高等数学第三节新 全微分

合集下载

《高等数学》课件 3第三节 全微分 ppt

《高等数学》课件  3第三节 全微分 ppt

[ f ( x, y y) f ( x, y)]
fx ( x 1 x, y y) x f y ( x, y 2 y) y
( 0 1 , 2 1 )
z [ f x ( x0 , y0 ) ]x [ f y ( x0 , y0 ) ]y
lim
x0
0,
lim
x0
则该函数在该点偏导数 z , z 必存在,且有
x y
d z z x z y. x y
证: 由全增量公式
令y 0,
得到对 x 的偏增量
xz f ( x x, y) f (x, y) Ax o ( x )
z lim x z A
x x0 x 同样可证 z B , 因此有
二、可微分存在的条件
一元函数: 可微 可导
可微分的必要条件: 可微分
偏导数存在
定理1. 若函数 z = f (x, y) 在点(x, y) 可微分, 则该函数在 该点偏导数 z , z 必存在,且有
x y
d z z x z y. x y
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微分,
xy ( x)2 ( y)2
xy
( x)2 ( y)2
0
o( ) 因此,函数在点 (0,0) 不可微 .
可微分的充分条件: 偏导数连续
可微分
定理2. 若函数
的偏导数 z , z x y
在点( x, y) 连续, 则函数在该点可微分, 且
z z x z y o( ).
x y
三、全微分的计算
V πr 2h. 记 r,h 和V 得增量依次为Δ r,Δ h和Δv,则有
ΔV dV VrΔr VhΔh 2π rhΔr π r2Δh. 把 r 20,h 100,Δ r 0.05,Δ h 1 代入,得

高数多元函数微分学 全微分(与泰勒公式)

高数多元函数微分学 全微分(与泰勒公式)

f (0,0)

00 lim x0 x

0,
同理 f y (0,0) 0.
17
当( x, y) (0,0)时,
fx ( x, y) y sin
1 x2 y2
x2 y cos ( x2 y2 )3
1, x2 y2
当点P( x, y)沿直线y x 趋于(0,0) 时,
14
例 3 计算函数u x sin y e yz 的全微分. 2
解 u 1, x
u 1 cos y ze yz , y 2 2
u ye yz , z
所求全微分
du dx (1 cos y ze yz )dy ye yzdz. 22
15
例 4 试证函数
4
dx ,dy 时的全微分.
4
解 z y sin( x 2 y), x z cos( x 2 y) 2 y sin( x 2 y), y
dz ( ,) 4

z x
dx
( ,) 4

z dy y ( ,)
4

2 (4 7). 8
24
f
(
x,
y)


xy
sin
0,
1 , ( x, y) (0,0)
x2 y2

( x, y) (0,0)
点(0,0)连续且偏导数存在,但偏导数在点(0,0)
不连续,而 f 在点(0,0) 可微.
思路:按有关定义讨论;对于偏导数需分
( x, y) (0,0),( x, y) (0,0)讨论.
16
证 令 x cos , y sin ,

《高数全微分》课件

《高数全微分》课件

全微分的概念
全微分是多变量函 数的变化率,通过 定义、计算方法和 与偏微分的区别, 理解全微分的概念。
练习题选讲
1
练习题1
通过一个实际的计算例子来帮助学生巩固微分和导数的应用。
2
练习题2
挑选一道复杂且具有挑战性的练习题,让学生运用所学知识解决问题。
3
练习题3
提供一道综合性的练习题,结合了微分、导数和全微分的内容,以检验学生的综 合能力。
讲解内容
什么是微分
微分是基础概念, 具有多种定义方式。 通过物理解释和常 见定义使学生理解 微分的概念和意义。
导数的定义
导数是描述函数变 化率的工具,包括 导数的概念、计算 方法以及其在函数 极值中的应用。
微分的定义
微分作为导数的无 穷小变化量,给出 了函数在某一点上 的局部变化情况和 计算方法。
总结回顾
1 本节知识点回顾 2 知识点扩展
概述了微分、导数和 全微分的概念和定义, 强调了它们在数学中 的重要性。
引导学生进一步学习 微分和导数的应用领 域,如物理学和经济 学等。
3 下节课预告
展示下节课将会涉及 的主题和学习目标, 激发学生的兴趣和期 待。
《高数全微分》PPT课件
高数全微分 PPT课件
知识点概述
什么是微分
微分是一个数学概念,用于描述函数值的 变化率。它是微积分的基础。
微分的定义
微分是函数值的无穷小变化。它描述了函 数在某一点上的局部变化。
导数的定义
导数是函数在某一点上的变化率,可以解 释为函数在该点的切线斜率。
全微分的概念
全微分是多变量函数在某一点上的变化率, 它包括所有变量的微分。

