高斯列主元消去法解线性方程组VC课程设计报告
Gauss列主元消去法实验

<数值计算方法>实验报告1.实验名称实验2 Gauss 列主元消去法2.实验题目用Gauss 列主元消去法求解线性方程组。
0.0011 2.0002 3.0003 1.0001.0001 3.7122 4.6233 2.0002.0001 1.0722 5.6433 3.000x x x x x x x x x ++=⎧⎪-++=⎨⎪-++=⎩3.实验目的加深自己对Gauss 列主元消去法的理解和认识,并且通过做实验或做练习来加强自己Gauss 列主元消去法的掌握,学会并灵活运用Gauss 列主元消去法来求解方程组。
4.基础理论-------Gauss 列主元消去法1.Gauss 列主元消去法的基本思想是:在进行第k (k=1,2,...,n-1)步消元时,从第k 列的kk a 及以下的各元素中选取绝对值最大的元素,然后通过行变换将它交换到主元素kk a 的位置上,再进行消元。
2.Gauss 列主元消去法的优点:当kk a (k=1,2,...,n-1)的绝对值很小时,用Gauss 列主元消去法来求解方程组时,可以避免所的数值结果产生较大误差或失真。
5.实验环境实验系统:Win 7实验平台:VisualC++语言6.实验过程写出算法→编写程序→计算结果Gauss 列元消去法的算法Input:方程组未知量的个数n;增广矩阵()()1,2,...,T ij A a A A An ==,其中i=1,2,…,n; j=1,2,…,n+1Output:方程组的解x1,x2,…,xn,或失败信息。
1. for i ←1ton-1 do;2. temp ←|ii a |;3. p ←I;4. for j ←i+1 to n do5. if ||ji a >temp then6. p ←j;8. end9. end10. if temp=0 then11. |return False;12. end13. if p ≠I then14. p A ⇔i A ;//i,p 两行交换15. end//列选主元16. for j ←i+1 to n do17.*j ji i A m A -ji m ←/ji ii a a ;18. j A ←*j ji i A m A -;//消元19. end7.实验结果原方程组的解为:X1=-0.490396 , x2=-0.051035 ,x3=0.3675208.附录程序清单#include<iostream.h> #include"stdio.h"#include"math.h"void main ( ){ int n=3,i,j,k,p;doubleA[10][10]={{0.001,2.000,3.000,1.000},{-1.000,3.712,4.623,2.000},{-2.0 00,1.072,5.643,3.000}},temp,m,x[100];for(i=0;i<n;i++){ //选主元temp=fabs(A[i][i]); p=i;for(k=i+1;k<n;k++)if(fabs(A[k][i])>temp){temp=fabs(A[k][i]); p=k;}if(temp==0){ printf("\n无法求解:");return;}if(p!=i)for(j=0;j<n+1;j++){ temp=A[i][j];A[i][j]=A[p][j];A[p][j]=temp;}//消元for(k=i+1;k<n;k++){ m=A[k][i]/A[i][i];for(j=i+1;j<=n;j++)A[k][j]=A[k][j]-m*A[i][j];}}//回代for(i=n-1;i>=0;i--){x[i]=A[i][n];for(j=i+1;j<n;j++)x[i]=x[i]-A[i][j]*x[j];x[i]=x[i]/A[i][i];}printf("\nx=\n");for(i=0;i<n;i++)printf("%f \n",x[i]);}。
高斯列主元消去法实验报告

