【2020年】山东省中考数学模拟试题 (含答案)

合集下载

【2020年】山东省中考数学模拟试题(含解析)

【2020年】山东省中考数学模拟试题(含解析)

【2020年】山东省中考数学模拟试卷含答案一、选择题:本大题共10 小题,每小题 3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.31-的值是()A.1 B.﹣1 C.3 D.﹣3【解答】解:31-=-1.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共15 分。

2020年山东省济南市3月中考数学模拟试题答案

2020年山东省济南市3月中考数学模拟试题答案

山东省济南市2020年中考数学模拟试卷答案一、选择题(每题4分,满分48分)1.B 2 B 3 C 4 D 5 A 6 C 7 D 8 D 9 D 10 D 11 D 12 A二、填空题(满分24分,每小题4分) 13.【答案】2-或814.【答案】14.15.【答案】十二 16.【答案】117.【答案】y =100x (412)x ≤≤ 18. 【答案】16.三、解答题19.计算:10112cos3012()(5)2π--︒+----【答案】33 【解析】 【分析】先计算三角函数值、化简二次根式、负整数指数幂、零指数幂,再计算绝对值运算,然后计算实数的加减运算即可. 【详解】原式31223(2)12=-⨯+--- 312321=-++- 33=.【点睛】本题考查了特殊角的三角函数值、二次根式的化简、负整数指数幂、零指数幂等知识点,熟记各运算法则是解题关键.20.解不等式组:7425332x x x x -<+⎧⎪++⎨≥⎪⎩,并求出所有整数解之和.【答案】31x -<„,2-.【解析】 【分析】求出每个不等式的解集,再确定其公共解,得到不等式组的整数解,求其和即可.【详解】解:7425332x x x x -<+⎧⎪⎨++⎪⎩①②…,解不等式①得3x >-, 解不等式②得1x „,∴原不等式组的解集是31x -<„,∴原不等式组的整数解是2-,1-,0,1, ∴所有整数解的和21012--++=-.【点睛】本题主要考查了一元一次不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值. 21.如图,平行四边形ABCD 的对角线AC 、BD ,相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,求证:AE=CF .【答案】证明见解析 【解析】分析:由四边形ABCD 是平行四边形,可得AB∥CD,OA=OC ,继而证得△AOE≌△COF,则可证得结论. 本题解析:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,OA =OC , ∴∠OAE =∠OCF , 在△OAE 和△OCF 中,OAE OCF OA OCAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AOE ≌△COF (ASA ), ∴AE =CF .22.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务? 【答案】至少应安排两个工厂工作10天才能完成任务. 【解析】 【分析】设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只,根据工作时间=工作总量÷工作效率结合在独立完成60万只口罩的生产任务时甲厂比乙厂少用5天,即可得出关于x 的分式方程,解之经检验即可得出x 的值,再利用两厂工作的时间=总生产任务的数量÷两厂日生产量之和,即可求出结论. 【详解】解:设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只, 依题意,得:606051.5x x-=, 解得:x =4,经检验,x =4是原方程的解,且符合题意, ∴1.5x =6, ∴100÷(4+6)=10(天).答:至少应安排两个工厂工作10天才能完成任务.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C (I )若∠ADE =25°,求∠C 的度数 (II )若AB =AC ,求∠D 的度数.【答案】(1)40°(2)30° 【解析】 【分析】(1)连接OA ,根据切线的性质知OA ⊥AC ,在根据圆周角定理知∠AOE=2∠ADE=50°,再利用直角三角形的锐角互余即可求出;(2)根据等腰三角形与圆周角定理即可求出. 【详解】(1)连接OA ,∵AC 是⊙O 的切线,OA 是⊙O 的半径, ∴OA ⊥AC ,∵»»=AE AE ,∠ADE=25°∴∠AOE=2∠ADE=50°,∴∠C=90°-∠AOE=40°. (2)∵AB=AC , ∴∠B=∠C , ∵»»=AE AE∴∠AOC=2∠B , ∴∠AOC=2∠C ,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴∠B=30°,∴∠D=30°.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆周角定理的运用.24.某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,最受欢迎的校本课程调查问卷您好!这是一份关于您最喜欢的校本课程问卷调查表,请在表格中选择一个(只能选一个)您最喜欢的课程选项,在其后空格内打“√”,非常感谢您的合作.选项校本课程A 3D打印B 数学史C 诗歌欣赏D 陶艺制作校本课程频数频率A 36 0.45B 0.25C 16 bD 8合计 a 1请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调査结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.【答案】(1)80,0.20;(2)36;(3)500人;(4)1 3【解析】【分析】(1)根据A的频数和频率求出a的值,再用C的频数除以总数即可求出b;(2)用360°乘以“D”所占的百分比即可;(3)根据题意列出算式,再求出即可;(4)先列出表格得出所有等可能的结果数,再根据概率公式即可得出答案.【详解】解:(1)a=36÷0.45=80,b=16÷80=0.20;(2)“D”对应扇形的圆心角的度数为:360°×880=36°;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:3193.