《高数全微分方程》课件

《高数全微分方程》课件
《高数全微分方程》PPT 课件
# 高数全微分方程 PPT课件
这是一份关于《高数全微分方程》的PPT课件,旨在向大家介绍微分方程的概 念、求解方法和应用。让我们一起探索微分方程的神奇世界吧!
前言
在本节中,我们将概述微分方程的含义和分类,并引入本次课程的主要内容:全微分方程。
概述微分方程
介绍微分方程的定义和基本性质,以及它们 在数学和科学中的重要性。
求解方法和应用
回顾全微分方程的不同求解方法,并强调它 们在数学和科学领域中的广泛应用。
重要性
强调全微分方程在实际问题中的重要性,以 及进一步学习和应用的必要性。
参考资料
在这一部分中,我们推荐相关教材和参考资料,以供进一步学习和深入研究。 总计token数量为340。
求解全微分方程
在本节中,我们将介绍三种方法来求解全微分方程。
1Leabharlann 方法一:求解常微分方程利用已知的常微分方程解法,结合全微分方程的性质,进行求解。
2
方法二:变量分离法
利用变量分离法将全微分方程转化为常微分方程,并求解。
3
方法三:积分因子法
介绍积分因子法的原理和步骤,并应用于求解全微分方程。
全微分方程的应用
全微分方程
解释什么是全微分方程,并与一阶常微分方 程进行对比。
全微分方程的概念
这一部分将为大家定义全微分方程,并介绍它与一阶常微分方程的区别。
1 定义全微分方程
2 与一阶常微分方程的区别
解释全微分方程是什么,并探讨它们的特 性和应用领域。
比较全微分方程与一阶常微分方程的异同 点,以及它们在求解方法上的差异。
在本节中,我们将探讨全微分方程的物理意义和应用实例。
全微分方程的物理意义

高等数学 第三节 全微分

高等数学 第三节  全微分

∂u = y e yz , ∂z
所求全微分
y 1 yz d u = d x + cos + z e d y + y e yz d z . 2 2
9
多元函数连续、可导、 多元函数连续、可导、可微的关系
函数连续
函数可偏导
函数可微 偏导数连续
10
*全微分在近似计算中的 应用
当二元函数 z = f ( x , y ) 在点 P ( x , y ) 的两个
π ,π 4
∂z = ∂x
π
4

∂z dx + ∂y

,π 4
π
dy
2 = π ( 4 − 7π ) . 8
8
y 例 3 . 计算函数 u = x + sin + e yz 的全微分 . 2 ∂u 解. =1, ∂x
∂u 1 y = cos + z e yz , 2 ∂y 2
偏导数 f x ( x , y ) , f y ( x , y ) 连续 , 且 ∆ x , ∆y 都
较小时 , 有近似等式
∆z ≈ d z = f x ( x , y ) ∆ x + f y ( x , y ) ∆ y .
也可写成
f ( x + ∆x, y + ∆y)
≈ f ( x, y ) + fx( x, y ) ∆x + f y( x, y ) ∆y .
(1) 4 (2)
du = f x ∆ x + f y ∆ y = fx d x + f y d y
类似地 , 若三元函数 u = f ( x , y , z ) 在点 ( x , y , z )

高等数学 第八章 第3节 全微分及其应用(中央财经大学)

高等数学 第八章 第3节 全微分及其应用(中央财经大学)