《数值计算方法》实验报告专业:年级:学号:姓名:成绩:1.实验名称实验2高斯列主元消去法2. :用Gauss列主消去法求解线性方程组0.001*X1+2.000*X2+3.000*X3=1.000-1.000*X1+3.217*X2+4.623*X3=2.000-2.000*X1+1.072*X2+5.643*X3=3.0003.实验目的a.熟悉运用已学的数值运算方法求解线性方程—Gauss列主消去法;b.加深对计算方法技巧的认识,正确使用计算方法来求解方程;c.培养用计算机来实现科学计算和解决问题的能力。
4.基础理论列主元消去法:a.构造增广矩阵b.找到每列绝对值的最大数;c.行变换;d.消去;e.回代5.实验环境Visual C++语言6.实验过程实现算法的流程图:7.结果分析a.实验结果与理论一致;b.由于数值设置成双精度浮点型,所以初值对计算结果影响不大;c.运用程序能更好的实现计算机与科学计算的统一和协调。
8. 附录程序清单#include<stdio.h>#include<math.h>int main(){int n=3,i,j,k,p;double a[4][4];double b[4];double x[4];double m[4][4];double temp;a[1][1]=0.001; a[1][2]=2.000; a[1][3]=3.000; b[1]=1.000;a[2][1]=-1.000; a[2][2]=3.1712; a[2][3]=2.000; b[2]=2.000;a[3][1]=-2.000; a[3][2]=1.072; a[3][3]=5.643; b[3]=3.000;for(i=1;i<=n-1;i++){temp=a[i][i];p=i;for(j=i+1;j<=n;j++)if(fabs(a[j][i])>temp){temp=a[j][i];p=j;}if(temp==0)return 0;if(p!=i) //换行{for(j=1;j<=n;j++)a[0][j]=a[i][j];for(j=1;j<=n;j++)a[i][j]=a[p][j];for(j=1;j<=n;j++)a[p][j]=a[0][j];b[0]=b[i];b[i]=b[p];b[p]=b[0];}for(j=i+1;j<=n;j++){m[j][i]=a[j][i]/a[i][i];for(k=i;k<=n;k++)a[j][k]=a[j][k]-m[j][i]*a[i][k];}}if(a[n][n]==0)return 0;x[n]=b[n]/a[n][n];for(i=n-1;i>=1;i--)//回代{temp=0;for(j=i+1;j<=n;j++)temp=temp+a[i][j]*x[j];temp=b[i]-temp;x[i]=temp/a[i][i];}for(i=1;i<=n;i++)//输出结果{printf("输出结果为:x[%d]=%lf ",i,x[i]);}printf("\n");return 0;}。
高斯消去法和列主元高斯消去法解线性方程组的程序(C语言)精品资料

//Gauss消去法解线性方程组
//参考教材《计算方法教程》第二版,西安交通大学出版社
#include<stdio.h>
int main(void)
{
float A[7][7]={{3,-5,6,4,-2,-3,8},
{1,1,-9,15,1,-9 ,2},
for(k=0;k<size-1;k++)
{
max=fabs(A[k][k]);
col=k;
//查找最大元素所在的行
for(i=k;i<size;i++)
{
if(max<fabs(A[i][k]))
{
max=fabs(A[i][k]);
col=i;
}
}
printf("col:%d\n",col);
for(j=k;j<size;j++)
printf("\n\n");
//消去过程
for(k=0;k<size-1;k++)
{
if(!A[k][k])
return -1;
for(i=k+1;i<size;i++)
{
Aik=A[i][k]/A[k][k];
for(j=k;j<size;j++)
{
A[i][j]=A[i][j]-Aik*A[k][j];
{
A[i][j]=A[i][j]-Aik*A[k][j];
}
b[i]=b[i]-Aik*b[k];
}
高斯列主元消去法解线性方程组VC++课程设计报告

课程设计报告一.课程设计目的:采用高斯列主元消去法解线性方程组。
用C 语言或C ++设计一个程序来通过高斯列主元消去法解线性方程组AX=b 的解。
二.课程设计的内容1. 课程设计的题目及简介题目:高斯列主元消去法解线性方程组。
简介:对线性方程组AX =b 等价于⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n nn n n n n b b b x x x a a a a a a a a a 2121212222111211方法说明(以4阶为例):(1)第1步消元——在增广矩阵(A ,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A ,b )做初等行变换使原方程组的第一列元素除了第一行的全变为0;(2)第2步消元——在增广矩阵(A ,b )中的第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡******00**00***0****4321x x x x 注:*代表非零的数。
(3)第3步消元——在增广矩阵(A ,b )中的第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡*****000**00***0****4321x x x x(4)按x4 → x3→ x2→ x1 的顺序回代求解出方程组的解。
此方法即高斯列主元消去法,若在变换的过程中没有选出绝对值最大的数放在最前面进行消元而求出未知数的方法就叫高斯消去法。
高斯消去法有一很明显的缺点,即在消元的过程中可能出现小主元,这种小主元可能导致解的不稳定,为了避免小主元的出现正是高斯列主元消去法的主要目的。
而通过每次消元之前的调换方程的次序也正是计算机实现高斯列主元消去法的关键。
高斯列主元消去法解线性方程组--课程设计报告

