由公式④ Mt(1} -Mt(2) = yt -
= (N-1)bt/2
代入
at= yt
得 Mt(2) ………….⑥
-Mt(2) ]/(N-1)…… ⑦
at= 2 Mt(1} - bt =2[Mt(1}
公式 ⑤,⑥,(7)构成二次移
动平均法预测公式。
注:1)预测公式精是品课以件 t时刻为基准的,这
另外,N的选取也起着较大的作用, N小一些,预测跟踪效果好一些。反映较灵敏。 特别地当N=1,则与实际状况相同。
N大一些,平滑特性就好一些,但跟 踪能力差。
精品课件
二、二次移动平均法
1 、 二次移动平均数公式.
二次移动平均是在一次平均移动 的基础上再做一次移动平均。
1(1)…. N(1)]/N
Mt(2) =[Mt(1} + MtMt-n+1(1)]/N
有
y7 = y6 = M6
:
:
第十六段: y16 ,y17 ,y18 ,y19 ,y20 :
= M20
可预测平y均21值= y20
= M20
y20 = (1/5) ∑ yt
精品课件
一般地:
Mt⑴ =[yt + yt-1+…… + y ]/N t-n+1 =(1/N) y ∑yˆ t 1 i =
这个公式就称为一次移动平均公式。 2004/10/18
1、原始波动(Primary Trends) Bull Market and Bear Market股价波动的长期上升(多头 市场)和长期下降(空头市场)是大市波动的基本趋 势,基本趋势一旦形成,通常要延续1~4年;
y a 2.∵ t+T- = Mt(1} t + btT - Mt(1}
- Mt(1} + btT
=2 Mt(1} -Mt(2)
= + Mt(1} -Mt(2) btT
/2 + btT
= (N-1)bt
即与一次移动平均法相比较,滞后偏差(N -1)/2已补偿。
3. Mt(1} .Mt(2)对应的N 应一致,且二次移动 值Mt(2) 不是预测值
bt
精品课件
类推: Mt-2(1) = Mt-1(1) -bt = Mt(1} -2bt
:
:
:
1(1)+…… +Mt-n+1(1)]/N -1)bt/2
Mt-n+1(1) = Mt(1} -(N-1)bt ∴ Mt(2) = [Mt(1} +Mt-
= Mt(1} -(N
移项 Mt(1} -Mt(2) = (N-1)bt/2 ………③
后于真实数据变化,形成滞后偏差 yt- Mt(1}
线形变化如下:
yt-2bt
bt
=有y:t-yytyt-y-1t1-t=y1 t-y2 t=-bytt-a1yt-+btbt=bttt=
:
t-1 t
y = y 精品课件
t-N+1
t-(N-
考虑到: Mt(1} = (yt + yt-1 +…… + yt-N+1)/N
4.二次移动平均法预测公式仅适合于线性 趋势预测。
5.不断的丢失信息,且N的大小一般由经验
及前期趋势确定。
精品课件
简例:已知某产品销量统计数据以 线74形,Mt趋(2势) 变= 动68,,N当= 处5,在预第测在20期5个时周,期M之t(后1} 的= 销量
解:由已知:
N= 5
Mt(1} = 74, Mt(2} = 68,
时间序列平滑预测法
精品课件
第一节 移动平均法
No 又称滑动平均法
一.一次移动平均法
Image 假定 yt 随时间顺序t =1,2, ……,N发
生变化的已知数据.
设为N=20, 则为y1,y2,…… ,y20
将其分为若干段,以5个数据作为一段,
进行滑动。
第一段:
y1,y2
,y3
y
,y4
,5 y5:
,={Βιβλιοθήκη yt-[1+2+……(N-1)]bt}/N 1+2+……(N-1) = [N(N-
1)]/2
∴ Mt(1} = [Nyt-(N/2)(N-1)bt]/N =yt-(N-1)bt/2…①
Mt-1(1) = yt-1-(N-1)bt/2
= yt-(N+1)bt/2 ……②
①-② :
Mt(1} - Mt-1(1) = yt - yt-1 =
在线性趋势条件下,回到思维基础,用线
性函数拟合yˆ假t T定:
= at + btT……. ⑤
其中 t为目前周期数
T为从目前周期 t到需要预测的周期的周
期个数。
yˆ t T
yt+T 为第 t+T周期的预测值
bt为斜率, at为截距
若:令T=0,得yt = at 为初始值
由于当前数据为yt ,有yt ≈ yt 故选取at ≈ yt
y y y 递推式 [ Mt(1} = t + t-1+…… + ]/N t-n+1
= [ yt-1+…… + yt-n ]/N + [yt-yt-N ]/N
= Mt-1(1) + [yt-yˆyt t1-N ]/N =
精品课件
移动平均法基本上是在平均值的基 础上进行预测。一般来讲,若经济变量在某一 值上下波动情况及升降缓慢预测效果比较好, 反之误差比较大.
有公式 (N-1)bt/2 = yt - Mt(1}
即得 1)bt/2….. ④
Mt(1}
-Mt(2)
=
yt
-
Mt(1}
=
(N-
公式④说明:
直接用一次移动平均值模拟:真值与一次平 均值存在N-1)bt/2 的滞后偏差。即公式1
1)bt/2
在线性趋势条件下: 精品课件
Mt(1}
-Mt(2)
=
(N-
三、二次移动平均法预测公式
递推公式 Mt(2) = Mt-1(2)+[Mt(1)-Mt-
Mt(2) 为二次移动平均数
N
分段数据个数
Mt(1) 一精品次课件移动平均数
2、线形趋势条件下的一次移动平 均数Mt(1) 与二次移动平均数 Mt(2)的关系
一次移动平均预测对于数据变化小, 近似于水平变化的数据平滑作用较好。
如果是线形趋势变化,则分析线落