广义矩估计GMM
GMM估计讲义 广义矩估计

GMM估计讲义广义矩估计GMM估计讲义矩条件一个简单的线性回归模型,yx,,,, , 1.1 tT,1,,ttt由残差的均值等于零可得,Eyx(,,)()0,,E, 1.2 tttt方程1.2是理论上的矩条件,对于数据,它的粗略样本矩条件为:T1(yx,,,)0 1.3 ,ttT,1t直观上,当真实值时,由于理论矩为零,样本矩应该越接近于零越好。
求解1.3,,我们得到的矩估计量, ,T1y,tTt,1ˆ,, 1.4 1T1x,tTt,1x但矩条件并不唯一,在1.2两边同时乘以,由残差与变量无关的假设,我们可以得到t另一个矩条件,Exyxx(,,)()0,,E, 1.5 tttttt相似地,我们得到样本的矩条件,T1(yxx,,,)0 1.6 ,tttT,1t这样,我们可以获得,的另一个矩条件估计量,T1yx,ttTt,1ˆ,, 1.7 1T12x,tTt,1其与OLS估计量一致。
为了满足上述两个矩条件,我们可以使用两个矩条件的加权最小估计,即22Jgg()()(),,,,, 1.8 12TT11g,,,(yxx,g,,,(yx,()),()) ,,2ttt1ttTT,,11ttwwww方程1.8说明两个矩条件是同等重要的。
一般的,我们使用权矩阵,,,,11122122最小化目标函数,22,JwgwggwggwggWg()()()()()()(),,,,,,,,,,,, 1.9 11112122112222 为了保证非负,在需要是正定矩阵。
WgEZ()0,,Z 此外还有其他的矩条件,如,是工具变量向量。
tttt一些问题:1(什么矩条件可以使用,Gallant and Tauchen (1996, ET). 2( 什么工具变量可以使用,Bates and White (1993, ET) and Wooldrige (1994, Handbook of Econometrics, IV)3(怎么选择加权矩阵, W一般程序离散时间经济模型的动态规划行为需要运用Euler 方程:Exbh(,)0,, 2.1 m,1ttn,0x:向量; k,1tn,b:估计的参数向量, l,10klmRRR,,:,已知函数。
广义矩估计gmm法

广义矩估计gmm法
广义矩估计GMM法是一种用于模型参数估计的非线性最小二乘估计方法。
该方法将问
题的解决方案表示为最小化某种“不匹配度”,这一不匹配度也被称作残差。
这种残差将
被度量来确定无论是模型和数据之间,或者模型和数据之间的匹配程度。
广义矩估计GMM
法是一种一般性回归方法,它对待模型和数据的不匹配来自于一种广义矩矩阵(GMM)中
的曲率,该矩阵有着更复杂、更深层次的特征。
它属于GMM统计,该统计可以被用来比较
并分析不同类之间的差异,并预测各种任务的结果,半监督的、无监督的实值型和分类型
估计也是如此。
许多概念、方法和工具在GMM估计中都具有重要的地位,其中包括n阶差异(nRD)、极值过滤器、梯度下降优化法,以及模拟和分层最优化等。
各种标准和技术应用于估计GMM法中,可以提高模型参数的估计准确性,使回归变得更精确、更稳健。
广义矩估计GMM法提供多种不同的参数估计配置,来处理各种数据情况,这些数据情况包括有标准误
差的数据,有偏差的数据,以及有缺失值的数据等。
它还可以应用于时间序列数据,用来
估计模型参数的随机变动,从而改善模型预测准确性。
总之,广义矩估计GMM法是一种模型参数估计的强大工具,它可以用来估计和拟合各
种数据存在的模型参数。
它也可以应用到时间序列数据上,改善模型预测水平,给出一种
准确稳健的模型参数估计,从而使科学研究得到更优良的结果。
广义矩方法

1、广义矩方法(GMM)广义矩方法是基于模型实际参数满足的一些矩条件而形成的一种参数估计方法,是聚集方法的一般化。
GMM的优点:仅需要知道一些矩条件,而不需要知道随机变量的分布密度(如极大似然估计)。
这可能是一个缺陷,因为GMM经常不能对样本中的全部信息进行有效利用。
并且如果如果模型的设定是正确的, 则总能找到该模型实际参数满足的若干矩条件而采用GMM。
广义矩估计选择的矩估计方程个数多于待估参数的个数时, 必须选择参数使它尽可能地与各个矩估计方程配合, 来调和将出现在过度识别系统中的互相冲突的估计。
一种办法就是最小化准则函数。
令θ为参数向量, m(θ)为样本矩条件。
最小化准则函数即使J T = m (θ)′m (θ)最小。
考虑到不同的矩条件所起的作用不同, 人们希望某些矩条件的作用大些、某些矩条件的作用小些, 因此引入了加权矩阵, 它反映了各阶矩在GMM 中的重要程度。
由此问题转化成了使J T = m (θ)′w(θ)m (θ)最小。
这里W (θ) 是一个正定权重矩阵, 它反映了与每一个矩条件相配合的重要性。