北京化工大学北方学院课程设计报告课程名称课程设计设计题目线性方程组求解专业、班级计科0701 学号 070202021 姓名张海艳指导教师刘佩贤设计时间 2010.9.1——2010.9.30 2010年 9 月 30 日一、引言1.1编写目的测试分析报告是把测试的结果写成文档,并对测试结果进行分析,为纠正软件的缺陷提供依据,也为软件验收和交付打下基础。
是软件开发的另一里程碑。
及时记录测试阶段的工作过程和工作成果,如实反映测试过程中所解决的各种问题,把集成测试和确认测试的结果以文件形式加以记载,使开发者能在第一时间对遇到的问题做迅速反应。
1.2 背景软件名称:线性方程组求解具体要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。
1.3算法说明首先将线性方程组做成增广矩阵,对增广矩阵进行行变换。
对元素aii,在第i列中,第i行及以下的元素选取绝对值最大的元素,将该元素最大的行与第i行交换,然后采用高斯消元法将新得到的aii消去第i行以下的元素。
一次进行直到ann。
从而得到上三角矩阵。
再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。
二、正文(1)设计部分该软件用于求解线性方程组的解。
执行过程:(1)首先执行main()(主函数),输入待求解方程组的增广矩阵的行数,接着输入增广矩阵。
i. 调用uptrbk(double *A,int N)(上三角变换函数),在此函数中又调用了两个函数:FindMax(int p,int N,double *A)和ExchangeRow(int p,int j,double *A,int N)。
ii. FindMax()函数用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行。
iii. uptrbk()函数将矩阵行数N、增广矩阵指针A、行号p传给FindMax()函数,找出绝对值最大项的标号;iiii. 接着将绝对值最大项的标号传给ExchangeRow()函数,最终将绝对值最大的那行换到第一行。
c高斯消元法解方程-课程设计报告

《高级语言程序设计》课程设计报告题目: 高斯消元法解方程专业: 网络工程(对口)班级: 16网工(3)姓名: 代应豪指导教师:成绩:计算机学院2017 年 4月 25 日2016-2017学年 第2学期计算机学院《高斯消元法解方程》课程设计报告目录一设计内容及要求 ............................................... 错误!未定义书签。
1.设计内容......................................................... 错误!未定义书签。
2.设计要求 (3)二概要设计 (3)三设计过程或程序代码 (8)四设计结果与分析 (12)五参考文献.......................................................... 错误!未定义书签。
41设计内容及要求1.1 设计内容:高斯消去法的解题思路:反代来求得所要的答案.矩阵的基本列运算规则为:(1)任一列均可乘以一非零的常数;(2)将任一列乘以一常数后加到其他列;(3)可任意对调任两列。
第1步消元——在增广矩阵(A,b)第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A,b)做初等行变换使原方程组转化为如下形式:第 1 页共16 页第2步消元——在增广矩阵(A,b)中的第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A,b)做初等行变换使原方程组转化为:第3步消元——在增广矩阵(A,b)中的第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A,b)做初等行变换使原方程组转化为:按x4 x3 x2 x1 的顺序回代求解出方程组的解按照解题的思路,整个程序大概由以下几个部分组成:输入方程组;判断用户输入的维数是否大于自定义10的维数;输入各行未知项的系数;开始反代;开始计算;退出程序。
试验四 Gauuss列主元消去法解线性方程组实验报告

for(j=0;j<m+1;j++) scanf("%lf",&ab[i][j]); printf("您输入的系数增广矩阵为:\n"); for(i=0;i<m;i++) { for(j=0;j<=m;j++) printf(" %10.9f",ab[i][j]); printf("\n"); } for(i=0;i<m-1;i++)//i 是行 { Change(ab,m,i); for(k=i+1;k<m;k++) { f=ab[i][i]; g=ab[k][i]; e=-(g/f); for(t=0;t<m+1;t++) { ab[k][t]+=ab[i][t]*e; } } } printf("经行处理后原矩阵变为:\n"); for(k=0;k<m;k++) { for(t=0;t<=m;t++) printf(" %10.9f",ab[k][t]); printf("\n"); } printf("方程组的解为:\n"); ab[2][2]=ab[2][3]/ab[2][2]; ab[1][1]=(ab[1][3]-ab[1][2]*ab[2][2])/ab[1][1]; ab[0][0]=(ab[0][3]-ab[0][2]*ab[2][2]-ab[0][1]*ab[1][1])/ab[0][0]; for(i=0;i<m;i++) printf("x%d=%10.9f\n",i+1,ab[i][i]); }
列主元高斯消去法和列主元三角分解法解线性方程

