供应商送样检测报告

合集下载

参考样品的识别、处理、核准、储存及保留期限的程序

参考样品的识别、处理、核准、储存及保留期限的程序

样品管理控制程序1.0目的规范样品的管理操作,确保样品得到有效的控制,参考样品的识别、处理核准储存及保留期限管理,从而确保工程,生产和检验有据可依。

2.0适用范围适用于本公司所有样品的采集、制作、管理及使用全过程。

3.0 定义样品:由客户提供或由公司授权人员签发的,用于工程,生产或检验人员检验时作为参照使用的某种产品的认可实物。

4.0 职责4.1工程部4.1.1 1. 1负责供应商样品的确认、承认、测试测量和签署。

4.1.2负责提交客户样品的制作,试模样品,材料的内部评估、承认和签署。

4.1.3负责客户签署样件要求的信息获取,样品的验证确认。

4.1.4负责样品结构,性能,外观及颜色的确认。

4.1.5负责生产样品,限度样品的样品签署。

4.1.6 1.6负责工程样品档案的建立,保存管理。

4.1.7负责客户签署样品接受的登记,样品复稿的封存保护。

4. 2质量部4. 2. 1负责协助工程部对供应商样品的确认、承认、测试测量和签署。

4. 2.2负责协助工程部向客户提交样品,材料的测试和检验。

4. 2.3负责样品的使用,归还和有效周期的管理。

4. 2.4负责质量样品档案的建立,保存管理。

4. 3销售部4. 3.1负责样品提交客户的确认,客户产品的信息沟通,获取。

4. 3.2负责客户签署样品接受的登记,样品原稿的封存保护。

4. 4采购部4. 4.1负责供应商提交样品信息要求的沟通,获取。

4. 4.2负责向相关部门(工程部/质量部等)送交供应商的提交样品,协助工程部和质量部建立,供应商提交样品的相关资料和信息。

5.0作业程序内容5.1样品收集:5.1.1由客户或工程部/销售部提供样品来源。

5.1.2工程部和品质部收到样品后,经工程部主管和质量部主管确认,然后进行封样。

5.1.3由公司授权人签发的特殊情况下的让步接受,暂收样品。

5.2样品的分类:5.2.1供应商样品:指由供应商制作提供,由我公司确认签发的样品,供供应商生产,检验和本公司工程、质量检验和追溯时的参考依据。

物料检测报告单

物料检测报告单

供应商签字 Sign.by supplier
计划签字 Sign.by planning
财务签字 Sign.by finance
重检结果Sorting result 备注:如供应商的货要在我司安排人员帮助重检,人员费用RMB30元/1小时.Remark:100%sorting fee is 30 RMB/hour
退货
RTV
重检1ity Dept
供应商回复 Supplier reply
备注:如供应商在接到投诉后48小时内未回复,则作默认同意我公司处理意见. Remark:If the supplier doesn't reply the indictment with 48 hour it will be considered to agree with our company's suggestion 。 重检数量 Sorting Qty 良品数量 Accept QTY 不良数量 Reject QTY 耗人工时 Work hours 重检费用 Sorting cost 重检单位签字 Sign.by sorting 仓库签字 Sign.by warehouse
外观
粘结力 胶不平、胶气泡 少胶 离型力 其他
目视
尺寸
IQC主管审批 IQC Approve 接收 Accept
见图纸
投影仪 特采使用 Waver 备注:当判定该原料不合格而生产又急需用到该原材料时,最终判定结果必须由物料小组评估确认。 Remark:MRB need to evaluate the defect materials 生产计划部 P&P Dept 工程部 R&D Dept 生产部 Production Dept 采购部 Purchase Dept 总经理 GM

供应商送样测试签收回执单

供应商送样测试签收回执单
送样供应 商及联系
方式
样品名称
零件号
供应商送样测试签收/回执单
要求送 样日期
2017年1月19日
样品接收 人及联系
方式
材料
单位
理论重 实际送样 实际收 实际样品

日期 样日期 接收人
备注
验证报告
技术部意 见及验证 报告:技 术部验证 报告需在 收到样品 后1日内 提交给采 购部,如 有特殊情 况,请予 以说明;
供应商确 认盖章: 供应商送 样后跟收 样人对接 确认,保 证完成送 样
日期
日期
采购部意 见及存档
附件: 1 、技术部 验证报告
2 、供应商 出厂检测 报告
3 、部件规 格书
日期

中标后供应商提供的检测报告不完整怎么办?