GMM 估计量就是使J T最小化时的参数估计量θ, 即θ= argmin [m (θ)′w(θ)m (θ) ]。
其中, m (θ) 为样本矩条件, 是m * 1 维的正交条件。
权重矩阵W (θ) 为m * m 维的正定对称矩阵, θ为L* 1 维向量,L≤m。
为使J T 极小化, 对J T关于θ求导, 得到一阶条件m (θ)′W (θ) m (θ) = 0其中, m (θ) 是m (θ) 关于θ的Jacobian 矩阵。
GMM 估计的核心问题是对加权矩阵的选择问题。
如果选取的矩条件个数恰好等于待估参数的个数, 就属于“恰好识别”( just -ident ified) 的类型, 无论权重矩阵如何选取, 都有最小值0。
如果选取的矩条件个数多于待估参数的个数, 就属于“过度识别”(over-identified)的类型, 这时并不是每个矩条件都能得到满足, 而权重矩阵W决定了各个矩条件的相对重要性。
stata中gmm模型条件 -回复

stata中gmm模型条件-回复Stata中GMM模型条件GMM,即广义矩估计,是一种统计方法,通过最大化一组矩条件,估计参数的值。
在Stata中,GMM模型常用于解决经济学和金融学中的一些问题,例如处理内生性问题、估计经济模型的参数等。
在本文中,将逐步回答关于Stata中GMM模型的条件问题。
第一步:数据准备在使用GMM模型之前,首先需要准备数据。
假设我们有一个包含自变量、因变量和仪器变量的数据集。
自变量是用来解释因变量的变量,而仪器变量是用来解决内生性问题的变量。
确保数据集存储在Stata的工作区中,并确保数据集命名无重复。
第二步:GMM的基本概念在开始使用GMM模型之前,了解一些基本概念是非常重要的。
GMM 模型通过最大化一组矩条件来估计参数的值。
通常情况下,这组矩条件由期望的样本矩(sample moments)和理论模型的矩(theoretical moments)组成。
第三步:指定理论模型在使用GMM模型之前,需要指定理论模型。
理论模型是根据实际问题构建的模型,用于解释因果关系。
在Stata中,可以使用一阶(first order)或二阶(second order)条件来指定理论模型。
第四步:选择一组仪器变量仪器变量在GMM模型中起着非常重要的作用,能够帮助解决内生性问题。
选择一组适当的仪器变量可以提高模型的效果。
在Stata中,可以使用ivregress命令来估计GMM模型,该命令允许用户指定仪器变量。
第五步:计算样本矩在GMM模型中,样本矩是通过数据集计算得出的。
样本矩用来将理论模型的参数与实际数据相联系。
在Stata中,可以使用egen命令来计算样本矩。
例如,如果我们想要计算平均值的样本矩,可以使用以下代码:egen mean_x = mean(x)第六步:计算理论模型的矩除了样本矩,还需要计算理论模型的矩。
理论模型的矩是基于理论模型的参数和样本数据计算得出的。
在Stata中,可以使用predict命令来计算理论模型的矩。
系统广义矩估计公式

系统广义矩估计公式一、基本概念。
1. 矩估计(Method of Moments)- 矩估计是基于样本矩来估计总体矩的一种方法。
设总体X的分布函数为F(x;θ),其中θ = (θ_1,θ_2,·s,θ_k)是未知参数向量。
总体的r阶矩μ_r = E(X^r),样本的r阶矩为m_r=(1)/(n)∑_i = 1^nX_i^r。
通过令μ_r=m_r(r = 1,2,·s,k)得到关于θ的方程组,解这个方程组就得到θ的矩估计量。
2. 广义矩估计(Generalized Method of Moments,GMM)- 广义矩估计是矩估计的推广。
它是基于一些矩条件来估计模型参数的方法。
假设存在q个矩条件E[g(X_i,θ)] = 0,其中g(X_i,θ)是X_i和参数θ的函数向量,g(X_i,θ)=(g_1(X_i,θ),g_2(X_i,θ),·s,g_q(X_i,θ))'。
- GMM的目标函数是Q(θ)=n[g_n(θ)]'W_n[g_n(θ)],其中g_n(θ)=(1)/(n)∑_i =1^ng(X_i,θ),W_n是一个正定权重矩阵。
通过最小化Q(θ)得到θ的GMM估计量θ̂。
1. 动态面板数据模型中的应用。
- 考虑动态面板数据模型y_it=α y_i,t - 1+x_it'β+μ_i+ε_it,i = 1,·s,N,t = 1,·s,T,其中y_it是被解释变量,x_it是解释变量向量,μ_i是个体固定效应,ε_it是随机误差项。
- 对于这个模型,一阶差分可以消除个体固定效应μ_i,得到Δ y_it=αΔ y_i,t - 1+Δ x_it'β+Δε_it。
