圆锥曲线小题练

合集下载

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)1.抛物线y=10x的焦点到准线的距离是()2答案:52.若抛物线y=8x上一点P到其焦点的距离为9,则点P的坐标为()。

答案:(7,±14)3.以椭圆x^2/25+y^2/16=1的顶点为顶点,离心率为2的双曲线方程是()。

答案:x^2/9 - y^2/16 = 14.F1,F2是椭圆x^2/16+y^2/27=1的两个焦点,A为椭圆上一点,且∠AF1F2=45,则ΔAF1F2的面积()。

答案:75.以坐标轴为对称轴,以原点为顶点且过圆x^2+y^2-2x+6y+9=0的圆心的抛物线的方程是()。

答案:y=3x或y=-3x6.若抛物线y=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()。

答案:(±1/4.1/8)7.椭圆x^2/48+y^2/27=1上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为()。

答案:288.若点A的坐标为(3,2),F是抛物线y=2x的焦点,点M 在抛物线上移动时,使MF+MA取得最小值的M的坐标为()。

答案:(2/5.4/5)9.与椭圆4x^2+y^2=1共焦点且过点Q(2,1)的双曲线方程是()。

答案:x^2/3 - y^2/4 = 110.若椭圆x/√3 + y/√2 = 1的离心率为2/3,则它的长半轴长为_______________。

答案:√611.双曲线的渐近线方程为x±2y=0,焦距为10,这双曲线的方程为______________。

答案:x^2/4 - y^2/36 = 112.抛物线y=6x的准线方程为y=3,焦点为(0,3)。

13.椭圆5x^2+k^2y^2=5的一个焦点是(0,2),那么k=____________。

答案:√314.椭圆kx^2+8y^2=9的离心率为2/3,则k的值为____________。

答案:7/315.根据双曲线的定义,其焦点到准线的距离等于其焦距的一半,因此该双曲线的焦距为3.又根据双曲线的标准方程,8kx-ky=8,将焦点代入方程可得8k(0)-3k=8,解得k=-8/3.16.将直线x-y=2代入抛物线y=4x中,得到交点为(2,8)和(-1,-5)。

(完整word版)圆锥曲线经典练习题及答案

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答大足二中 欧国绪直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3(C) I (D ) 2.设F 为抛物线 c : y 2=4x 的焦点, 曲线 ky= ( k>0)与C 交于点P , PF 丄x 轴,则k= x(B )1 3 (C)—2(D )23•双曲线 2 x C : Ta 2y_1(a 0,b 0)的离心率为2,焦点到渐近线的距离为'、3,贝U C的焦距等于 A. 2 B. 2、2 C.4D.4•已知椭圆 C :0)的左右焦点为 F i ,F 2,离心率为丄3,过F 2的直线l3交C 与A 、B 两点, 若厶AF i B 的周长为4、、3,则C 的方程为()2 A. x_3 B. 2x 2彳 xr y 1C.2 x 12 D. 2 x 12 5. y 2 b 2线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2a 1(a 0,b 0)的一条渐近线平行于直线 I :y 2x 10,双曲 2 B — 20 2为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 21 C.— 25 占 八、、的焦点, uu uuuOA OB A 、2 (其中O 为坐标原点),则-1^/2 87.抛物线 =X 2的准线方程是4(A) y (B)2(C)) D M 辽.100 25 ABO 与 AFO 面积之和的最小值是( )x 1(D)8•已知点A( 2,3)在抛物线C:2px的准线上,记C的焦点为F,则直线AF的斜率为A. 4B. 13C.D.9.设F为抛物线C A, B两点,贝S AB =(A)旦3 2 c:y =3x(B)10.已知抛物线C: 的焦点,过F且倾斜角为30°的直线交于C于(C) 12 (D)7、、3x的焦点为F , A X o, y0是C上一点, AF 5 冲4X0,则X o ()A. 1B. 2C. 4x2 11.已知双曲线—a拆A. 2 B.- D. 82y3、5C. -D.121(a 0)的离心率为2,则a20)与C 交于点P , PF 丄x 轴,所以- 2,所以k=2 ,1选D.3.C4.A5.A••• - 2,0 2c 10, A c 5, a 2 5, b 2 20, a2 2A x- y_ 1.5206. B试卷答案 1.B试题分析:如图,在椭圆中, OF c, OB b, OD 2b -b2在 Rt OFB 中,| OF | |OB| |BF | |OD |,且 a 2 b 22c ,代入解得x2 2 a 4c ,所以椭圆的离心率为: e 1,故选B. k焦点F(1,0),又因为曲线y (k xy2= x ••• F(],0),设人(%2,%)弋(『22°2),%>0, y2<0, B=v OAOB>4OAOB= y^y^ + y』2 = 2 • (y』2+ 2)(%丫2-1) = 0,即yy = -21 1 1 1 - •…S从OF = ?- ?y1, S^A OB = ?OA?OB?sin 0= -?OAOB?tan 0= tan 0cos0=驴!. 4 22 4 2= < 222|OA||OB| W + y1 肛 + y2 2讥%+1)(y2 +1)1_______ = 1/2 2 2 2 - ,i'~2 2 - ■ y1 y2 + y1 + y2 + 1 , y1 + y2 +5i14 2 i14 2 2,— ----------- 川+4y1 +4 卩+4y1 +4 % + 2 2--tan 0= 比+ y2 + 4 = = = 一= y1 +y1 *y1 y1 + S 从OB =鲁+ %+ —= 98y1+ —8 y1 8 y17. A8. C【答SIC【解析】试題分析;由已知得,抛物柱於=2四的谁竝方程为兀=一彳,且过点故一彳=一2,则左二4,2 2-r 3-0 3戸(2卫>则直线AF的斜率肛=-- =—「选U-2-24【考点定位】1、抛物线的标准方程和简单几何性质;2、直线的斜率.9. C3设AF = 2m, BF = 2n, F(-,0).则由抛物线的定义和直角三角形知识可得,43 3 3 32m=2?—+ ..3m,2n=2?—- 3n,解得m= —(2+、3),n 二(2八3), • m+n =6.4 4 2 2AB= AF + BF = 2m+ 2n = 12故选C.10. A根据抛物线的定义可知AF1 5X0 - - X0,解之得X0 1 .选A4 411.D 注??:=3.选 BS AAOF2 3由双曲线的离心率可得7a------- 2,解得a 1,选D.a。