中标后供应商提供的检测报告不完整怎么办?

案例分析案情介绍某一公开招标项目,招标文件中采购人要求中标供应商在中标后5个工作日内提供检测报告。

但第一中标候选人提供的检测报告不完整、不全面,采购人不同意签署采购合同该如何处理?案情分析山西省省级政府采购中心于曙、安徽省政府采购中心杨建都认为,处理上述案件主要依据招标文件中是否包含对检测报告的完全性明细要求。

于曙认为,招标文件中如果仅载明中标后5个工作日内提供检测报告,而没有载明检测报告必须包含的内容,采购人不能将其作为不签合同的理由。

因为检测报告不完整不代表产品未满足招标文件要求。

如果采购人执意不签订合同,供应商可以向监管部门进行投诉。

杨建表示,招标文件中如果载明中标后5个工作日内提供检测报告,并明确了检测报告必须包含的内容。

供应商坚持不提供所要求的检测报告文件,采购人有权报监管部门调查处理,监管部门可以取消其中标资格。

山西协天成律师事务所律师、政府采购招投标顾问边国梁认为,上述项目已结束评标,候选人提供检测报告不属于评标内容,因此不能以“提供的检测报告不完整、不全面”认定中标无效;其次,根据《政府采购法》第四十六条:“采购人与中标、成交供应商应当在中标、成交通知书发出之日起三十日内,按照采购文件确定的事项签订政府采购合同。

”上述项目采购人与供应商没有签订合同,因此供应商也不算违约。

“至于如何处理该项目,我个人建议是继续签订合同。

”边国梁表示,招标文件里的合同只是草案,甲乙双方可以根据招标文件、投标文件修订合同。

即,把提交完整的检测报告作为合同的一个条款,而不应将其作为签订合同的前置条件。

双方在合同中可以约定,合同生效后五个工作日内,中标供应商提交招标文件中所规定的、完整的检测报告。

如在规定期限内供应商无法提供招标文件中所规定的、完整的检测报告,可以认为其违约。

如果供应商不是有意不提供完整的检测报告,他会同意修改合同,然后提供完整的检测报告,采购人签订合同。

如果供应商是故意不提供完整的检测报告,他不会同意修改合同,采购人也会不签订合同,代理机构可以宣布该供应商中标无效或重新招标该项目或让第二中标候选人递补。

尺寸检验报告模板

尺寸检验报告模板

Date 日期:
2019.XX.XX
Remove the mold 移模 Others其它
MEASURE INSTRUMENTS检查仪器代号:
A-角度规(Angle Protractor)
B-块规(Block Gauge)
C-三次元(C.M.M.)
D-卡尺(Caliper)
E-目视(Eyes)
F-专用冶具(Fixture) H-高度规(Height Gauge) P-投影仪(Profile Projector) PG-塞规(Pin Gange) PING-环规(Ring Gange)
T-塞尺(Thickness Gauge) TG-扭力计(Torque Gauge) TII-硬度计(Sclerometer) L-螺纹规(Thread Gauge) M-千分尺(Micrometer)
No

Coordinat e
Symbol

坐标 符号
Drawing Dimension
图面尺寸
Tolerance Max Min
REMARKS 备注:
Inspeced by检查员:
1 Approved 合格
Verified by确认:
1 Rejected 不合格
Approved by承认:
Pen1ding 待定
Tools ACTUAL DIMENSION&JUDGE实际尺寸与判定
检查 实 际 尺 寸 判 实 际 尺 寸 判 实 际 尺 寸 判
仪器
1