【点睛】本题考查了列表法或树形图、用样本估计总体、频数分布表、扇形统计图等知识点,能根据题意列出算式是解此题的关键.25.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=mx的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.【答案】(1)t=2s时,△PBQ的面积为4;(2)t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似;(3)y=1445x【解析】【分析】(1)利用三角形的面积公式构建方程求出t即可解决问题.(2)分两种情形分别利用相似三角形的性质构建方程即可解决问题.(3)求出P,Q两点坐标,利用待定系数法构建方程求出t的值即可解决问题.【详解】(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵P A=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴12•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,PBAB=BQBC,∴828-t=6t,解得t=125.②当△BPQ∽△BCA时,BPBC=BQBA,∴826-t=8t,解得t=32 11,∴t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=mx的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=125,∴P(245,6),∴1445=m,∴反比例函数的解析式为y=1445x.【点睛】本题主要考查了相似三角形的判定与性质以及反比例函数的性质,属于综合性比较强的题.26.在等边△ABC中,点D是边BC上一点.作射线AD,点B关于射线AD的对称点为点E.连接CE并延长,交射线AD于点F.(1)如图①,连接AE,①AE与AC的数量关系是;②设∠BAF=a,用a表示∠BCF的大小;(2)如图②,用等式表示线段AF,CF,EF之间的数量关系,并证明.【答案】(1)①AE =AC ;②∠BCF =α;(2)结论:AF =EF +CF .证明见解析. 【解析】 【分析】(1)①可得AE=AB ,AB=AC ,则AE=AC ;②根据∠BCF=∠ACE-∠ACB ,求出∠ACE ,∠ACB 即可. (2)结论:AF=EF+CF .如图,作∠FCG=60°交AD 于点G ,连接BF .证明△ACG ≌△BCF 即可解决问题. 【详解】(1)①∵点B 关于射线AD 的对称点为E , ∴AE =AB .∵△ABC 为等边三角形, ∴AB =AC , ∴AE =AC .故答案为:AE =AC .②解:∵∠BAF =∠EAF =α,△ABC 是等边三角形, ∴AB =AC ,∠BAC =∠ACB =60°, ∴∠EAC =60°﹣2α,AE =AC , ∴∠ACE=12[180°﹣(60°﹣2α)]=60°+α,∴∠BCF =∠ACE ﹣∠ACB =60°+α﹣60°=α. (2)结论:AF =EF +CF . 证明:如图,作∠FCG =60°交AD 于点G ,连接BF .∵∠BAF =∠BCF =α,∠ADB =∠CDF , ∴∠ABC =∠AFC =60°, ∴△FCG 是等边三角形, ∴GF =FC .∵△ABC 是等边三角形, ∴BC =AC ,∠ACB =60°, ∴∠ACG =∠BCF =α, 在△ACG 和△BCF 中,===AC BC ACG BCF CG CF ⎧⎪∠∠⎨⎪⎩, ∴△ACG ≌△BCF (SAS ), ∴AG =BF .∵点B 关于射线AD 的对称点为E , ∴BF =EF ,∴AF ﹣AG =GF , ∴AF =EF +CF .【点睛】此题考查几何变换综合题,作图-轴对称变换,全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.在平面直角坐标系中.抛物线y=﹣x2+4x+3与y轴交于点A,抛物线的对称轴与x轴交于点B,连接AB,将△OAB 绕着点B顺时针旋转得到△O'A'B.(1)用配方法求抛物线的对称轴并直接写出A,B两点的坐标;(2)如图1,当点A'第一次落在抛物线上时,∠O'BO=n∠OAB,请直接写出n的值;(3)如图2,当△OAB绕着点B顺时针旋转60°,直线A'O'交x轴于点M,求△A'MB的面积;(4)在旋转过程中,连接OO',当∠O'OB=∠OAB时.直线A'O'的函数表达式是.【答案】(1)对称轴为x=2,A(0,3),B(2,0);(2)n=2;(3)233+;(4)5312y x=-+.【解析】【分析】(1)配方写成顶点式即可得到对称轴,从而求出B的坐标;(2)利用抛物线的对称性易知△BFA′≌△BOA,从而推导出∠O'BO与∠OAB的关系;(3)延长A'O'与x轴交于M,构造特殊的直角三角形,先求出MO′,再求△A′MB的面积;(4)连接OO'与AB交于C,作O'E⊥x轴于E,可得△AOB∽△OEO′~△OCB,再利用对应边成比例可求出OC,O′E,OE,再求出A′O′的解析式.【详解】(1)y=﹣x2+4x+3=﹣(x﹣2)2+7所以对称轴为x=2,所以B(2,0)当x=0时,y=3,所以A(0,3);(2)作A'F⊥x轴于F,由于二次函数的对称性,得OB=FB,AO=A'F∵∠AOB=∠A'FB=90°,∴△BFA'≌△BOA,设∠OAB=α,则∠O′BO=180°−(∠FBA′+∠O′BA′)=180°−(90°-α+90°-α)=2α,所以n=2;(3)延长A'O'与x轴交于M,∵∠MBO′=60°,O′B =OB =2, ∴MO′=23 ∴S △A′MB =12(MO′+O′A′)•O′B=23+3; (4)连接OO'与AB 交于C ,作O'E ⊥x 轴于E ,所以△AOB ∽△OEO′~△OCB ,所以OB AB OC OA = , ∴OC 13, 同理可得:O′E =2413,OE =3613, 所以O′(36241313,),B(2,0),241213365213O B k '--==, 所以k O′A′=−1512O B k '-=, 所以A′O′:y =−()53624512131312x -+=-x+3. 【点睛】此题考查二次函数综合,相似三角形的性质,旋转的性质,三角形全等的性质,解题关键在于掌握相似在直角坐标系中的应用,利用旋转中不变的量,构造相似三角形.。