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题1、若点()3,P m 在以点F 为焦点的抛物线24{4x t y t == (t 为参数)上,则PF 等于( )A.2B.3C.4D.5答案:C解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4.故选C.2、参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( )A.圆的一部分B.抛物线的一部分C.双曲线的一部分D.椭圆的一部分答案:B解析:参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤,表示抛物线的一部分.3、椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)±答案:B解析:椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的普通方程为221259x y +=,故4c ==. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.4、已知过曲线3cos ,{4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4π,则P 点的坐标是( ) A.(3,4) B.1212,55⎛⎫- ⎪⎝⎭C.2⎛ ⎝D.1212,55⎛⎫ ⎪⎝⎭ 答案:D解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125x y ==. 5、已知O 为原点,P为椭圆4cos ,{x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3π,则点P 坐标为( ) A.()2,3 B.()4,3C.(D.(,55答案:D解析:椭圆4cos ,{x y αα== (α为参数)化为普通方程,得2211612x y +=.由题意可得直线OP的方程为y = (0x >).由22(0),{11612y x x y =>+=解得x y ==. ∴点P的坐标为.故选D. 6、参数方程cos 2sin x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为( ) A.2214y x += B.2212y x += C.2214x y += D.2212x y +=答案:A 解析:易知,2y cos x sin θθ==,∴2214y x +=,故选A. 7、方程cos cos x a y b θθ=⎧⎨=⎩(θ为参数,0ab ≠)表示的曲线是( ) A.圆 B.椭圆 C.双曲线 D.双曲线的一部分 答案:D解析:由xcos a θ=,∴a cos xθ=,代入y bcos θ=,得xy ab =,又由y bcos θ=知,||,y b b ∈-⎡⎤⎣⎦,∴曲线应为双曲线的一部分.8、若曲线2sin cos 1x y θθ⎧=⎨=-⎩ (θ为参数)与直线x m =相交于不同两点,则m 的取值范围是( )A.RB.()0,+∞C.()0,1D.[)0,1答案:D解析:将曲线2sin cos 1x y θθ⎧=⎨=-⎩化为普通方程得()()()21101y x x +=--≤≤.它是抛物线的一部分,如图所示,由数形结合知01m ≤<.8、过椭圆5cos ,{3sin x y ϕϕ== (为参数)的右焦点,斜率为12的直线方程为__________ 答案:x-2y-4=0解析:椭圆的普通方程为221259x y+=,故5,3,a b==所以4c==,故右焦点的坐标为(4,0),又直线的斜率为12,故直线的方程为1(4)2y x=-,即240x y--=.9、已知实数0p>,曲线212:{2x ptCy pt==(t为参数)上的点(2,)A m,曲线26cos :{26sinpxCyθθ=+ = (θ为参数)的圆心为点B,A,B两点间的距离等于圆2C的半径,则p=__________.答案:8解析:曲线212:{2x ptCy pt==(t为参数)化为普通方程为22y px=,代入2x=得m=±则点(2,A±.曲线26cos:{26sinpxCyθθ=+=的圆心为(,0)2p,半径为6.10、设点O为坐标原点,直线l:4,{2xy t=+=(参数t R∈)与曲线24,:{4x uCy u==(参数u R∈)交于A、B两点.(1)求直线l与曲线C的普通方程;(2)求证:OA OB⊥.答案:1.直线l:4y x=-.曲线C:24y x=.2.证明:设1122(,),(,),A x yB x y由24{4y xy x==-消去y,得212160x x-+=.∴121212,16,x x x x+==∴12121212121212(4)(4)4()161OA OBy y x x x x x xk kx x x x x x---+⋅====-.∴OA OB⊥.11、在直角坐标系 xOy 中,直线l 的方程为40x y -+=,曲线 C的参数方程为,{sin ,x y θθ== (θ为参数).1.已知在极坐标系(与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,判断点P 与直线l 的位置关系; 2.设点 Q 是曲线 C 上的一个动点,求它到直线l 的距离的最小值.答案:1. 点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,则直角坐标为(0,4), 把()0,4P 代入直线l 的方程40x y -+=, 因为0?4? 4? 0-+=,所以点P 在直线l 上.2.因为点 Q 是曲线 C 上的一个动点,则点 Q的坐标可设为),sin Q αα. 点 Q 到直线l 的距离为2cos 4d πα⎛⎫++ ⎪==6πα⎛⎫=++ ⎪⎝⎭所以当cos 16πα⎛⎫+=- ⎪⎝⎭时,d.。