2

3

REMARKS 备注
1
2
3
4
5
6
7
8
9
10

样品检验报告-模板

样品检验报告-模板
样品检验报告
送检日期:报告书编号:
样品名称
样品图号
供应商名称
样品编号
检验项目
检验标准
检验结果
备注
供方质量认证报告
1、出厂检验报告;
2、材质报告;
3、合格证明等质量文件;
1、有□ 无□
2、有□ 无□
3、有□ 无□
产品外观检查
1、外观检查:美观、无裂纹、无变形;
2、标识:完整清晰,与图纸相符;
3、材料检查:检查产品制造使用的材料是不是图纸中标明的材料,外表无损伤;
4、表面镀层或喷漆检查:表面镀层或喷漆的形式必须和图纸相符,有时需要提供参考试样检查喷漆;
1、是□ 产品全尺寸检查
尺寸检查结果
是否符合图纸要求:
重点尺寸数据要求(mm):
1、产品结构尺寸;
2、外部安装尺寸;
1、合 格□
2、不合格□
功能检查
1、零部件装配无明显卡涩、干涩等现象;
2、符合图纸所述其他功能性要求;
3、电气参数检查:输入、输出参数应符合相关要求;
4、绝缘、介电强度;
5、耐压试验、局放试验等满足要求;
1、合 格□
2、不合格□
检验结论
符合质量要求□; 不符合退回□
待改善项目备注□:( )
检验: 审核: 批准:
日期: 日期: 日期:

迪米(思瑞浦)2017-9-23贴片运放TP1542A-双路(SOIC-8)-思瑞浦-RoHS 承认报告 第一次送样(黄灼)合格

广东华美骏达电器有限公司材料样品报告供 应H M J D-Q R-02.33A/2标识:3PEAK 1542A BCFe附图1 附图2附图3附图4在输入端输入方波信号,测量输出端的信号波形。