【2020年】山东省中考数学模拟试题 (含答案)

【2020年】山东省中考数学模拟试题 (含答案)

2020年山东省滨州市中考数学模拟试题含答案一、选择题(每小题3分,共36分)1.下列四个实数中,绝对值最小的数是( )A .-5B .- 2C .1D .42.据某省旅游局统计显示,2019年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将27 700 000用科学记数法表示为( )A .0.277×107B .0.277×108C .2.77×107D .2.77×1083.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论正确的是( )A .a>bB .|a|>|b|C .-a<bD .a +b<04.下列运算正确的是( )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b)(a -b)=a 2-b 2D .(a +b)2=a 2+b 25.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( A )A .3B .-3C .1D .-16.方程3x +2(1-x)=4的解是( )A .x =25B .x =65C .x =2D .x =1 7.二元一次方程组⎩⎪⎨⎪⎧x -y =-3,2x +y =0的解是( ) A.⎩⎪⎨⎪⎧x =-1y =2 B.⎩⎪⎨⎪⎧x =1y =-2 C.⎩⎪⎨⎪⎧x =-1y =-2 D.⎩⎪⎨⎪⎧x =-2y =1 8.一元一次不等式2(x +2)≥6的解在数轴上表示为( )9.下列方程有两个相等的实数根的是( )A .x 2+x +1=0B .4x 2+x +1=0C .x 2+12x +36=0D .x 2+x -2=010.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .1011.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-2312.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( )A.2 700x -20=4 500xB.2 700x =4 500x -20C.2 700x +20=4 500xD.2 700x =4 500x +20二、填空题(每小题4分,共24分)13.分解因式:2a 2-4a +2=_______.14.若a +b =3,ab =2,则(a -b)2=_____.15.代数式x -1x -1中x 的取值范围是________. 16.满足不等式2(x +1)>1-x 的最小整数解是________.17.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为__________.18.如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为____________. 三、解答题(共60分)19.(1)(6分)计算:(2 017)0×8-(12)-1-|-32|+2cos45°.(2)(6分)计算:(3+2-1)(3-2+1)..20.(1)(6分)解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.②(2).(6分)解方程:1x -3=1-x 3-x-2.21.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解在数轴上表示出来.17.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.22.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x,其中x 满足x 2-4x +3=0.23.(12分)某物流公司承接A、B两种货物的运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨.该物流公司6月份承接的A种货物和B种货物数量与5月份相同,6月份共收取运费13 000元.问:(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费?答 案一、选择题(每小题3分,共36分)1.下列四个实数中,绝对值最小的数是( C ) A .-5 B .- 2 C .1 D .42.据某省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将27 700 000用科学记数法表示为( C )A .0.277×107B .0.277×108C .2.77×107D .2.77×1083.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论正确的是( C )A .a>bB .|a|>|b|C .-a<bD .a +b<04.下列运算正确的是( C )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b)(a -b)=a 2-b 2D .(a +b)2=a 2+b 25.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( A )A .3B .-3C .1D .-16.方程3x +2(1-x)=4的解是( C )A .x =25B .x =65C .x =2D .x =1 7.二元一次方程组⎩⎪⎨⎪⎧x -y =-3,2x +y =0的解是( A ) A.⎩⎪⎨⎪⎧x =-1y =2 B.⎩⎪⎨⎪⎧x =1y =-2 C.⎩⎪⎨⎪⎧x =-1y =-2 D.⎩⎪⎨⎪⎧x =-2y =1 8.一元一次不等式2(x +2)≥6的解在数轴上表示为( A )9.下列方程有两个相等的实数根的是( C )A .x 2+x +1=0B .4x 2+x +1=0C .x 2+12x +36=0D .x 2+x -2=010.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( B )A .5B .7C .5或7D .1011.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( C ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-2312.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( D )A.2 700x -20=4 500xB.2 700x =4 500x -20C.2 700x +20=4 500xD.2 700x =4 500x +20二、填空题(每小题4分,共24分)13.分解因式:2a 2-4a +2=2(a -1)2.14.若a +b =3,ab =2,则(a -b)2=1.15.代数式x -1x -1中x 的取值范围是x>1. 16.满足不等式2(x +1)>1-x 的最小整数解是0.17.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为3.18.如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为-54. 三、解答题(共60分)19.(1)(6分)计算:(2 017)0×8-(12)-1-|-32|+2cos45°. 解:原式=1×22-2-32+2×22=22-2-32+ 2=-2.(2)(6分)计算:(3+2-1)(3-2+1).. 解:原式=[3+(2-1)][3-(2-1)]=3-(2-1)2=3-3+2 2=2 2.20.(1)(6分)解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.② 解:由①,得y =3-2x.③把③代入②,得3x -5(3-2x)=11.解得x =2.将x =2代入③,得y =-1.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1. (2).(6分)解方程:1x -3=1-x 3-x-2. 解:方程两边同乘(x -3),得1=x -1-2(x -3).解得x =4.检验:当x =4时,x -3≠0,∴x =4是原分式方程的解.21.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解在数轴上表示出来. 解:由1+x >-2,得x >-3.由2x -13≤1,得x ≤2. ∴不等式组的解集为-3<x ≤2.解集在数轴上表示如下:22.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y2的值. 解:原式=(x -y )2(x -y )(x +y )=x -y x +y. 当x =3+1,y =3-1时,x -y =2,x +y =2 3.∴原式=223=33. 23.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x,其中x 满足x 2-4x +3=0. 解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x=x +2x -1·1-x (x +2)2 =-1x +2. 解方程x 2-4x +3=0,得(x -1)(x -3)=0,∴x 1=1,x 2=3.当x =1时,原分式无意义;当x =3时,原式=-13+2=-15.24.(12分)某物流公司承接A 、B 两种货物的运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨.该物流公司6月份承接的A 种货物和B 种货物数量与5月份相同,6月份共收取运费13 000元.问:(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A 货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费? 解:(1)设该物流公司5月份运输A 、B 两种货物各x 吨、y 吨,依题意,得⎩⎪⎨⎪⎧50x +30y =9 500,70x +40y =13 000.解得⎩⎪⎨⎪⎧x =100,y =150. 答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨.(2)设物流公司7月份运输A 种货物a 吨,收取w 元运输费,则依题意,有 a ≤2(330-a).则a ≤220.∴a 最大为220.w =70a +40(330-a)=30a +13 200.∵k =30>0,w 随a 的增大而增大.∴当a =220时,w 最大=30×220+13 200=19 800(元).答:该物流公司7月份最多将收取运输费19 800元.。

2020年山东省临沂市中考数学模拟试卷含答案(2套)

2020年山东省临沂市中考数学模拟试卷含答案(2套)

2020年山东省临沂市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1. I-3| =()A. —3B. —2C. 32. 如图,乙1 = 110。

,则匕2的度数是()A. 68°B. 70°C. 105°D. 110°3. 不等式2% + 9 > 3(%+ 2)的解集是()A. % < 3B. % < —3C. x >3D. % > —34. 如图,三棱柱ABC-A^B^是正三棱柱,其主视图是边长为2的正方形,则此三棱 柱的左视图的面积为()A. V3B. 2V3C. 2V2D. 45, 把a 3 - ab 2进行因式分解,结果正确的是()A. (a + ab)(a — ab)B. a(a 2 — b 2)C. a(a — byD. a(a — h)(a + h)6. 如图所示,在 4ABC 和△DEF 中,BC〃EF m BAC = ZD,且A B =DE = 4, BC = 5, AC = 6,则时的长为()7. A. 4 C. 6B. x 3 + x 4 = x 7D. 2a -1 ■ a 2 = 2a 8. B.5D.不能确定下列计算中,正确的是()A. (-5)° = 0C. (一。