计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告
一.课程设计目的:采用高斯列主元消去法解线性方程组。
用C 语言或C ++设计一个程
序来通过高斯列主元消去法解线性方程组AX=b 的解。
二.课程设计的内容
1. 课程设计的题目及简介
题目:高斯列主元消去法解线性方程组。
简介:对线性方程组AX =b 等价于
方法说明(以4阶为例):
(1)第1步消元——在增广矩阵(A ,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A ,b )做初等行变换使原方程组的第一列元素除了第一行的全变为0;
(2)第2步消元——在增广矩阵(A ,b )中的第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡******00**00***0****4321x x x x 注:*代表非零的数。
(3)第3步消元——在增广矩阵(A ,b )中的第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为:
(4)按x4 → x3→ x2→ x1 的顺序回代求解出方程组的解。
此方法即高斯列主元消去法,若在变换的过程中没有选出绝对值最大的数放在最前面进行消元而求出未知数的方法就叫高斯消去法。
高斯消去法有一很明显的缺点,即在消元的过程中可能出现小主元,这种小主元可能导致解的不稳定,为了避免小主元的出现正是高斯列主元消去法的主要目的。
而通过每次消元之前的调换方程的次序也正是计算机实现高斯列主元消去法的关键。
2. 设计说明
我用的是C ++面向对象程序设计进行这个程序的设计的。
定义一个求方程解的类,只需用户将所需求解的方程的各个系数输入即可求出此方程的解。
很方便,而且程序很简洁。
先设定了一个类,也就是说是面向对象的。
此类的作用就是解用户输入的方程组,并输出结果。
此类里面定义了两个函数, void initialize()和void glz::solve()。
第一个函数的作用是初始化类中的变量,以便计算机知道方程中未知数的个数,便于运算和输出。
而后一个函数的作用这是解方程组,并输出结果。
此函数的解方程组功能的思路由上面课程设计的简介设计而出。
主函数中增加了循环,此循环可以解多个方程组。
3. 流程图
结束
4.程序清单
#include<iostream.h>//文件包含
#include<math.h>
#include<conio.h>
#include<iomanip.h>
class glz//定义类
{public:int row,col,i,j,k,t;
double mat[100][100];
double tmp;
public:
void initialize();
void solve();
};
void glz :: initialize()//函数初始化
{cout<<"欢迎使用我的小程序来解方程组,本程序是利用高斯列主元消去法解方程组的,祝您使用愉快"<<endl;
cout<<"输入方程组的个数"<<endl;
cin>>row;
cout<<"输入未知数的个数加一"<<endl;
cin>>col;
cout<<"按行输入各未知数前的系数和等号右边的常数"<<endl; for(int i=0;i<row;i++)
for(int j=0;j<col;j++)
cin>>mat[i][j];
}
void glz::solve(){ double x[100];//解方程的函数
for(i = 0;i < col - 2;i ++)//变形
{
k = i;
double max = mat[k][i];
for(j = i + 1;j < col - 1;j++)
{
if (abs(mat[j][ i]) > abs(mat[k][ i]))
{
max = mat[j][ i];
k = j;
}
}
if (k != i)
{
for (j = i; j < col; j++)//找到最大的并交换
{
double tmp = mat[k][ j];
mat[k][ j] = mat[i][ j];
mat[i][ j] = tmp;
}
}
for (j = i + 1; j < col-1; j++)//解方程
{
double tmp = mat[j][ i] / mat[i][i];
for (t = i + 1; t < col; t++)
{
mat[j][t] -= tmp * mat[i][ t];
}
}
}
x[col - 2] = mat[col - 2][col - 1] / mat[col - 2][ col - 2];
for (i = col - 3; i >= 0; i--)
{
for (j = col - 2; j >= i + 1; j--)
mat[i][col - 1] -= x[j] * mat[i][ j];
x[i] = mat[i][col-1]/mat[i][i];
}。