3PEAK1TP1541A/ TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op Amps Rev. B.04Features⏹ Stable 1.3MHz GBWP Over Temperature Range ⏹ Stable 1.3MHz GBWP in V CM from 0V to V DD ⏹ 0.7V/μs Slew Rate⏹ Only 80μA of Supply Current per Amplifier ⏹ Excellent EMIRR: 80dB(1GHz) ⏹ Offset Voltage: 400uV Maximum⏹ Offset Voltage Temperature Drift: 1uV/°C ⏹ Input Bias Current: 1pA Typical⏹ THD+Noise: -105dB at 1kHz, -90dB at 10kHz ⏹ High CMRR/PSRR: 95dB/90dB⏹ Beyond the Rails Input Common-Mode Range ⏹ High Output Current: 100mA⏹ No Phase Reversal for Overdriven Inputs ⏹ Drives 2kΩ Resistive Loads⏹ Shutdown Current: 0.2μA (TP1541NA) ⏹ Single +2.1V to +6.0V Supply Voltage Range ⏹ –40°C to 125°C Operation Temperature Range ⏹ ESD Rating:Robust 8KV – HBM, 2KV – CDM and 500V – MM ⏹Green, Popular Type PackageApplications⏹ Audio Output⏹ Active Filters, ASIC Input or Output Amplifier ⏹ Portable Instruments and Mobile Equipment ⏹ Battery or Solar Powered Systems ⏹ Smoke/Gas/Environment Sensors ⏹ Piezo Electrical Transducer Amplifier ⏹ Medical Equipment ⏹PCMCIA CardsDescriptionTP154xA series are CMOS single/dual/quad op-amps with low offset, stable high frequency response, low power, low supply voltage, and rail-to-rail inputs and outputs. They incorporate 3PEAK ‟s proprietary and patented design techniques to achieve best in-class performance among all micro-power CMOS amplifiers in its power class. The TP154xA family can be used as plug-in replacements for many commercially available op-amps to reduce power and improve input/output range and performance.TP154xA are unity gain stable with Any Capacitive load with a constant 1.3MHz GBWP, 0.7V/μs slew rate while consuming only 80μA of quiescent current per amplifier. Analog trim and calibration routine reduce input offset voltage to below 0.4mV, and proprietary precision temperature compensation technique makes offset voltage temperature drift at 1μV/°C. Adaptive biasing and dynamic compensation enables the TP154xA to achieve …THD+Noise ‟ for 1kHz/10kHz 2V PP signal at -105dB and -90dB, respectively. Beyond the rails input and rail-to-rail output characteristics allow the full power-supply voltage to be used for signal range. This combination of features makes the TP154xA ideal choices for battery-powered applications because they minimize errors due to power supply voltage variations over the lifetime of the battery and maintain high CMRR even for a rail-to-rail input op-amp. General audio output, remote battery- powered sensors, and smoke detector can benefit from the features of the TP154xA op-amps. For applications that require power-down, the TP1541NA in popular type packages has alow-power shutdown mode that reduces supply current to 0.2μA , and forces the output into a high-impedance state.3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.Pin Configuration (Top View)TP1541A5-Pin SOT23/SC70Out +In﹣Vs VsTP1542A8-Pin SOIC/TSSOP/MSOPOut A ﹢In A ﹣In A In BIn BOut B﹣VsVs TP1544A14-Pin SOIC/TSSOP﹢﹣In D In D ﹢﹣In C In CVs ﹢TP1541NA6-Pin SC70-V Out A﹢In A ﹣In A ﹣VsIn BIn B Vs TP1542A8-Pin DFN (-F Suffix)黄灼数字签名人 黄灼DN :cn=黄灼,c=CN-中国,o=华美骏达,ou=研发中心原因:我已审阅该文档日期:2017.02.1409:41:49 +08'00'2TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04 Absolute Maximum Ratings Note 1Supply Voltage: V +– V –....................................7.0V Input Voltage............................. V –– 0.3 to V ++ 0.3 Input Current: +IN, –IN, SHDN Note 2.............. ±10mA Differential Input Voltage................................ ±7VSHDN Pin Voltage ……………………………V – to V +Output Short-Circuit Duration Note 3…............ Infinite Operating Temperature Range.......–40°C to 125°C Maximum Junction Temperature................... 150°C Storage Temperature Range.......... –65°C to 150°C Lead Temperature (Soldering, 10 sec) ......... 260°CNote 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to anyAbsolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input current should be limited to less than 10mA.Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.ESD, Electrostatic Discharge ProtectionOrder Information3TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op Amps Rev. B.04Electrical CharacteristicsThe specifications are at T A = 27°C. V S = 5V, V CM = 2.5V, R L = 2k Ω, C L =100pF, Unless otherwise noted.4Rev. B.04 5TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op Amps Rev. B.04Typical Performance CharacteristicsV S = ±2.75V, V CM = 0V, R L = Open, unless otherwise specified. (Continued)Common Mode Rejection Ratio CMRR vs. FrequencyQuiescent Current vs. Temperature Short Circuit Current vs. TemperaturePower-Supply Rejection RatioQuiescent Current vs. Supply Voltage6TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04 Typical Performance CharacteristicsV S = ±2.75V, V CM = 0V, R L = Open, unless otherwise specified. (Continued)PSRR vs. Temperature CMRR vs. TemperatureEMIRR IN+ vs. FrequencyLarge-Scale Step ResponseNegative Over-Voltage Recovery Positive Over-Voltage RecoveryTime (50μs/div)Gain = 1R L = 10k ΩTime (50μs/div)Gain = +10±V = ±2.5VTime (50μs/div)Gain = +10±V = ±2.5V7TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op Amps Rev. B.04Typical Performance CharacteristicsV S = ±2.75V, V CM = 0V, R L = Open, unless otherwise specified. (Continued)0.1 Hz TO 10 Hz Input Voltage NoiseOffset Voltage vs Common-Mode VoltagePositive Output Swing vs. Load Current Negative Output Swing vs. Load CurrentOffset Voltage vs. Temperature8TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04 Pin Functions–IN: Inverting Input of the Amplifier. Voltage rangeof this pin can go from V – – 0.3V to V ++ 0.3V. +IN: Non-Inverting Input of Amplifier. This pin has the same voltage range as –IN.