2014高考数学圆锥曲线小题狂练

2014高考数学圆锥曲线小题狂练

圆锥曲线小题狂练一1若直线l :y =kx +1与曲线c :x =12+y 只有一个公共点,则实数k 的取值范围是 .2 已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是 A .2 B .3 C.115D.37163、曲线[]214(2,2)y x x =+-∈-与直线(2)4y k x =-+有两个公共点时,k 的取值范围是( )A 、5(0,)12 B 、11(,)43C 、5(,)12+∞ D 、53(,)1244、如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( ) A .21 B .33 C .23D .35 若直线x+y ﹣m=0与曲线有公共点,则m 所的取值范围是( ) A . B .C .D .6 已知圆和圆的公共弦长为,则实数a 的值为 _________ .7已知AC ,BD 为圆O :x 2+y 2=4的两条互相垂直的弦,垂足为.则四边形ABCD 的面积的取值范围是 _________ .8不论k 为何实数,直线l :y=kx+1恒过的定点坐标为 _________ 、若该直线与圆x 2+y2﹣2ax+a 2﹣2a ﹣4=0恒有交点,则实数a 的取值范围是 _________ .9 若关于x 的方程:有两个不相等的实数解,则实数k 的取值范围:_________ .10已知两点M (﹣2,0)、N (2,0),点P 为坐标平面内的动点,满足=0,则动点P (x ,y )的轨迹方程为( )A . y 2=8xB . y 2=﹣8xC . y 2=4xD . y 2=﹣4x11双曲线﹣=1(mn≠0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A.B.C.D.12.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1 B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)13 已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3C.D.414若抛物线y2=2px上恒有关于直线x+y﹣1=0对称的两点A,B,则p的取值范围是()A.(﹣,0)B.(0,)C.(0,)D.(﹣∞,0)∪(,+∞)15已知F是抛物线C:y2=4x的焦点,直线l:y=k(x+1)与抛物线C交于A,B两点,记直线FA,FB的斜率分别为k1,k2,则k1+k2的值等于()A.﹣2 B.﹣1 C.0D.116在平面直角坐标系xOy中,已知点A(l,2),若P是拋物线y2=2x上一动点,则P到y 轴的距离与P到点A的距离之和的最小值为()A.B.C.﹣D.17抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,则有()A.B.C.D.18已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点p在C上,∠F1pF2=60°,则P到x 轴的距离为()A.B.C.D.19已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1B.2C.3D.420已知双曲线中心在原点且一个焦点为F(,0),直线y=x﹣1与其相交于M、N两点,MN中点的横坐标为﹣,则此双曲线的方程是()A.﹣=1 B.﹣=1C.﹣=1D.﹣=121设双曲线的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于()A.B.2C.D.22 F1,F2为双曲线的左右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,满足,则此双曲线的渐近线方程是()A.y=±2x B.C.D.23点P为双曲线C1:和圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1,F2为双曲线C1的两个焦点,则双曲线C1的离心率为()A.B.C.D.224 过双曲线﹣=1(a>0,b>0)左焦点F1的直线与以右焦点F2为圆心、为半径的圆相切于A点,且=2b,则双曲线的离心率为()A.B.2C.D.21已知以F为焦点的抛物线y2=4x上的两点A、B满足,则弦AB的中点到准线的距离为____2函数y=x2(x>0)的图象在点(a k,a k2)处的切线与x轴交点的横坐标为a k+1,k为正整数,a1=16,则a1+a3+a5=_________3过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=_________.4已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是_________.5过点M(2,﹣2p)作抛物线x2=2py(p>0)的两条切线,切点分别为A,B,若线段AB 的中点纵坐标为6,则p的值是_________.6 在直角坐标系xOy中,点B与点A(﹣1,0)关于原点O对称.点P(x0,y0)在抛物线y2=4x上,且直线AP与BP的斜率之积等于2,则x0=_________.7过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|•|EF|的最小值是____8 设抛物线y2=4x的焦点为F,其准线与x轴的交点为Q,过点F作直线l交抛物线于A、B两点,若∠AQB=90°,则直线l的方程为_________.9 点F为抛物线C:y2=2px(p>0)的焦点,过F的直线交抛物线C于A、B两点,过A、B分别作抛物线C的准线的垂线段,垂足分别为M、N,若|MF|=3,|NF|=4,则|MN|=_________.10 已知动圆的圆心C在抛物线x2=2py(p>0)上,该圆经过点A(0,p),且与x轴交于两点M、N,则sin∠MCN的最大值为_________.11椭圆的焦点F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是____12.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为_________.13设P为椭圆上任意一点,O为坐标原点,F为椭圆的左焦点,点M满足,则=_________.14.已知A,B,P为椭圆+=1(m,n>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积k PA•k PB=﹣2,则该椭圆的离心率为_________.15.椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P,使得c•PF2=a•PF1则该椭圆离心率的取值范围是_________.16若椭圆的一个焦点将焦点弦分成长为m,n的两段,则=_________.17.在△ABC中,,则过点C,以A,H为两焦点的椭圆的离心率为18.已知椭圆的左顶点为A,上顶点为B,右焦点为F.设线段AB的中点为M,若,则该椭圆离心率的取值范围为_________.20.已知椭圆+=1的左右焦点分别为F1与F2,点P在直线l:x﹣y+8+2=0上.当∠F1PF2取最大值时,的比值为_________.21 设F1,F2分别是椭圆的左、右焦点.若点P在椭圆上,且,则向量与向量的夹角的大小为_________.22双曲线C:的左、右焦点分别为F1、F2,P是C右支上一动点,点Q的坐标是(1,4),则|PF1|+|PQ|的最小值为_________.23双曲线﹣y2=1的两个焦点为F1,F2,P是双曲线上的点,当△F1PF2的面积为2时,丨﹣丨的值为_________.24双曲线(a>0,b>0)的一条渐近线的倾斜角为,离心率为e,则的最小值为___25我们把离心率之差的绝对值小于的两条双曲线称为“相近双曲线”.已知双曲线与双曲线是“相近双曲线”,则的取值范围是_________.26已知双曲线的焦点F到一条渐近线的距离为,点O为坐标原点,则此双曲线的离心率为_________.27已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为_________.28已知A、B、P是双曲线上不同的三点,且A、B两点关于原点O对称,若直线PA,PB的斜率乘积,则该双曲线的离心率e=_________.29已知点P在双曲线x2﹣y2=a2(a>0)的右支上,A1,A2分别是双曲线的左、右顶点,且∠A2PA1=2∠PA1A2,则∠PA1A2=_________.30已知双曲线的左项点为A,右焦点为F,设P为第一象限内曲线上的任意一点,若∠PFA=λ•∠FAP,则λ的值为_________.31已知P是双曲线上的动点,F1、F2分别是其左、右焦点,O为坐标原点,则的取值范围是_________.32如图,从双曲线的左焦点F1引圆x2+y2=9的切线,切点为T,延长F1T交双曲线右支于P点.设M为线段F1P的中点,O为坐标原点,则|F1t|=_________;|MO|﹣|MT|=_________.33如图,双曲线C的中心在原点,虚轴两端点分别为B1、B2,左顶点和左焦点分别为A、F,若,则双曲线C的离心率为_________.。