2胪)2 = 一“服务社会,提升自我. ”尤溪县某中学积极开展志愿者服务活动,来自九年级的 4名同学(二男二女)成立了 “交通秩序维护”小分队,若从该小分队中任选两名同 学进行交通秩序维护,则恰是一男一女的概率是()A. |B. |C. |D・i 9.计算:岂一片+加结果为()A X A・右 B.—X D -嘉c.—X 10.某校调查了 20名同学某一周玩手机游戏的次数,调查结果如下表所示,那么这20名同学玩手机游戏次数的平均数为()次数2458人数2210611. A. 5B. 5.5C. 6D.如图,A,B, C,Q 是。

2020年山东中考数学模拟试卷(一)及答案解析(pdf版)

2020年山东中考数学模拟试卷(一)及答案解析(pdf版)


16.(3 分)(2014•东海县一模)如图,矩形 ABCD 中,AB=6,BC=8,E 是 BC 边上的一
定点,P 是 CD 边上的一动点(不与点 C、D 重合),M,N 分别是 AE、PE 的中点,记 MN
的长度为 a,在点 P 运动过程中,a 不断变化,则 a 的取值范围是

三、解答题(本题共 11 小题,共 102 分.解答时写出必要的文字说明、证明过程或演算步 骤)
24.(10 分)(2014•东海县一模)现在各地房产开发商,为了获取更大利益,缩短楼间距, 以增加住宅楼栋数.合肥市某小区正在兴建的若干幢 20 层住宅楼,国家规定普通住宅层高 宜为 2.80 米.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高 1.3 米).
(1)合肥的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为 81.4 度,冬至日为 34.88 度.为了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米? (2)有关规定:平行布置住宅楼,其建筑间距应不小于南侧建筑高度的 1.2 倍;按照此规 定,是否影响北侧住宅楼住户的全年的采光?若有影响,试求哪些楼层的住户受到影响?(本 题参考值:sin81.4°=0.99,cos81.4°=0.15,tan81.4°=6.61; sin34.88°=0.57,cos34.88°=0.82, tan34.88°=0.70)
数为

14.(3 分)(2015•峄城区校级模拟)如图,已知 AB、CD 是⊙O 的两条直径,∠ABC=28°,
那么∠BAD=

15.(3 分)(2012•泰州)如图,在边长相同的小正方形组成的网格中,点 A、B、C、D 都
在这些小正方形的顶点上,AB、CD 相交于点 P,则 tan∠APD 的值是

山东省青岛市2020年中考数学模拟试卷含答案解析

山东省青岛市2020年中考数学模拟试卷含答案解析

山东省青岛市2020届数学中考模拟试卷一、单选题1.﹣的绝对值是()A. ﹣B. ﹣C.D. 5【答案】C【考点】实数的绝对值【解析】【解答】解:|﹣|= .故选:C.【分析】直接利用绝对值的定义分析得出答案.2.某种计算机完成一次基本运算的时间约为0.000 000 001 s,把0.000 000 001 s用科学记数法可表示为( )A. 0.1×10-8 sB. 0.1×10-9 sC. 1×10-8 sD. 1×10-9 s【答案】D【考点】科学记数法—表示绝对值较小的数【解析】【解答】0.000000001=1×10-9,故答案为:D.【分析】一个小于1的正数可以表示为a×1oⁿ,其中1≤a<10,n是负整数。

3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A.是中心对称图形,但不是轴对称图形,故不符合题意;B.既是轴对称图形又是中心对称图形,故符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既不是轴对称图形,也不是中心对称图形,故不符合题意。

故答案为:B【分析】把一个图形沿着某一条直线折叠,这个图形的两部分能完全重合,那么这个图形是轴对称图形。

在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形是中心对称图形。

根据定义即可判断B符合题意。

4.计算a•a5﹣(2a3)2的结果为()A. a6﹣2a5B. ﹣a6C. a6﹣4a5D. ﹣3a6【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则化简求出答案.5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为( )A. (a-2,b+3)B. (a-2,b-3)C. (a+2,b+3)D. (a+2,b-3)【答案】A【考点】坐标与图形变化﹣平移【解析】【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3).故答案为:A.【分析】由图知,点A(1,-1),点(-1,2),因为点A,B的对应点分别为点A1,B1,所以可知平移的规律是,向左平移2个单位,向上平移3个单位,则则点P在A1B1上的对应点P′的坐标为(a-2,a+3).6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A. ﹣=1B. ﹣=1C. ﹣=1D. ﹣=1【答案】A【考点】分式方程的实际应用【解析】【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故答案为:A.【分析】由题意可得相等关系:提速前走完全程所需时间-提速后走完全程所需时间=缩短的时间,根据这个相等关系即可列方程。

(山东卷)2020年中考数学第三次模拟考试(全解全析)

(山东卷)2020年中考数学第三次模拟考试(全解全析)