+V S : Positive Power Supply. Typically the voltage is from 2.1V to 6V. Split supplies are possible as long as the voltage between V+ and V – is between 2.1V and 6V. A bypass capacitor of 0.1μF as close to the part as possible should be used between power supply pins or between supply pins and ground. -V S : Negative Power Supply. It is normally tied to ground. It can also be tied to a voltage other thanground as long as the voltage between V + and V –is from 2.1V to 6V. If it is not connected to ground, bypass it with a capacitor of 0.1μF as close to the part as possible.SHDN: Active Low Shutdown. Shutdown threshold is 1.0V above negative supply rail. If unconnected, the amplifier is automatically enabled.OUT: Amplifier Output. The voltage range extends to within millivolts of each supply rail.N/C: No Connection.OperationThe TP154xA family input signal range extends beyond the negative and positive power supplies. The output can even extend all the way to the negative supply. The input stage is comprised of two CMOS differential amplifiers, a PMOS stage and NMOS stage that are active over different ranges of common mode input voltage. The Class-AB control buffer and output bias stage uses a proprietary compensation technique to take full advantage of the process technology to drive very high capacitive loads. This is evident from the transient over shoot measurement plots in the Typical Performance Characteristics.Applications InformationLow Supply Voltage and Low Power ConsumptionThe TP154xA family of operational amplifiers can operate with power supply voltages from 2.1V to 6.0V. Each amplifier draws only 80μA quiescent current. The low supply voltage capability and low supply current are ideal for portable applications demanding HIGH CAPACITIVE LOAD DRIVING CAPABILITY and CONSTANT WIDE BANDWIDTH. The TP154xA family is optimized for wide bandwidth low power applications. They have an industry leading high GBWP to power ratio and are unity gain stable for ANY CAPACITIVE load. When the load capacitance increases, the increased capacitance at the output pushed the non-dominant pole to lower frequency in the open loop frequency response, lowering the phase and gain margin. Higher gain configurations tend to have better capacitive drive capability than lower gain configurations due to lower closed loop bandwidth and hence higher phase margin.Low Input Referred NoiseThe TP154xA family provides a low input referred noise density of 27nV/√Hz at 1kHz. The voltage noise will grow slowly with the frequency in wideband range, and the input voltage noise is typically 7μV P-P at the frequency of 0.1Hz to 10Hz.Low Input Offset VoltageThe TP154xA family has a low offset voltage of 400μV maximum which is essential for precision applications. The offset voltage is trimmed with a proprietary trim algorithm to ensure low offset voltage for precision signal processing requirement.9TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op Amps Rev. B.04Low Input Bias CurrentThe TP154xA family is a CMOS OPA family and features very low input bias current in pA range. The low input bias current allows the amplifiers to be used in applications with high resistance sources. Care must be taken to minimize PCB Surface Leakage. See below section on “PCB Surface Leakage” for more details.PCB Surface LeakageIn applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under lowhumidity conditions, a typical resistance between nearby traces is 1012Ω. A 5V difference would cause 5pA of current to flow, whichis greater than the TP154xA OPA‟s input bias current at +27°C (±1pA, typical). It is recommended to use multi-layer PCB layout and route the OPA‟s -IN and +IN signal under the PCB surface. The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 1 for Inverting Gain application.1. For Non-Inverting Gain and Unity-Gain Buffer:a ) Connect the non-inverting pin (V IN +) to the input with a wire that does not touch the PCB surface.b ) Connect the guard ring to the inverting input pin (V IN –). This biases the guard ring to the Common Mode input voltage.2. For Inverting Gain and Trans-impedance Gain Amplifiers (convert current to voltage, such as photo detectors): a ) Connect the guard ring to the non-inverting input pin (V IN +). This biases the guard ring to the same reference voltage asthe op-amp (e.g., V DD /2 or ground).b ) Connect the inverting pin (V IN –) to the input with a wire that does not touch the PCB surface.SFigure 1Ground Sensing and Rail to Rail OutputThe TP154xA family has excellent output drive capability, delivering over 100mA of output drive current. The output stage is a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the inputs can go 300mV beyond either rail, the op-am p can easily perform …true ground‟ sensing.The maximum output current is a function of total supply voltage. As the supply voltage to the amplifier increases, the output current capability also increases. Attention must be paid to keep the junction temperature of the IC below 150°C when the output is in continuous short-circuit. The output of the amplifier has reverse-biased ESD diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply, otherwise current will flow through these diodes.ESDThe TP154xA family has reverse-biased ESD protection diodes on all inputs and output. Input and out pins can not be biased more than 300mV beyond either supply rail.Shut-downThe single channel OPA versions have SHDN pins that can shut down the amplifier to less than 0.2μA supply current. The SHDN pin voltage needs to be within 0.5V of V – for the amplifier to shut down. During shutdown, the output will be in high output resistance state, which is suitable for multiplexer applications. When left floating, the SHDN pin is internally pulled up to the positive supply and the amplifier remains enabled.10TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04 Driving Large Capacitive LoadThe TP154xA family of OPA is designed to drive large capacitive loads. Refer to Typical Performance Characteristics for “Phase Margin vs. Load Capacitance”.As always, larger load capacitance decreases overall phase margin in a feedback system where internal frequency compensation is utilized. As the load capacitance increases, the feedback loop‟s phase margin decreases, and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in output step response. The unity-gain buffer (G = +1V/V) is the most sensitive to large capacitive loads.When driving large capacitive loads with the TP154xA OPA family (e.g., > 200 pF when G = +1V/V), a small series resistor at the output (R ISO in Figure 3) improves the feedback loop‟s phase margin and stability by making the output load resistive at higher frequencies.Figure 3Power Supply Layout and BypassThe TP154xA OPA ‟s power supply pin (V DD for single-supply) should have a local bypass capacitor (i.e., 0.01μF to 0.1μF) within 2mm for good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger) within 100mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts. Ground layout improves performance by decreasing the amount of stray capacitance and noise at the OPA ‟s inputs and