圆锥曲线小题练习

圆锥曲线小题练习

圆锥曲线小题练习021.设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且PM=2MF,则直线OM 的斜率的最大值为(A)3(B )23(C)2(D )12.椭圆()222210x y a b a b+=>>的一个焦点为F ,该椭圆上有一点A ,满足OAF ∆是等边三角形(O为坐标原点),则椭圆的离心率是( )A1 B.21 D.23.若抛物线24x y =上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A .34B .32C .1D .2 4.过抛物线)0(22>=p px y 的焦点作一条直线交抛物线于),(),,(2211y x B y x A ,则2121x x y y 为( )A 、4B 、-4C 、2p D 、2p -5.如图,1F ,2F 是双曲线1C :1322=-y x 与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点.若|F 1F 2|=|F 1A |,则2C 的离心率是( ).A .31B .32 C.15D .52 6.若抛物线mx y =2的焦点是双曲线1322=-y x 的一个焦点,则实数m 等于( ) A.4± B.4 C.8± D.87.过抛物线22y px =焦点的直线交抛物线于A B 、,O 为坐标原点,则OA OB ⋅的值A .234p B .234p - C .23p D . 23p -8.已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线与抛物线x y 42=的准线分别交于A 、B两点,O 为坐标原点,AOB ∆的面积为3,则双曲线的离心率=e ( )A.21 B.27 C. 2 D. 39.设抛物线24y x =的焦点为F ,过点M (-1,0)的直线在第一象限交抛物线于A 、B ,使0AF BF ⋅=,则直线AB 的斜率k =( )A2 B 22C3D3310.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 作直线l x ⊥轴交双曲线C 的渐近线于点,A B .若以AB 为直径的圆恰过点2F ,则该双曲线的离心率为 A .2 B .3 C .2 D .511.已知椭圆方程,椭圆上点M 到该椭圆一个焦点F 1的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是( ) A.2 B.4 C.8 D.12.已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为( )A .02=±yx B .02=±y x C .03=±y x D .03=±y x13.已知双曲线C :﹣=1,若存在过右焦点F 的直线与双曲线C 相交于A ,B 两点且=3,则双曲线离心率的最小值为( ) A .B .C .2D .214.过椭圆22221(0)x y a b a b +=>>左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若01260F PF ∠= ,则椭圆的离心率为( )A .22B .33C .12D .1315.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离( ) A .2 B .3 C .5 D .7 16.已知P是抛物线xy 42=上的一个动点,则点P到直线1243:1=+-y x l 和02:2=+x l 的距离之和的最小值是( )A.1 B.2 C.3 D.417.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :22213x y a +=1的左焦点为F(-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为( ) A .34B .1C .2D .4 18.设12F F 是椭圆2222:1(0)x yE a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为A .34 B .23 C .12D .4519.椭圆22186x y +=上存在n 个不同的点12,,...,n P P P ,椭圆的右焦点为F 。