- 系统广义矩估计将水平方程y_it=α y_i,t - 1+x_it'β+μ_i+ε_it和差分方程Δy_it=αΔ y_i,t - 1+Δ x_it'β+Δε_it结合起来进行估计。
2.2 广义矩估计

4、权矩阵的选择
• 关于权矩阵的选择,是GMM估计方法的一个核心 问题。
ˆ arg min (m( )'W 1 m( ))
权矩阵可根据每个样本矩条件估计的精确程度来设 置(用方差来度量)。例如,对估计较精确的矩条 件给予较大的权重,对估计较不精确的矩条件给予 较小的权重。
1 W 2 n
§2.2 广义矩估计
(GMM, Generalized Method of Moments)
一、广义矩估计的概念
二、广义矩估计及其性质
三、正交性条件和过度识别限制的检验
四、关于2SLS与GMM关系的讨论
关于GMM的主要文献
• 关于GMM最早的系统的描述 L. Hansen, 1982: Large Sample Properties of GMM Estimation, Econometrica 50, p1029-1054 • 关于GMM 的总结 A. Pagan and M. Wickens, 1989: A Survey of Some Recent Economertic Methods, Economic Journal 99, p962-1025 • 关于GMM发展的讨论 R. Davidson and J. MacKinnon, 1993: Estimation and Inference in Econometrics, New York Oxford Univ. Press
• 如果l=K,这时Z’X为KK方阵且可逆。于是: β=(Z’X)-1W-1(X’Z)-1X’ZWZ’Y =(Z’X)-1Z’Y 可见,βGMM=βIV, 这时W的选择对结果无影响。 • 如果l>K,这时根据W选取的不同,有不同的解 βGMM,但只要W是对称正定矩阵,估计结果都满 足一致性。 • 尽管不同的权矩阵W都可得到的一致估计量,但 估计量的方差矩阵可能是不同的。因此,可以选 择最佳的W,以使估计量更有效(有小的方差)。
GMM估计中文讲义广义矩估计
GMM 估计中文讲义2线性模型1i x 是1k ⨯,2i x 是1r ⨯,l k r =+。
如果没有其他约束,β的渐进有效估计量是OLS估计。
现在假设给定一个信息20β=,我们可以把模型写为,11i i i y x βε'=+,()0i i E x ε= 如何估计1β?一种就是OLS 估计。
然而这种方法不是必然有效的,当在()0i i E x ε=方程中有l 个约束,然而1β的维数k l <,这种情况称为过渡识别。
这里有r l k =-比自由参数多的矩约束,我们称r 是过渡约束识别个数。
让(,,,)g y z x β是1l ⨯个方程,参数β为1k ⨯,且k l <,有0(,,,)0i i i Eg y z x β= (1)0β是β的真实值,在上面线性模型中有1(,,)()g y x x y x ββ'=-。
在计量经济学里,这类模型称为矩条件模型。
在统计学中,这称为估计方程。
另外,我们还有一个线性矩条件模型,1i i i y z βε'=+,()0i i E x ε=i z 和i x 的维数都是1k ⨯,且有1l ⨯,k l <,如果k l =则模型是恰好识别,否则是过渡识别。
变量i z 是i x 的一部分或是i x 的函数。
模型(1)可以设置为,0(,,,)()i i i g y z x x y z ββ'=- (2)GMM 估计模型(2)样本均值为11111()(())()n n n i i i i i i n n ng g x y z X y X Z ββββ==='''=-=-∑∑ (3)β的矩估计量就是设置()0n g β=。
对于k l <个方程大于参数的情形,GMM 估计思想就是设置()n g β近可能的接近于零。
对于l l ⨯加权矩阵W 0n >,让这是向量()n g β长度的非负测度。
例如,如果W n I =,则有2()()()()n n n n n n J g g g ββββ'=⋅=⋅。
GMM广义矩估计
ˆ) 是自相关序列,取法和线性的 • 如果 gt (wt , 类似
26
检验问题
和线性情况类似,我们也可以得到相应的非 线性模型的检验方法
27
Example
28
Stochastic Volatility Models
如果模型被J-统计量拒绝,大的ti 的表示第 i 个 矩条件被错误指定
13
两步最小二乘 如果模型(1.1)的误差项是条件同方差,那么
Ext xt t2 2 xx S
ˆ S 的相合估计可以表示为 S ˆ 2 S xx 典型的取 n 2 1 ˆ ) 2 where ˆ ˆ n ( y z