绝密★启用前|试题命制中心2020届九年级第三次模拟考试【山东卷】数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣2的绝对值是A.﹣2 B.2 C.D.-2.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.40.910-⨯D.40.910-⨯⨯C.3910-⨯B.3910-3.以下给出的几何体中,主视图是矩形,俯视图是圆的是A.B.C.D.4.改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是A .B .C .D .5.下列运算正确的是 A .235x x x +=B .22(2)4x x -=-C .23522x x x ⋅=D .()437x x =6.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为A .70°B .20°C .55°D .35°7.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是A .9.7m ,9.9mB .9.7m ,9.8mC .9.8m ,9.7mD .9.8m ,9.9m8.如图,点A ,B ,C ,D 在⊙O 上,AC 是⊙O 的直径,∠BAC =40°,则∠D 的度数是A .50°B .60°C .80°D .90°9.如图,两个转盘分别被分成3等份和4等份,分别标有数字1、2、3和1、2、3、4,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为3或5的概率是A.16B.14C.512D.71210.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=125米,CD=8米,∠D=36 (其中A,B,C,D 均在同一平面内),则垂直升降梯AB的高度约为(精确到0.1米)(参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.8.6 B.23.4 C.13.9 D.11.411.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE 于点F,则BF的长为A.3102B.310C.105D.35512.如图,抛物线y1=a(x+2)2﹣3与y2=12(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=23;③当x=0时,y2﹣y1=6;④AB+AC=10;其中正确结论的个数是A.①②④B.①③④C.②③④D.①②③④第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 13.因式分解:22242a ab b -+=____________. 14.计算:(﹣12)﹣2﹣2cos60°=____________. 15.若分式13x -有意义,则x 的取值范围是_____________. 16.如图,,,是多边形的三个外角,边CD ,AE 的延长线交于点F ,如果,那么的度数是____________.17.如图,Rt ABC △中,90ACB ∠=︒,AC BC =,在以AB 的中点O 为坐标原点,AB 所在直线为x轴建立的平面直角坐标系中,将ABC 绕点B 顺时针旋转,使点A 旋转至y 轴的正半轴上的点A '处,若2AO OB ==,则图中阴影部分面积为________.18.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为__________.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)解不等式组:3(2)4 1213x xxx--≤⎧⎪+⎨>-⎪⎩20.(本小题满分6分)化简式子(22244m mm m--++1)221mm m-÷+,并在﹣2,﹣1,0,1,2中选取一个合适的数作为m的值代入求值.21.(本小题满分6分)如图,AC DB=,AB DC=,求证:EB EC=.22.(本小题满分8分)如图,DE是△ABC的中位线,延长DE至R,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=D C.23.(本小题满分8分)某服装网店李经理用11000元购进了甲、乙两种款式的童装共150套,两种童装的进价如下图所示:请你求出李经理购买甲、乙两种款式的童装各多少套?24.(本小题满分10分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了__________名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是__________,类别D所对应的扇形圆心角的度数是__________度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.25.(本小题满分10分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接B C.(1)求证:BC是⊙O的切线;(2)⊙O的半径为5,tan A=34,求FD的长.26.(本小题满分12分)如图,一次函数y=3+2的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△AB C.(1)若点C在反比例函数y=kx的图象上,求该反比例函数的解析式;(2)点P(3m)在第一象限,过点P作x轴的垂线,垂足为D,当△P AD与△OAB相似且P点在(1)中反比例函数图象上时,求出P 点坐标.27.(本小题满分12分)如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的顶点坐标为()3, 6C ,并与y 轴交于点()0, 3B ,点A 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)如图①所示,P 是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值;(3)如图②所示,在对称轴AC 的右侧作30ACD ∠=交抛物线于点D ,求出D 点的坐标;并探究:在y 轴上是否存在点Q ,使60CQD ∠=?若存在,求点Q 的坐标;若不存在,请说明理由.2020届九年级第三次模拟考试【山东卷】数学·全解全析1.【答案】B【解析】-2的绝对值是2.故选B . 2.【答案】A【解析】0.0009=4910-⨯.故选A . 3.【答案】D【解析】A 、主视图是圆,俯视图是圆,故A 不符合题意; B 、主视图是矩形,俯视图是矩形,故B 不符合题意; C 、主视图是三角形,俯视图是圆,故C 不符合题意; D 、主视图是个矩形,俯视图是圆,故D 符合题意; 故选D . 4.【答案】B【解析】A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选B . 5.【答案】C【解析】A .23,x x 不是同类项,不能合并,故该选项错误;B .22(2)44x x x -=-+,故该选项错误;C .23522x x x ⋅=,故该选项正确;D .()4312x x =,故该选项错误;故选C . 6.【答案】D【解析】∵DE ∥BC ,∴∠1=∠ABC =70°,∵BE 平分∠ABC ,∴1352CBE ABC ∠=∠=︒, 故选D . 7.【答案】B【解析】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m , 平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,故选B . 8.【答案】A【解析】∵AC 为⊙O 的直径,∴∠ABC =90°,∵∠BAC =40°,∴∠ACB =90°-40°=50°, ∵∠D 与∠ACB 是同弧所对的圆周角,∴∠D =∠ACB =50°.故选A . 9.【答案】C【解析】画树状图为:共12种等可能的情况,两次指针所指的数字之和为3或5的情况数有5种, 所以概率为512.故选C . 10.【答案】D【解析】如图,延长AB 和DC 相交于点E ,由斜坡BC 的坡度为i =1:2,得BE :CE =1:2.设BE =x 米,CE =2x 米.在Rt △BCE 中,由勾股定理,得222BE CE BC +=,即222(2)5)x x +=,解得x =12,∵BE =12米,CE =24米,∴DE =DC +CE =8+24=32(米),由tan36°≈0.73,得AEDE=0.73, 解得AE =0.73×32=23.36(米).由线段的和差,得AB =AE -BE =23.36-12=11.36≈11.4(米). 故选D .11.【答案】B【解析】如图,连接BE .∵四边形ABCD 是矩形,∴AB =CD =2,BC =AD =3,∠D =90°, 在Rt △ADE 中,AE 22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =3=12•AE •BF ,∴BF =3105.