圆锥曲线专题20题练习含答案

圆锥曲线专题20题练习含答案

1.如图,曲线22:1(0,0)x y E m n m n+=>>与正方形L(1)求m n +的值; (2)设直线:l y x b =+交曲线E 于A ,B ,交L 于C ,D ,是否存在这AB 成等差数列?若存在,求出实数b样的曲线E ,使得CA ,的取值范围;若不存在,请说明理由.2.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=. (1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MAB ∆的面积为'l 的方程.3.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C . (1)求曲线C 的方程;(2)若()11,A x y ,()22,B x y 为曲线C ,且⊥m n ,试问AOB △的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.4.(12分)已知抛物线()2:20C y px p =>的焦点F 与椭圆22:12x T y +=的一个焦点重合,点()0,2M x 在抛物线上,过焦点F 的直线l 交抛物线于A,B 两点.(1)求抛物线C 的标准方程以及MF 的值.(2)记抛物线的准线l x '与轴交于点H ,试问是否存在常数R λ∈,使得AF FB λ= ,且22854HA HB +=都成立.若存在,求出λ的值;若不存在,请说明理由.5.设抛物线)0(42>=m mx y 的准线与x 轴交于1F ,抛物线的焦点2F ,以21,F F 为焦点,离心率21=e 的椭圆与抛物线的一个交点为)362,32(E ;自1F 引直线交抛物线于Q P ,两个不同的点,设F F 11λ=.(1)求抛物线的方程椭圆的方程; (2)若)1,21[∈λ,求||PQ 的取值范围.6. 已知抛物线的焦点为,为轴上的点.2:4E x y =F (),0P a x(1)当时,过点作直线与相切,求切线的方程;(2)存在过点且倾斜角互补的两条直线,,若,与分别交于,和,四点,且与的面积相等,求实数的取值范围.7.设点A 为圆C :224x y +=上的动点,点A 在x 轴上的投影为Q ,动点M 满足2MQ AQ =,动点M 的轨迹为E .(1)求E 的方程;(2)设E 与y 轴正半轴的交点为B ,过点B 的直线l 的斜率为k (0k ≠),l 与E 交于另一点为P ,若以点B 为圆心,以线段BP 长为半径的圆与E 有4个公共点,求k 的取值范围.8.已知椭圆()2222:10x y E a b a b+=>>的左焦点1F 与抛物线24y x =-的焦点重合,椭圆E的离心率为,过点()3,04M m m ⎛⎫> ⎪⎝⎭作斜率不为0的直线,交椭圆E 于,A B 两点,点5,04P ⎛⎫⎪⎝⎭,且PA PB ⋅ 为定值.(1)求椭圆E 的方程; (2)求OAB △面积的最大值.9.已知椭圆1C ,抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从1C ,2C 上分别取两个点,将其坐标记录于下表中:12(2)若直线():0l y kx m k =+≠与椭圆1C 交于不同的两点,M N ,且线段MN 的垂直平分线过定点1,08G ⎛⎫⎪⎝⎭,求实数的取值范围. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时,内切圆的半径为.(1)求椭圆的方程;0a ≠P l E l P 1l 2l 1l 2l E A B C D FAB ∆FCD ∆a(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.11. 已知抛物线2:C y x =-,点A ,B 在抛物线上,且横坐标分别为12-,32,抛物线C 上的点P 在A ,B 之间(不包括点A ,点B ),过点B 作直线AP 的垂线,垂足为Q . (1)求直线AP 斜率k 的取值范围; (2)求|||PA PQ ⋅的最大值.12. 如图,分别过椭圆()2222:10x y E a b a b+=>>左、右焦点12,F F 的动直线12,l l 相交于P 点,与椭圆E 分别交于,A B 与,C D 不同四点,直线,,,OA OB OC OD 的斜率1234,,,k k k k 满足1234k k k k +=+.已知当1l 与x 轴重合时,AB =CD =(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在定点,M N ,使得PM PN +为定值?若存在,求出,M N 点坐标并求出此定值;若不存在,说明理由.13.(本小题满分12分)已知椭圆C: 12222=+by a x (a>b>0)的离心率为22,过右焦点F 且与长轴垂直的直线被椭圆截得的线段长为2,0为坐标原点. (1)求椭圆C 的标准方程;(2)设经过点M(0,2)作直线l 交椭圆C 于A 、B 两点,求△AOB 面积的最大值及相应的直线l 的方程.1.【答案】(1)16m n +=;(2【解析】(1,得()28160n m x mx m mn +-+-=,有()()2644160m m n m mn ∆=-+-=,···········2分 化简的()4640mn m n mn +-=.又0m >,0n >,所以0mn >从而有16m n +=;···········4分 (2)由2AB CA BD =+,AB =···········5分 ,得()2220n m x bmx mb mn +++-=, 由2224440nmb n m m n ∆=-++>可得216b m n <+=,且122bmx x n m-+=+,212mb mn x x n m -=+,···········7分···········8分 323=,···········10分符合216b m n <+=,故当实数b 时,存在直线和曲线E ,使得CA ,AB ,BD 成等差数列.···········12分 2.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=--1(,)2PF x y =-- ,(,2)PH PF x y +=-- ,()0HF PH PF += ,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+,由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=, 设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x kx x +=⎧∴⎨⋅=-⎩,112211(,),(,)22MA x t y MB x t y =-+=-+ MA MB ⊥ ,0MA MB ∴= ,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=,22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-==+,∴1(,)2M k -到直线l '的距离2d ==,3221||(1)2MABS AB d k ∆==+=,解得1k =±, ∴直线l '的方程为102x y +-=或102x y -+=. 