ˆW ˆ S )1 S W ˆS ˆS (S W ˆ S )1 (1.9) (S W xz xz xz xz xz xz
ˆ(W ˆ )) ( W )1 WSW ( W )1 (1.8 avar( xz xz xz xz xz xz
9
估计的效率
GMM估计效率的定义
序列不相关的矩: (通常 gt (0 ) 为遍历平稳的 MDS),那么 S avar(g ) E[gt (0 )gt (0 ))] 根据White(1982), S 的一个异方差(HC)估计
ˆ)g ( ˆ) S 1/nt 1 g t ( t
n
15
序列相关时的矩:如果总体的矩条件gt (0 ) 是 遍历平稳,但是序列相关的过程,那么
ˆ( S ˆ 1 ) arg min ng S ˆ 1 g n n
S 的一致估计可以由下式给出
n 1 n 1 ˆ) 2 ˆt2 xt xt ( yt zt S xt xt n t 1 n t 1
广义矩估计GMM
广义矩估计(Generalized Method of Moments ,即GMM )一、解释变量内生性检验首先检验解释变量内生性(解释变量内生性的Hausman 检验:使用工具变量法的前提是存在内生解释变量。
Hausman 检验的原假设为:所有解释变量均为外生变量,如果拒绝,则认为存在内生解释变量,要用IV ;反之,如果接受,则认为不存在内生解释变量,应该使用OLS 。
reg ldi lofdiestimates store olsxtivreg ldi (lofdi=l.lofdi ldep lexr)estimates store iv hausman iv ols(在面板数据中使用工具变量,Stata 提供了如下命令来执行2SLS:xtivreg depvar[varlist1] (varlist_2=varlist_iv) (选择项可以为fe ,re 等,表示固定效应、随机效应等。
详见help xtivreg )如果存在内生解释变量,则应该选用工具变量,工具变量个数不少于方程中内生解释变量的个数。
“恰好识别”时用2SLS 。
2SLS 的实质是把内生解释变量分成两部分,即由工具变量所造成的外生的变动部分,以及与扰动项相关的其他部分;然后,把被解释变量对中的这个外生部分进行回归,从而满足OLS 前定变量的要求而得到一致估计量。
t p t q t p 二、异方差与自相关检验在球型扰动项的假定下,2SLS 是最有效的。
但如果扰动项存在异方差或自相关,面板异方差检验:xtgls enc invs exp imp esc mrl,igls panel(het)estimates store heteroxtgls enc invs exp imp esc mrl,iglsestimates store homolocal df = e(N_g) - 1lrtest hetero homo, df(`df')面板自相关:xtserial enc invs exp imp esc mrl则存在一种更有效的方法,即GMM 。
gmm广义矩估计
gmm广义矩估计GMM(广义矩估计)是一种用于参数估计的统计方法。
它是基于矩的概念发展而来的,通过对观测数据的矩估计,来估计未知参数的值。
GMM广义矩估计在统计学和经济学等领域得到了广泛应用。
在GMM中,我们首先定义一个经验矩,即从观测数据中得到的样本矩。
然后,我们根据理论模型中的矩表达式,得到理论矩。
接下来,我们通过最小化经验矩与理论矩之间的差异,来估计未知参数的值。
GMM广义矩估计的步骤如下:1. 确定理论模型:首先,我们需要确定一个理论模型,该模型描述了观测数据的分布特征。
在经济学中,通常使用概率分布函数来描述变量的分布特征。
2. 确定矩条件:接下来,我们需要确定一组矩条件,即理论模型中的矩表达式。
矩条件是基于理论模型中的变量和参数之间的关系得到的。
3. 计算经验矩:然后,我们从观测数据中计算一组经验矩。
经验矩是观测数据中的样本矩,用于估计理论矩的值。
4. 估计未知参数:通过最小化经验矩与理论矩之间的差异,我们可以得到未知参数的估计值。
这个过程可以使用最小二乘法或其他优化算法来实现。
GMM广义矩估计在经济学中得到了广泛应用。
例如,在计量经济学中,GMM广义矩估计被用于估计经济模型中的参数。
在金融学中,GMM广义矩估计被用于估计资产定价模型中的参数。
在其他领域,GMM广义矩估计也被用于估计其他类型的模型。
GMM广义矩估计具有一些优点。
首先,它是一种非参数估计方法,不需要对概率分布函数做出任何假设。
这使得GMM广义矩估计在处理复杂的数据分布时具有灵活性。
其次,GMM广义矩估计可以处理具有多个未知参数的模型,这使得它在估计复杂模型时具有优势。