outputs. To decrease stray capacitance, minimize PC board lengths and resistor leads, and place external components as close to the op amps‟ pins as possible.Proper Board LayoutTo ensure optimum performance at the PCB level, care must be taken in the design of the board layout. To avoid leakage currents, the surface of the board should be kept clean and free of moisture. Coating the surface creates a barrier to moisture accumulation and helps reduce parasitic resistance on the board.Keeping supply traces short and properly bypassing the power supplies minimizes power supply disturbances due to output current variation, such as when driving an ac signal into a heavy load. Bypass capacitors should be connected as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the amplifier. It is recommended that signal traces be kept at least 5mm from supply lines to minimize coupling.A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and other points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these thermocouple effects, orient resistors so heat sources warm both ends equally. Input signal paths should contain matching numbers and types of components, where possible to match the number and type of thermocouple junctions. For example, dummy components such as zero value resistors can be used to match real resistors in the opposite input path. Matching components should be located in close proximity and should be oriented in the same manner. Ensure leads are of equal length so that thermal conduction is in equilibrium. Keep heat sources on the PCB as far away from amplifier input circuitry as is practical.The use of a ground plane is highly recommended. A ground plane reduces EMI noise and also helps to maintain a constant temperature across the circuit board.Instrumentation AmplifierThe TP154xA OPA series is well suited for conditioning sensor signals in battery-powered applications. Figure 4 shows a two op-amp instrumentation amplifier, using the TP154xA OPA.The circuit works well for applications requiring rejection of Common Mode noise at higher gains. The reference voltage (V REF ) is supplied by a low-impedance source. In single voltage supply applications, V REF is typically V DD /2.TP1541A/TP1541NA/TP1542A/TP1544A Stable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04 RG111222=()(1OUT REFGR RV V V VR R-+++Figure 4Gain-of-100 Amplifier CircuitFigure 5 shows a Gain-of-100 amplifiercircuit using two TP154xA OPAs. It draws 160uA total current fromsupply rail, and has a -3dB frequency at 100kHz.Figure 6 shows the small signal frequency response of the circuit.+0.9VFigure 5: 100kHz, 160μA Gain-of-100 AmplifierFigure 6: Frequency response of 100kHz, 160uA Gain-of-100 AmplifierBuffered Chemical Sensor (pH) ProbeThe TP154xA OPA has input bias current in the pA range. This is ideal in buffering high impedance chemical sensors such as pH probe. As an example, the circuit in Figure 7 eliminates expansive low-leakage cables that that is required to connect pH probe to metering ICs such as ADC, AFE and/or MCU. A TP154xA OPA and a lithium battery are housed in the probe assembly. A conventional low-cost coaxial cable can be used to carry OPA‟s output signal to subsequent ICs for pH reading.1112TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04ALL COMPONENTS CONTAJNED WITHIN THE pH PROBEFigure 7: Buffer pH ProbeTwo-Pole Micro-power Sallen-Key Low-Pass FilterFigure 8 shows a micro-power two-pole Sallen-Key Low-Pass Filter with 400Hz cut-off frequency. For best results, the filter‟s cut-off frequency should be 8 to 10 times lower than the OPA‟s crossover frequency. Additional OPA‟s phase margin shift can be avoided if the OPA‟s bandwidth-to-signal ratio is greater than 8. The design equations for the 2-pole Sallen-Key low-pass filter are given below with component values selected to set a 400Hz low-pass filter cutoff frequency:Figure 8Portable Gas Sensor AmplifierGas sensors are used in many different industrial and medical applications. Gas sensors generate a current that is proportional to the percentage of a particular gas concentration sensed in an air sample. This output current flows through a load resistor and the resultant voltage drop is amplified. Depending on the sensed gas and sensitivity of the sensor, the output current can be in the range of tens of microamperes to a few milli-amperes. Gas sensor datasheets often specify a recommended load resistor value or a range of load resistors from which to choose.There are two main applications for oxygen sensors – applications which sense oxygen when it is abundantly present (that is, in air or near an oxygen tank) and those which detect traces of oxygen in parts-per-million concentration. In medical applications, oxygen sensors are used when air quality or oxygen delivered to a patient needs to be monitored. In fresh air, the concentration of oxygen is 20.9% and air samples containing less than 18% oxygen are considered dangerous. In industrial applications, oxygen sensors are used to detect the absence of oxygen; for example, vacuum-packaging of food products.The circuit in Figure 9 illustrates a typical implementation used to amplify the output of an oxygen detector. With the components shown in the figure, the circuit consumes less than 37μA of supply current ensuring that small form-factor single- or button-cell batteries (exhibiting low mAh charge ratings) could last beyond the operating life of the oxygen sensor. The precision specifications of these amplifiers, such as their low offset voltage, low TC-V OS ,TP1541A/TP1541NA/TP1542A/TP1544A Stable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04low input bias current, high CMRR, and high PSRR are other factors which make these amplifiers excellent choices for this application.10MOhmFigure 91314TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04 Package Outline DimensionsSC70-5(SC70-6)SOT23-5(SOT23-6)15TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04Package Outline DimensionsSOIC-8MSOP-816TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04Package Outline DimensionsDFN-817TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op Amps Rev. B.04Package Outline DimensionsSOIC-1418TP1541A/TP1541NA/TP1542A/TP1544AStable 1.3MHz, Precision, RRIO, Op AmpsRev. B.04 Package Outline DimensionsTSSOP-14Add “3PEAK” identification logo on the top side of SOP series body(All SOP/MSOP/TSSOP-XX)WEB LINKS。