法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩ 直线'l 的方程为012y x x =+, 过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB 故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x -点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MAB S AB d x ==⨯+= 01x =± 所以直线'l 的方程为12y x =+或12y x =-+.3.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M , ∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=.···········7分 当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=, 则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,···········10分 ∴2224m k =+,12m21m==,综上所述,AOB △的面积为定值.···········12分5.解:(1)设椭圆的标准方程为)0(12222>>=+b a by ax ,由题意得⎪⎪⎩⎪⎪⎨⎧=-==+211924942222a b a ac b a ,解得⎪⎩⎪⎨⎧==3422b a∴椭圆的方程为13422=+y x ∴点2F 的坐标为)0,1(,∴1=m ,∴抛物线的方程是x y 42=(2)由题意得直线PQ 的斜率存在,设其方程为)0)(1(≠+=k x k y ,由⎩⎨⎧=+=xy x k y 4)1(2消去x 整理得0442=+-k y ky ()∵直线PQ 与抛物线交于两点, ∴016162>-∆k ,设),(),,(2211y x Q y x P ,则421=y y ①,ky y 421=+②, ∵Q F P F 11λ=,)0,1(1-F ∴),1(),1(2211y x y x +=+λ ∴21y y λ=,③由①②③消去21,y y 得22)1(4+=λλk . ∴||PQ 22221221222121616)11(4))[(11())(11(kk ky y y y ky y k-+=-++=-+=441616kk -=,即=2||PQ 441616k k -,将22)1(4+=λλk 代入上式得,=2||PQ 16)21(16)12(16)4(222224-++=-++=-+λλλλλλλ,∵λλλ1)(+=f 在)1,21[∈λ上单调递减,∴)21()()1(f f f ≤<λ,即2512≤+<λλ, ∴<041716)21(2≤-++λλ, ∴217||0≤<PQ ,即||PQ 的取值范围为]217,0(. 6.解:(1)设切点为则. ∴点处的切线方程为. ∵过点,∴,解得或. 当时,切线的方程为或. (2)设直线的方程为,代入得, ①,得, ②由题意得,直线的方程为, 同理可得,即, ③ ②×③得,∴.④设,,则,.∴.点到的距离为,200,3x Q x ⎛⎫⎪⎝⎭002x x l x yk ===Q ()200042x x y x x -=-l P ()200042x x a x -=-02x a =00x =0a ≠l 0y =20ax y a --=1l ()y k x a =-24x y =2440x kx ka -+=216160k ka ∆=->()0k k a ->2l ()y k x a =--()0k k a --->()0k k a +>()2220k k a ->22a k <()11,A x y ()22,B x y 224x x k +=224x x ka=AB =FAB d =∴的面积为同理的面积为由已知得,化简得, ⑤欲使⑤有解:则,∴.又,得,∴. 综上,的取值范围为或或.7.解:(1)设点(,)M x y ,由2MQ AQ =,得(,2)A x y ,由于点A 在圆C :224x y +=上,则2244x y +=,即点M 的轨迹E 的方程为2214x y +=. (2)由(1)知,E的方程为2214x y +=, 因为E 与y 轴的正半轴的交点为B ,所以(0,1)B ,所以故B 且斜率为k 的直线l 的方程为1y kx =+(0k ≠).由221,1,4y kx x y =+⎧⎪⎨+=⎪⎩得22(14)80k x kx ++=, 设11(,)B x y ,22(,)P x y ,因此10x =,22814kx k =-+,12|||BP x x =-=由于圆与椭圆的公共点有4个,由对称性可设在y 轴左侧的椭圆上有两个不同的公共点P ,T ,满足||||BP BP =,此时直线BP 斜率0k >,FAB ∆41S =+FCD ∆41S =-4141+=-()2221a k -=22a <a <22212a k k=-<21k ≠21a ≠a 1a <<-11a -<<1a <<设直线BT 的斜率为1k ,且10k >,1k k ≠,则||BT ==10-=,即221(14(14k k +=+所以222222111()(18)0k k k k k k -++-=, 由于12k k ≠,因此222211180k k k k ++-=,故22122111198188(81)k k k k +==+--. 因为20k >,所以21810k ->,因此22119188(81)8k k =+>-,又因为0k >,所以k >, 又因为1k k ≠,所以2222180k k k k ++-≠,所以428210k k --≠,又因为0k >,解得2k ≠,所以)k ∈+∞ , 综上所述,k的取值范围为(,()-∞+∞ .8.(本小题满分12分)【答案】(1)2212x y +=;(2). 【解析】(1)设1(,0)F c ,∵抛物线24y x =﹣的焦点坐标为(1,0)-,且椭圆E 的左焦点1F 与抛物线24y x =﹣的焦点重合,∴1c =,···········2分 又椭圆Ea =···········3分 于是有2221b ac ==﹣.