第三节 全微分及其应用一、全微分二、全微分在近似计算中的应用d d tan xy=α沿此曲线计算的函数在点P 处的增量为偏增量z x∆多元函数的全增量运用多元函数的全增量概念,将一元函数的微分概念推广到多元函数中.应用的某一个线性函数表示二元函数的全增量y x ∆∆ ,:z ∆α+∆+∆=−∆+∆+=∆y b x a y x f y y x x f z ),() ,(, ,无关的常数和是与y x b a ∆∆.应该是一个无穷小量α二元函数全微分的定义全微分概念的极限形式函数在区域上的可微性如果函数)f在区域Ω中的(X每一点均可微, 则称函数在区域Ω上可微 .可微连续可导连续:0lim 00=∆→∆→∆z y x 可微:+∆=∆x a z +∆y b )o(22y x ∆+∆什么?可微连续可导可微连续可导可微连续可导逆命题?可 微连续可导连 续可 导连续可导Okf,0(),(≠y xf二、全微分在近似计算中的应用例5 计算的近似值. 解.),(y x y x f =设函数.02.0,04.0,2,1=∆=∆==y x y x 取,1)2,1(=f ∵,),(1−=y x yx y x f ,ln ),(x x y x f yy =,2)2,1(=x f ,0)2,1(=y f 由公式得02.0004.021)04.1(02.2×+×+≈.08.1=谢谢大家!。

高等数学下册-全微分课件

高等数学下册-全微分课件

全微分的应用实例
01
近似计算
全微分可用于近似计算函数在某 一点的增量。
导数应用
02
03
物理应用
全微分与偏导数的关系可用于解 决实际问题中的优化问题,如最 值问题、极值问题等。
全微分在物理中有广泛的应用, 如速度、加速度、电磁场等物理 量的计算。
05
CATALOGUE
习题与解答
习题部分
题目1
计算函数$f(x, y) = x^2 + y^2$在点$(2, -3)$的全 微分。
率。
全微分与偏导数的关系式
全微分等于所有偏导数与自变量增量乘 积的和。
全微分公式:(dz = frac{partial f}{partial x} dx + frac{partial f}{partial y} dy + frac{partial f}{partial z} dz)
全微分公式适用于多元函数的可微 性,是微积分中的基本概念。
02
全微分具有连续性,即当函数在某点处可微时,其全
微分在该点连续。
03
全微分具有局部性,即全微分只在函数可微的点处有
意义,且与自变量的具体取值无关。
02
CATALOGUE
全微分的计算
函数的全微分
定义
函数在某点的全微分是该函数在该点的微分的 线性主部。
计算方法
根据定义,全微分等于所有偏导数与相应变量 的乘积之和。
题目2
已知函数$f(x, y) = sin(x + y)$,求在点$(1, frac{pi}{2})$的全微分。
题目3
设函数$f(x, y) = x^2 + 2xy + y^2$,求在点$(1, 1)$的全微分。