【最新2018】要求供应商签订质量承诺保证书,提供产品自检报告,提供第三方检测报告;-推荐word版 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==要求供应商签订质量承诺保证书,提供产品自检报告,提供第三方检测报告;篇一:产品质量保证书文章类型:保证书文章来源:天诺时空范文一:质量保证书尊敬的客户:首先感谢您选择购买我们的产品!为保证产品质量,明确购销双方产品质量责任,确保产品质量合格,保证产品安全,特作如下保证:一、我公司提供的产品质量原则上按购货方规定的技术标准执行。

在购货方没有规定的技术标准时,我公司将按照国家现行标准执行,并向购货方提供产品样品,经购货方同意后向购货方提供产品,并保证产品质量的稳定和逐步提高。

二、供货方向购货方提供加盖供货单位公章的生产许可证、营业执照复印件。

三、供货方向购货方提供加盖供货单位公章的产品标准复印件。

四、供货方保证所供产品符合法定的质量标准,并对产品质量负责,必要时向购货方提供必要的质量资料,诸如产品检验报告书等相关资料。

五、供货方的产品包装、注册商标等符合国家有关规定。

六、购货方严格按产品包装上注明的贮藏条件贮藏,因购货方对产品保管养护不善而造成产品质量问题由购货方负责。

七、消费者因产品质量问题进行投诉,供货方应积极配合妥善解决,如确属供货方的责任,供货方承担全部责任和费用。

八、质量争议(问题)的处理:购货方应严格按照制订的技术标准对供货方的产品进行检验,保证检验的公正和科学性,对检验不合格的剩余样品应保留一周。

对确属供货方质量问题的,已经使用造成的损失,由我公司负责。

对确属供货方生产质量问题,没有使用的,由供需双方协商解决(退货或降价)。

九、本产品质量保证书自双方签定供货合同发生供货时生效,业务终止时同时终止。

______________________公司________年____月_____日范文二:产品质量保证书尊敬的客户:首先感谢您选择我们的产品!华为技术有限公司自成立以来,一直把产品质量视为公司参与市场竞争的核心,正是这个成功的定位和华为全体员工强烈的产品质量意识,使华为成为全球领先的信息与通信解决方案供应商。