故椭圆E 的标准方程为:2212x y +=.···········4分 (2)设11,A x y (),22,B x y (),直线的方程为:x ty m =+, 由2222x ty m x y =+⎧⎨+=⎩整理得2222220t y tmy m +++=()﹣ 12222tm y y t -+=+,212222m y y t -=+,···········6分 115(,)4PA x y =- ,225(,)4PB x y =- , 121255()()44PA PB x x y y ⋅=--+ 2212125525(1)()()4216t y y tm t y y m m =++-++-+222225(2)(2)5722216m m t m m m t -+-+-=+--+.···········8分 要使PA PB ⋅ 为定值,则22522212m m m -+--=,解得1m =或23m =(舍), ···········9分当1m =时,2122|)2t AB y y t +==+﹣,···········10分点O 到直线AB的距离d =,···········11分OAB △面积1s ==. ∴当0t =,OAB △··········12分 9.【答案】(1)1C :22143x y +=.22:4C y x =;(2),⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭. 【解析】(1)设抛物线()22:20C y px p =≠,则有()220y p x x =≠,据此验证4个点知(3,-,()4,4-在抛物线上,易求22:4C y x =.·········2分 设()2222:10x y C a b a b +=>>,把点()2,0-,⎭代入得: 222412614⎧=+⎪⎪⎨⎪⎪⎩=a ab ,解得2243==⎧⎨⎩a b ,所以1C 的方程为22143x y +=.·········5分 (2)设()11,M x y ,()22,N x y ,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=, 所以()()()22284344120km k m ∆=-+->,即2243m k <+.① 由根与系数关系得122834km x x k+=-+,则122634m y y k +=+,·········7分 所以线段MN 的中点P 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.·········8分 又线段MN 的垂直平分线的方程为118y x k ⎛⎫=-- ⎪⎝⎭,·········9 由点P 在直线上,得22314134348m km k k k ⎛⎫=--- ⎪++⎝⎭, 即24830k km ++=,所以()21438m k k =-+,·········10分 由①得()2222434364k k k +<+,所以2120k >,即k <或k >,所以实数的取值范围是,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.·········12分 10.(1)依题意: PF 1 + PF 2 − F 1F 2 2=r ,则 PF 1 + PF 2 − F 1F 2 =4−2 3,即2a −2c =4−2 3又c a = 32,联立解得:a =2,c = 3,故b =1,所以椭圆的方程为x 24+y 2=1 (2)设, 联立直线和椭圆的方程得:, 当时有: 由得:,即, 整理得:,所以, 化简整理得:,代入得:, 解之得:或, 点到直线的距离, 设,易得或,则, 当时;当时,, 若,则;若,则,当时, 综上所述:,故点到直线的距离没有最大值.11.(1)由题可知11(,)24A --,39(,)24B -,设2(,)p p P x x -,1322p x -<<,所以 21412p p x k x -+=+12p x =-+∈(1,1)-,故直线AP 斜率k 的取值范围是(1,1)-.(2)直线11:24AP y kx k =+-,直线93:042BQ x ky k ++-=,联立直线AP ,BQ 方程可知点Q 的横坐标为223422Q k k x k --=+,||PQ =()Q p x x -22341()222k k k k --=+-+2=1||)2p PA x =+)k =-,所以3||||(1)(1)PA PQ k k ⋅=-+,令3()(1)(1)f x x x =-+,11x -<<,则2'()(1)(24)f x x x =---22(1)(21)x x =--+,当112x -<<-时'()0f x >,当112x -<<时'()0f x <,故()f x 在1(1,)2--上单调递增,在1(,1)2-上单调递减. 故max 127()()216f x f =-=,即||||PA PQ ⋅的最大值为2716. 12.解:(Ⅰ)当1l 与x 轴重合时,1230k k k k +=+=,即34k k =-2l ∴垂直于x轴,得2AB a ==,223b CD a ==得a b =,∴椭圆E 的方程为:22132x y +=. (Ⅱ)焦点12,F F 坐标分别为()()1,0,1,0-当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0当直线1l 、2l 斜率存在时,设斜率分别为12,m m ,设()()1122,,,A x y B x y , 由()2211321x y y m x ⎧+=⎪⎨⎪=+⎩得:()2222111236360m x m x m +++-= 由求根公式并化简得:211221623m x x m +=-+或2112213623m x x m -⋅=+ 121212112112121212111422y y x x x x m k k m m x x x x x x m ⎛⎫⎛⎫++++=+=+=+=- ⎪ ⎪-⎝⎭⎝⎭ 同理:2342242m k k m +=--.1234k k k k +=+ ,()()1212212212442022m m m m m m m m -=-⇒⋅+-=--,由题意知:210m m -≠,1220m m ∴⋅+=. 设(),P x y ,则+2=01+1y y x x ⋅-,即()22112y x x +=≠± 当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0,也满足此方程,所以点P 在椭圆()22112y x x +=≠±上,存在点()0,1M -和()0,1N ,使得PM PN +为定值,定值为。