故选B . 12.【答案】A【解析】①∵抛物线y 2=12(x ﹣3)2+1开口向上,顶点坐标在x 轴的上方, ∴无论x 取何值,y 2的值总是正数,故本结论正确; ②把A (1,3)代入y 1=a (x +2)2﹣3得,3=a (1+2)2﹣3,解得a =23,故本结论正确; ③∵y 1=23(x +2)2﹣3,y 2=12(x ﹣3)2+1,∴当x =0时,y 1=23(0+2)2﹣3=﹣13,y 2=12(0﹣3)2+1=112,∴y 2﹣y 1=112﹣(﹣13)=356≠6,故本结论错误; ④∵物线y 1=a (x +2)2﹣3与y 2=12(x ﹣3)2+1交于点A (1,3),∴y 1的对称轴为x =﹣2,y 2的对称轴为x =3,∴B (﹣5,3),C (5,3),∴AB =6,AC =4, ∴AB +AC =10,故结论正确.故选A . 13.【答案】2(a -b )2【解析】22242a ab b -+=2(a 2-2ab +b 2)=2(a -b )2. 14.【答案】3 【解析】(﹣12)﹣2﹣2cos60°=4-2×12=3,故答案为3. 15.【答案】3x ≠ 【解析】分式13x -有意义,∴30x -≠,解得:3x ≠,故答案为:3x ≠.16.【答案】45°【解析】∵多边形的外角和为360°,∴∠1+∠2+∠3+∠DEF +∠EDF =360°,又∵∠1+∠2+∠3=225°,∴∠DEF +∠EDF =135°,∵∠DEF +∠EDF +∠DFE =180°,∴∠DFE =180°-135°=45°.故答案是为45°. 17.【答案】43π【解析】∵∠ACB =90°,AC =BC ,∴△ABC 是等腰直角三角形,∴AB =2OA =2OB =4,BC =22,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB ,∴BA ′=2OB , ∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形ABA ′+S △A ′BC ′-S △ABC -S 扇形CBC ′=S 扇形ABA ′-S 扇形CBC ′=2260460(22)43603603πππ⨯⨯-=. 故答案为:43π. 18.【答案】3【解析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N . ∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==,∴∠D =180°−∠BCD =60°,AB =CD =4,∵AM =DM =DC =4,∴△CDM 是等边三角形, ∴∠DMC =∠MCD =60°,AM =MC ,∴∠MAC =∠MCA =30°,∴∠ACD =90°, ∴AC =43,在Rt △ACN 中,∵AC =43ACN =∠DAC =30°,∴AN =12AC =3 ∵AE =EH ,GF =FH ,∴EF =12AG ,∵点G 在BC 上,∴AG 的最大值为AC 的长,最小值为AN 的长,∴AG 的最大值为323EF 的最大值为233,∴EF 的最大值与最3319.【解析】3(2)41213x x xx --≤⎧⎪+⎨>-⎪⎩ ①② 由①得:1,x ≥由②得:4x <∴不等式组的解集是:14x ≤<.20.【解析】222221(1)44m m m m m m m--+÷-++ 2(2)(1)[1](2)(1)(1)m m m m m m m -+=+-+- (1)21m mm m =+-- 221m m mm m +-=--2(1)21m mm m -=--22mm =-, 当1m =-,0,1,2时,原分式无意义,∴当2m =-时,原式2(2)122⨯-==--.21.【解析】在ABC 与DCB 中,ACDB ABDC BCCB, ∴()ABC DCB SSS △≌△; ∴ACB DBC ∠=∠, ∴ECB EBC ∠=∠, ∴EB EC =.22.【解析】(1)DE 是ABC ∆的中位线,//DE AB ∴,2AB DE =,AD CD =,EF DE =,2DF DE ∴=,AB DF ∴=,且//AB DF ,∴四边形ABFD 是平行四边形;(2)四边形ABFD 是平行四边形,AD BF ∴=,且AD CD =,BF DC ∴=.23.【解析】设李经理购买甲种款式的童装x 套,购买乙种款式的童装y 套.根据题意,列方程得150608511000x y x y +=⎧⎨+=⎩ 解方程,得7080x y =⎧⎨=⎩答:李经理购买甲种款式的童装70套,购买乙种款式的童装80套. 24.【解析】(1)本次共调查了10÷20%=50(人),故答案为:50; (2)B 类人数:50×24%=12(人), D 类人数:50﹣10﹣12﹣16﹣4=8(人),(3)16100%50⨯=32%,即m =32, 类别D 所对应的扇形圆心角的度数360°×850=57.6°, 故答案为:32,57.6;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数. 800×(1﹣20%﹣24%)=448(名),答:估计该校有448名学生寒假在家做家务的总时间不低于20小时. 25.【解析】(1)∵点G 是AE 的中点,∴OD ⊥AE ,∵FC =BC ,∴∠CBF =∠CFB , ∵∠CFB =∠DFG ,∴∠CBF =∠DFG , ∵OB =OD ,∴∠D =∠OBD ,∵∠D +∠DFG =90°,∴∠OBD +∠CBF =90°,即∠ABC =90°, ∵OB 是⊙O 的半径,∴BC 是⊙O 的切线;(2)连接AD ,∵OA =5,tan A =34,∴OG =3,AG =4,∴DG =OD ﹣OG =2, ∵AB 是⊙O 的直径,∴∠ADF =90°, ∵∠DAG +∠ADG =90°,∠ADG +∠FDG =90° ∴∠DAG =∠FDG ,∴△DAG ∽△FDG , ∴DG FGAG DG=,∴DG 2=AG •FG , ∴4=4FG ,∴FG =1,∴由勾股定理可知:FD 526.【解析】(1)对于一次函数323y x =-+, 当0y =,即320x +=时,23x = 当0x =时,2y =,则点A 的坐标为(230),点B 的坐标为(0,2),即23=OA 2OB =,3tan 23OB OAB OA ∴∠===30OAB ∴∠=︒,24AB OB ∴==, ABC ∆为等边三角形,60BAC ∴∠=︒,4AC AB ==,90OAC ∴∠=︒,∴点C 的坐标为:34),23483k ∴==∴反比例函数的解析式为:83y x=; (2)点(43P ,)m 在第一象限,43OD ∴=0m >,23AD OD OA ∴=-=当ADP AOB ∆∆∽时,OA OBAD PD =2m=,解得,2m =,此时P 点坐标为2);当PDA AOB ∆∆∽时,OA OBPD AD ==解得,6m =,此时P 点坐标为6);432⨯=6=≠P ∴点在(1)中反比例函数图象上时,P 点坐标为2).27.【解析】()1抛物线顶点为()3,6,∴可设抛物线解析式为()236y a x =-+,将()0,3B 代入()236y a x =-+得396a =+,13a ∴=-, ∴抛物线()21363y x =--+,即21233y x x =-++. ()2连接,3, 3OP BO OA ==,PBA BPO PAO ABO S S S S ∆∆∆∆=+-, 设P 点坐标为21,233n n n ⎛⎫-++⎪⎝⎭, 1133222BPO x S BO P n n ∆===, 2211119323322322PAO y S OA P n n n n ∆⎛⎫==-++=-++ ⎪⎝⎭, 11933222ABO S OA BO ∆==⨯⨯=, 22231991919813222222228PBAS n n n n n n ∆⎛⎫⎛⎫=+-++-=-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当92n =时,PBA S ∆最大值为818.()3存在,设点D 的坐标为21,233t t t ⎛⎫-++ ⎪⎝⎭,过D 作对称轴的垂线,垂足为G , 则213,6233DG t CG t t ⎛⎫=-=--++ ⎪⎝⎭,30ACD ∠=,2DG DC ∴=,在Rt CGD ∆中有222243CG CD DG DG DG DG =+=-,)21336233t t t ⎛⎫-=--++ ⎪⎝⎭,化简得(1133303t t ⎛⎫---= ⎪⎝⎭,13t ∴=(舍去),2333t =+∴点D (333+-3),3,3AG GD ∴== 连接AD ,在Rt ADG ∆中,229276AD AG GD =+=+=,6,120AD AC CAD ∴==∠=,Q ∴在以A 为圆心,AC 为半径的圆与y 轴的交点上,此时1602CQD CAD ∠=∠=, 设Q 点为(0,m ),AQ 为A 的半径,则AQ ²=OQ ²+OA ²,6²=m ²+3²,即2936m +=,∴1233,33m m ==-,综上所述,Q 点坐标为()()0,330,33-或, 故存在点Q ,且这样的点有两个点.。