电线电缆检测抽样,送样,实检确认记录范文

电线电缆检测抽样,送样,实检确认记录范文1. 引言1.1 概述本文主要研究的是电线电缆的检测抽样、送样和实际检测确认记录。

电线电缆作为电力传输和通信领域中不可或缺的关键元件,其质量问题直接影响到工程项目的安全性和可靠性。

因此,对于电线电缆进行有效的检测和质量管理至关重要。

1.2 研究背景随着社会进步和科技发展,对电线电缆质量的要求也越来越高。

然而,由于行业竞争激烈、市场监管不完善以及一些企业对产品质量意识不强等原因,一些低质量甚至假冒伪劣的电线电缆产品在市场上流通。

这给用户带来了很大的危害,并严重损害了行业声誉。

因此,在这个背景下,开展电线电缆检测抽样以及相关实检确认工作显得尤为必要。

1.3 目的本文旨在介绍电线电缆检测抽样、送样程序以及实际检测确认记录模板,以提供一种规范化和科学化的方法来保证电线电缆产品质量的可控性和稳定性。

同时,通过对检测过程和结果的分析与讨论,进一步明确可能出现的问题,并提出相应解决方案和对未来工作的展望与建议,以推动电线电缆质量管理水平的持续提升和行业发展的良性循环。

2. 电线电缆检测抽样:2.1 抽样方法:在电线电缆的检测过程中,抽样是非常重要的一步。

通过合理的抽样方法,可以提高检测的准确性和代表性。

下面介绍两种常用的电线电缆检测抽样方法:随机抽样和分层抽样。

随机抽样是指从一个大批次中,按照统计学原则,通过随机选择的方式,选择一部分作为样品进行检验。

这种方式能够保证每个被抽取到的单位具有相同被选中的机会,并且更好地代表了整个批次的特征。

分层抽样是将一个大批次划分成若干个互不重叠、完全包含、相对均匀且具有代表性的子集,然后再从每个子集中进行简单随机抽样或其他形式的抽样。

这种方法能够更好地控制各个子集的特征,并根据需要对不同子集进行不同程度的检测。

根据具体情况和要求,选择合适的抽样方法是必要且关键的环节。

同时,在实际操作过程中还需注意遵循相关标准和技术规范,并做好相应的记录和备份。

首样检验流程

首样检验流程1. 目的通过对新供应商所提供的零部件首件样品的检验来验证首件样品的产品是否达到技术要求;此过程也包括供应商的产品设计更改或过程更改后的首批产品的首检。

2. 适用范围供应商提供的新项目零件首件样品或供应商的产品设计更改或过程更改后的首批产品。

3. 职责3.1 质量部负责供应商首件样品检验和封样。

3.2 设计部负责提供所有首件检验零部件的图纸、技术要求/规范及寿命试验。

3.3 采购部负责把技术规范、图纸和供应商所需提交的技术文件等信息传递给供应商及协调供应商实施;并实施零部件样品报检。

3.4生产部负责配合质量部对样品进行试装。

4.程序4.1.对外协外购件首次使用时都需进行首件检验,设计部提供图纸和技术要求,如无图纸或技术要求,首样拒检;若现有外协外购件更换供应商时,也需要进行首件检验,合格后才能采购小批量试用。

4.2.由采购部根据策划要求寻找开发新供应商,收集相关新供应商的资质文件同时准备所需开发的产品报价供参考, 通过现场考察新供应商的资质论证通过后,由采购部把零部件图纸和/或技术要求传递至供应商,并填好《首样检测报告》交质检部进行首样检测。

4.3.质检部接到新供应商提供的产品首样,应根据图纸要求对产品进行检验,然后在《首样检测报告》上将检验数据填写在检验要求一栏里,并签字确认。

4.4.若进货检样品检验合格后,根据技术部提出的技术要求,需要对首件样品进行试装或试验时,由采购部通知相关部门安排试装:生产部按产品图纸和相关技术要求进行试装并将结果填写在《试装报告》上,连同首样产品一起交进货检验员;如需做相关试验,由责任部门进行试验并填写《试装报告》。

4.5.如果检验不合格, 交由采购人员找相关部门经理签字确认,并复印份交由进货检验员存档。

检验员接到后在《首样明细》电子档上登记并注明不合格原因。

不合格样品需退还采购部,采购部与供应商联系再次送样,连续两次首样送检不合格,质检员有权拒检。

4.6.首样检测结果合格后,交由采购人员找相关部门经理签字确认,并复印份交由进货检验员存档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档