大一高数下全微分课件

大一高数下全微分课件

乘积法则
总结词
乘积法则用于计算两个函数的乘积的 全微分。
详细描述
乘积法则是全微分的另一个重要法则, 它指出如果z是两个函数u和v的乘积, 那么dz=u*du+v*dv。具体来说,如果 z=u*v,那么全微分 dz=d(u*v)/du*du+d(u*v)/dv*dv=u*d u+v*dv。
商的法则
大一高数下全微分课件
• 全微分的定义 • 全微分的基本公式和法则 • 全微分的应用 • 常见函数的微分 • 微分中值定理与导数的应用 • 习题与解答
01
全微分的定义
全微分的概念
全微分是指在函数定义域内 某一点处,将函数在该点的 值与自变量在该点的值分别 进行微小变化,函数值变化
量的线性部分。
全微分是函数在一点处对所 有自变量偏导数的加权和, 权因子是偏导数与自变量变
答案2
dz = cos(x + y) * (cos/sin)(π/4) * (cos/sin)(π/6) = -√3/3
解析2
函数z = sin(x + y)在点(π/4, π/6)的 全微分为dz = cos(x + y) * cos(π/4) * cos(π/6) = -√3/3。
答案3
dz = e^(x + y) * (e^1) * (e^0) = e^(1+0) = e
高阶导数与高阶全微分
高阶导数可以用于计算高阶全微分, 高阶全微分可以用于研究函数的更高 阶的几何特性。
02
全微分的基本公式和法则
链式法则
总结词
链式法则描述了复合函数的全微分计算方法。
详细描述
链式法则是全微分的重要法则之一,它指出如果z是由y和x通过复合函数f(g(y)) 得到的,那么全微分dz=d(f(g(y)))/dz * dy。具体来说,如果u=g(y)且z=f(u) ,那么dz=d(f(u))/du * du=d(f(u))/du * d(g(y))/dy * dy。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所求全微分
du dx (1 cos y ze yz )dy ye yzdz. 22
例4 一圆柱形的铁罐,内半径为5cm,内高为12cm, 壁厚均为0.2cm,估计制作这个铁罐所需材料的体 积大约是多少(包括上、下底)?
解 圆柱体的体积V r2h ,
因为 r 0.2 , h 0.4 都比较小,所以
函数在该点连续.
注意 对于二元函数,可微一定连续,连续不一定 可微。不连续,一定不可微
定理2 若函数z = f (x,y)在点(x,y)处可微, 则函数z = f (x,y)在点(x,y)处的两个偏导数 存在.
一元函数在某点的导数存在
微分存在.
二元函数的两个偏导数存在
全微分存在.
例如
求函数
f
(
x,
V dV V dr V dh r h
2rhdr r2dh r(2hdr rdh)
5 (240.2 51.4) 34 106.8
即,这个铁罐所需材料的体积约为 106.8 cm3
三、小结
1、多元函数全微分的概念; 2、多元函数全微分的求法; 3、多元函数连续、可偏导、可微的关系
(注意:与一元函数有很大区别)
导数 z 、 z 在点( x, y)连续,则该函数在点 x y
( x, y)可微.

dz z dx z dy. x y
全微分的定义可推广到三元及三元以上函数
du u dx u dy u dz. x y z
多元函数连续、可偏导、可微的关系
函数连续
函数可偏导
函数可微 偏导数连续
【例1】 求z = sin (x 2+ y)的全微分。
y)
x
2
xy
y
2
,
0,
x2 y2 0
,
x2 y2 0
在(0,0)处的连续性、可偏导性及全微分
由于f (x, y)在点(0,0)处不连续,
所以f (x, y)在(0,0)处不可微
但 f x(0,0), f y(0,0)都存在
二元函数的两个偏导数存在
全微分存在.
2、充分条件
定理 3(充分条件) 如果函数z f ( x, y)的偏
z cos( x 2 y) 2 y sin( x 2 y), y
dz ( ,) 4
z dx x ( ,)
4
z dy y ( ,)
4
2 (4 7 ).
8
例 3 计算函数u x sin y e yz 的全微分. 2
解 u 1, x
u 1 cos y ze yz , y 2 2
u ye yz , z
第三节全 微 分
全微分的定义 可微的条件
一元函数y = f (x)的微分
y f (x)x o(x)
dy f (x)x
对二元函数的全微分有类似的定义
一、全微分的概念
定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y )
处全增量
可表示成
z z x) x
z cos(x 2 y) y
dz z dx z dy x y
= 2xcos(x2 + y)dx + cos(x2 + y)dy
例 2 求函数z y cos( x 2 y),当x ,y ,
4
dx ,dy 时的全微分.
4
解 z y sin( x 2 y), x
x y
则称函数 f ( x, y ) 在点( x, y) 可微,
z x z y 称为函数 f (x, y)
x
在点 (x,
y)
y
的全微分,
记作
dz
z x x
z y y
z dx x
z dy y
若函数在区域 D 内各点都可微,
则称此函数在D 内可微.
二、可微的条件
1、必要条件
定理1 如果函数z f ( x, y)在点( x, y)可微分, 则
相关文档
最新文档