此外,GMM广义矩估计还可以通过引入工具变量来解决内生性问题。
然而,GMM广义矩估计也存在一些限制。
首先,它对初始参数值敏感,可能会收敛到局部最优解。
因此,在实际应用中,选择合适的初始参数值非常重要。
其次,GMM广义矩估计对观测数据的分布特征要求较高,如果数据不符合理论模型的假设,估计结果可能不准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义矩估计(Generalized Method of Moments ,即GMM )
一、解释变量内生性检验
首先检验解释变量内生性(解释变量内生性的Hausman 检验:使用工具变量法的前提是存在内生解释变量。
Hausman 检验的原假设为:所有解释变量均为外生变量,如果拒绝,则认为存在内生解释变量,要用IV ;反之,如果接受,则认为不存在内生解释变量,应该使用OLS 。
reg ldi lofdi
estimates store ols
xtivreg ldi (lofdi=l.lofdi ldep lexr)
estimates store iv hausman iv ols
(在面板数据中使用工具变量,Stata 提供了如下命令来执行2SLS:xtivreg depvar
[varlist1] (varlist_2=varlist_iv) (选择项可以为fe ,re 等,表示固定效应、随机效应等。
详见help xtivreg )
如果存在内生解释变量,则应该选用工具变量,工具变量个数不少于方程中内生解释变量的个数。
“恰好识别”时用2SLS 。
2SLS 的实质是把内生解释变量分成两部分,即由工具变量所造成的外生的变动部分,以及与扰动项相关的其他部分;然后,把被解释变量对中的这个外生部分进行回归,从而满足OLS 前定变量的要求而得到一致估计量。
t p t q t p 二、异方差与自相关检验
在球型扰动项的假定下,2SLS 是最有效的。
但如果扰动项存在异方差或自相关,
面板异方差检验:
xtgls enc invs exp imp esc mrl,igls panel(het)
estimates store hetero
xtgls enc invs exp imp esc mrl,igls
estimates store homo
local df = e(N_g) - 1
lrtest hetero homo, df(`df')
面板自相关:xtserial enc invs exp imp esc mrl
则存在一种更有效的方法,即GMM 。
从某种意义上,GMM 之于2SLS 正如GLS 之于OLS 。
好识别的情况下,GMM 还原为普通的工具变量法;过度识别时传统的矩估计法行不通,只有这时才有必要使用GMM ,过度识别检验(Overidentification Test 或J Test ):estat overid
三、工具变量效果验证
工具变量:工具变量要求与内生解释变量相关,但又不能与被解释变量的扰动项相关。
由于这两个要求常常是矛盾的,故在实践上寻找合适的工具变量常常很困难,需要相当的想象力与创作性。
常用滞后变量。
需要做的检验:
检验工具变量的有效性:
(1) 检验工具变量与解释变量的相关性
如果工具变量z 与内生解释变量完全不相关,则无法使用工具变量法;如果与仅仅微弱地相关,。
这种工具变量被称为“弱工具变量”(weak instruments )后果就象样本容量过小。
检验弱工具变量的一个经验规则是,如果在第一阶段回归中,F 统计量大于10,则可不必担心弱工具变量问题。
Stata 命令:estat first (显示第一个阶段回归中的统计量)
(2) 检验工具变量的外生性(接受原假设好)
在恰好识别的情况下,无法检验工具变量是否与扰动项相关。
在过度识别(工具变量个数>内生变量个数)的情况下,则可进行过度识别检验(Overidentification Test ),检验原假设所有工具变量都是外生的。
如果拒绝该原假设,则认为至少某个变量不是外生的,即与扰动项相关。
0H Sargan 统计量,Stata 命令:estat overid
四、GMM 过程
在Stata 输入以下命令,就可以进行对面板数据的GMM 估计。
. ssc install ivreg2 (安装程序ivreg2 )
. ssc install ranktest (安装另外一个在运行ivreg2 时需要用到的辅助程序ranktest)
. use "traffic.dta"(打开面板数据)
. xtset panelvar timevar (设置面板变量及时间变量)
. ivreg2 y x1 (x2=z1 z2),gmm2s(进行面板GMM估计,其中2s指的是2-step GMM)。