2020年山东省济南市中考数学模拟卷及答案

2020年山东省济南市中考数学模拟卷及答案

2020年山东省济南市中考数学模拟卷第I卷(选择题)一、单选题1()A.0与1B.1与2C.2与3D.3与42.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.3.数据130000可用科学记数法表示为()A.13×104B.1.3×105C.0.13×106D.1.3×1044.下列计算正确的是()A.a2+a2=a4B.2(a(b(=2a(b C.a3•a2=a5D.((b2(3=(b5 5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1 7.某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数、平均数分别是()A.5(6(5B.5(5(6C.6(5(6D.5(6(68.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+9.如图,若△ABC内接于半径为R的(O,且∠A=60°,连接OB、OC,则边BC的长为()A B R C D10.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.B.C.6D.11.如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F 为半圆的中点,连接AF(EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π12.如图,已知正方形ABCD ,点M 是边BA 延长线上的动点(不与点A 重合),且AM <AB ,△CBE 由△DAM 平移得到.若过点E 作EH ⊥AC ,H 为垂足,则有以下结论: ①点M 位置变化,使得∠DHC =60°时,2BE =DM ;②无论点M 运动到何处,都有DM HM ;③无论点M 运动到何处,∠CHM 一定大于135°.其中正确结论的序号为( )A .①③B .①②C .②③D .①②③第II 卷(非选择题)二、填空题13.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b |,则2☆(﹣3)=_____. 14.因式分解:16x 4﹣y 4=_____.15.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.16.一组按规律排列的式子:234525101726,,,,a a a a a--,···,第n 个式子是_____.(用含n 的式子表示,n 为正整数). 17.如图,反比例函数y =kx(x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B ′在此反比例函数的图象上,则t 的值是________.18.如图,四边形ABCD是菱形,AB=2,且∠ABC=∠ABE=60°,M为对角线BD(不含B 点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为_________.三、解答题19.某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)下表是该小学的作息时间,若同学们希望在上午第一节下课8:20时能喝到不超过40℃的开水,已知第一节下课前无人接水,请直接写出生活委员应该在什么时间或时间段接通饮水机电源.(不可以用上课时间接通饮水机电源)20.计算:111()2sin302---+21.如图,点E (F 在AB 上,CE 与DF 交于点H (AD =BC (∠A =∠B (AE =BF .求证:GE =GF (22.在直角墙角AOB (OA ⊥OB ,且OA (OB 长度不限)中,要砌20m 长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96m 2( (1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?23.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?24.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)25.如图,一次函数y=kx+b与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数y=kx+b和y=ax的表达式;(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;(3)反比例函数y=ax(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)26.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB(AC为腰作了两个等腰直角三角形ABD(ACE,分别取BD(CE(BC的中点M(N(G,连接GM(GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________((2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB(AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD(ACE,其它条件不变,试判断△GMN的形状,并给与证明.27.如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0(1),点B(-9(10((AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB(AC分别交于点E(F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C(P(Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案1.C 2.A 3.B 4.C 5.C 6.C 7.D 8.C 9.D 10.C 11.C 12.D 13.114.(4x 2+y 2)(2x +y )(2x -y ) 15.1316.()2111n n n a++-⋅17.18.19.(1(当0≤x ≤8时,y =10x +20( 当8(x ≤a 时,800y x=((2(a =40((3)在7(20或7(38(7(45时打开饮水机. 20.2.21.22.(1)这底面矩形的较长的边为12米;(2(选用规格为1.00×1.00(单位:m)的地板砖费用较少.23.24.(1)袋子中白球有2个;(2).25.(1(12yx=(25y x=-((2(点C的坐标为1(,0)2或9(,0)2((3(27.26.(1(MG=NG( MG⊥NG((2)成立,MG=NG(MG⊥NG((3)27.(1) 抛物线的解析式为y=13x2+2x+1,(2) 四边形AECP的面积的最大值是814,点P(9-2((54(((3) Q(-4,1)或(3(1(.2020年山东省济南市中考数学模拟卷试卷学校:___________姓名:___________班级:___________考号:___________20题、21题、22题、23题、24题、25题、26题、27题、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年山东省滨州市中考数学模拟试题含答案一、选择题(每小题3分,共36分)1.下列四个实数中,绝对值最小的数是( )A .-5B .- 2C .1D .42.据某省旅游局统计显示,2019年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将27 700 000用科学记数法表示为( )A .0.277×107B .0.277×108C .2.77×107D .2.77×1083.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论正确的是( )A .a>bB .|a|>|b|C .-a<bD .a +b<04.下列运算正确的是( )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b)(a -b)=a 2-b 2D .(a +b)2=a 2+b 25.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( A )A .3B .-3C .1D .-16.方程3x +2(1-x)=4的解是( )A .x =25B .x =65C .x =2D .x =1 7.二元一次方程组⎩⎪⎨⎪⎧x -y =-3,2x +y =0的解是( ) A.⎩⎪⎨⎪⎧x =-1y =2 B.⎩⎪⎨⎪⎧x =1y =-2 C.⎩⎪⎨⎪⎧x =-1y =-2 D.⎩⎪⎨⎪⎧x =-2y =1 8.一元一次不等式2(x +2)≥6的解在数轴上表示为( )9.下列方程有两个相等的实数根的是( )A .x 2+x +1=0B .4x 2+x +1=0C .x 2+12x +36=0D .x 2+x -2=010.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .1011.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-2312.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( )A.2 700x -20=4 500xB.2 700x =4 500x -20C.2 700x +20=4 500xD.2 700x =4 500x +20二、填空题(每小题4分,共24分)13.分解因式:2a 2-4a +2=_______.14.若a +b =3,ab =2,则(a -b)2=_____.15.代数式x -1x -1中x 的取值范围是________. 16.满足不等式2(x +1)>1-x 的最小整数解是________.17.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为__________.18.如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为____________. 三、解答题(共60分)19.(1)(6分)计算:(2 017)0×8-(12)-1-|-32|+2cos45°.(2)(6分)计算:(3+2-1)(3-2+1)..20.(1)(6分)解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.②(2).(6分)解方程:1x -3=1-x 3-x-2.21.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解在数轴上表示出来.17.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.22.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x,其中x 满足x 2-4x +3=0.23.(12分)某物流公司承接A、B两种货物的运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨.该物流公司6月份承接的A种货物和B种货物数量与5月份相同,6月份共收取运费13 000元.问:(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费?答 案一、选择题(每小题3分,共36分)1.下列四个实数中,绝对值最小的数是( C ) A .-5 B .- 2 C .1 D .42.据某省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将27 700 000用科学记数法表示为( C )A .0.277×107B .0.277×108C .2.77×107D .2.77×1083.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论正确的是( C )A .a>bB .|a|>|b|C .-a<bD .a +b<04.下列运算正确的是( C )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b)(a -b)=a 2-b 2D .(a +b)2=a 2+b 25.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( A )A .3B .-3C .1D .-16.方程3x +2(1-x)=4的解是( C )A .x =25B .x =65C .x =2D .x =1 7.二元一次方程组⎩⎪⎨⎪⎧x -y =-3,2x +y =0的解是( A ) A.⎩⎪⎨⎪⎧x =-1y =2 B.⎩⎪⎨⎪⎧x =1y =-2 C.⎩⎪⎨⎪⎧x =-1y =-2 D.⎩⎪⎨⎪⎧x =-2y =1 8.一元一次不等式2(x +2)≥6的解在数轴上表示为( A )9.下列方程有两个相等的实数根的是( C )A .x 2+x +1=0B .4x 2+x +1=0C .x 2+12x +36=0D .x 2+x -2=010.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( B )A .5B .7C .5或7D .1011.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( C ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-2312.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( D )A.2 700x -20=4 500xB.2 700x =4 500x -20C.2 700x +20=4 500xD.2 700x =4 500x +20二、填空题(每小题4分,共24分)13.分解因式:2a 2-4a +2=2(a -1)2.14.若a +b =3,ab =2,则(a -b)2=1.15.代数式x -1x -1中x 的取值范围是x>1. 16.满足不等式2(x +1)>1-x 的最小整数解是0.17.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为3.18.如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为-54. 三、解答题(共60分)19.(1)(6分)计算:(2 017)0×8-(12)-1-|-32|+2cos45°. 解:原式=1×22-2-32+2×22=22-2-32+ 2=-2.(2)(6分)计算:(3+2-1)(3-2+1).. 解:原式=[3+(2-1)][3-(2-1)]=3-(2-1)2=3-3+2 2=2 2.20.(1)(6分)解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.② 解:由①,得y =3-2x.③把③代入②,得3x -5(3-2x)=11.解得x =2.将x =2代入③,得y =-1.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1. (2).(6分)解方程:1x -3=1-x 3-x-2. 解:方程两边同乘(x -3),得1=x -1-2(x -3).解得x =4.检验:当x =4时,x -3≠0,∴x =4是原分式方程的解.21.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解在数轴上表示出来. 解:由1+x >-2,得x >-3.由2x -13≤1,得x ≤2. ∴不等式组的解集为-3<x ≤2.解集在数轴上表示如下:22.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y2的值. 解:原式=(x -y )2(x -y )(x +y )=x -y x +y. 当x =3+1,y =3-1时,x -y =2,x +y =2 3.∴原式=223=33. 23.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x,其中x 满足x 2-4x +3=0. 解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x=x +2x -1·1-x (x +2)2 =-1x +2. 解方程x 2-4x +3=0,得(x -1)(x -3)=0,∴x 1=1,x 2=3.当x =1时,原分式无意义;当x =3时,原式=-13+2=-15.24.(12分)某物流公司承接A 、B 两种货物的运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨.该物流公司6月份承接的A 种货物和B 种货物数量与5月份相同,6月份共收取运费13 000元.问:(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A 货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费? 解:(1)设该物流公司5月份运输A 、B 两种货物各x 吨、y 吨,依题意,得⎩⎪⎨⎪⎧50x +30y =9 500,70x +40y =13 000.解得⎩⎪⎨⎪⎧x =100,y =150. 答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨.(2)设物流公司7月份运输A 种货物a 吨,收取w 元运输费,则依题意,有 a ≤2(330-a).则a ≤220.∴a 最大为220.w =70a +40(330-a)=30a +13 200.∵k =30>0,w 随a 的增大而增大.∴当a =220时,w 最大=30×220+13 200=19 800(元).答:该物流公司7月份最多将收取运输费19 800元.。

相关文档
最新文档