圆锥曲线综合练习题(有答案)

圆锥曲线综合练习题(有答案)

圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x y +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b-=与椭圆22221x y m b +=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( ) AB. C.29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(0 30.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF 的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43.若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP(O 为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为( )A .)+∞B .)+∞C .D .44.已知以椭圆)0(12222>>=+b a by a x 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2 )A B C .4 D .846.已知F 1、F 2是双曲线 12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .4+32 B.3+1 C.3—1 D.213+47.已知双曲线)0,0(12222>>=-b a by a x 的左顶点、右焦点分别为A 、F,点B (0,b ),-=+,则该双曲线离心率e 的值为( )A .213+ B C .215- D .248.直线l 是双曲线22221(0,0)x y a b a b-=>>的右准线,以原点O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .2D .49.从双曲线)0,0(12222>>=-b a by a x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MT MO -与a b -的大小关系为 A .a b MT MO ->- B .a b MT MO -=- C .a b MT MO -<-D .不确定.50.点P 为双曲线1C :()0,012222>>=-b a by a x 和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( ) A .3B .21+C .13+D .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A .1322或B .23或2C .12或2 D .2332或 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= 。

(完整word版)圆锥曲线基础知识专项练习

(完整word版)圆锥曲线基础知识专项练习

圆锥曲线练习一、选择题(本大题共13小题,共65。

0分)1.若曲线表示椭圆,则k的取值范围是()A。

k>1 B.k<—1C。

-1<k<1 D。

-1<k<0或0<k<12。

方程表示椭圆的必要不充分条件是()A.m∈(—1,2)B。

m∈(-4,2)C。

m∈(-4,-1)∪(—1,2) D.m∈(—1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3 B。

1 C.3 D。

64。

已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B.C。

D。

5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A。

甲是乙成立的充分不必要条件B。

甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6。

“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A。

充要条件B。

充分非必要条件C.必要非充分条件D。

既不充分也不必要条件7。

方程+=10,化简的结果是()A。

+=1 B。

+=1 C.+=1 D。

+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A.B。

C.D。

9。

若点P到点F(4,0)的距离比它到直线x+5=0 的距离小1,则P点的轨迹方程是( )A。

y2=-16x B.y2=—32x C.y2=16x D.y2=32x10。

抛物线y=ax2(a<0)的准线方程是( )A.y=—B.y=-C.y=D.y=11.设抛物线y2=4x上一点P到直线x=—3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812。

已知点P是抛物线x=y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为( )A。

2 B。

C.-1 D。

+113.若直线y=kx—2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=() A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知双曲线x 24-y 2
b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双
曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )
A.x 24-3y 24=1
B.x 24-4y 23=1
C.x 24-y 24=1
D.x 24-y 2
12
=1 2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )
A.
30
3
B .6
C .12
D .7 3
3.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1
4,则
该椭圆的离心率为( )
A.13 B .12 C.23
D.3
4
4.双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,
点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.
5.已知椭圆E 的中心在坐标原点,离心率为1
2,E 的右焦点与抛物线C :y 2=8x 的焦点
重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )
A .3
B .6
C .9
D .12
6. O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )
A .2
B .22
C .2 3
D .4
7.已知方程x 2m 2+n -y 2
3m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取
值范围是( )
A .(-1,3)
B .(-1,3)
C .(0,3)
D .(0,3)
8.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →
,则|QF |=( )
A.72 B .3 C.5
2
D .2
9.经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( ) A.x 2113-y 211=1 B .x 22-y 2=1C.y 2113-x 211=1 D.y 211-x 2
113
=1 10.知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )
A .±3
B .±1
C .±3
4
D .±33
11.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2
b 2=1(a >b >0)的左焦点,A ,B 分别为C 的
左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )
A.13
B.12
C.2
3
D.3
4
12已知双曲线x 2a 2-y 2
b 2=1的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线分别
交双曲线的左、右两支于点B ,C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )
A .y =±3x
B .y =±22x
C .y =±(3+1)x
D .y =±(3-1)x
13.已知F 1,F 2是双曲线E :x 2a 2-y 2
b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,
sin ∠MF 2F 1=1
3
,则E 的离心率为( )
A.2
B.3
2
C.3
D .2
14.已知椭圆x 2a 2+y 2
b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交
于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )
A.
2
2
B .2-3 C.5-2 D.6- 3
15.设F 为抛物线C :y 2=4x 的焦点,曲线y =k
x (k >0)与C 交于点P ,PF ⊥x 轴,则k
=( ) A.12 B .1 C.3
2
D .2
16.过点A (0,1)作直线,与双曲线x 2
-y 2
9
=1有且只有一个公共点,则符合条件的直线
的条数为( ) A .0 B .2 C .4 D .无数
17.椭圆y 2
+x 2
m
2=1(0<m <1)上存在点P 使得PF 1⊥PF 2,则m 的取值范围是( )
A.⎣⎡
⎭⎫22,1 B .⎝
⎛⎦⎤0,22 C.⎣⎡⎭⎫12,1 D.⎝⎛⎦
⎤0,1
2 18.设点P 是椭圆x 2a 2+y 2
b 2=1(a >b >0)上一点,F 1,F 2分别是椭圆的左,右焦点,I 为
△PF 1F 2的内心,若S △IPF 1+S △IPF 2=2S △IF 1F 2,则该椭圆的离心率为( )
A.12 B .22 C.32
D.
3-1
2
19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3
2.双曲线x 2-y 2=1的渐近线与椭圆
C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )
A.x 28+y 22=1 B .x 212+y 26=1C.x 216+y 24=1 D.x 220+y 2
5
=1 620.双曲线M :x 2
-y 2
b
2=1的左、右焦点分别为F 1,F 2,记|F 1F 2|=2c ,以坐标原点O
为圆心,c 为半径的圆与双曲线M 在第一象限的交点为P ,若|PF 1|=c +2,则P 点的横坐标为________.
21.已知F 1,F 2为x 2a 2+y 2
16=1的左、右焦点,M 为椭圆上一点,则△MF 1F 2内切圆的周
长等于3π,若满足条件的点M 恰好有2个,则a 2=________.
22.如图,F 1,F 2是双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲
线的左、右两支分别交于点B ,A .若△ABF 2为等边三角形,则双曲线的离心率为________.
23.已知点A 是抛物线C :x 2=2py (p >0)上一点,O 为坐标原点,
若以点M (0,8)为圆心,|OA |的长为半径的圆交抛物线C 于A ,B 两点, 且△ABO 为等边三角形,则p 的值是( ) A.3
8
B .2
C .6 D.23
24.已知焦点在x 轴上的椭圆方程为x 24a +y 2
a 2+1=1,随着a 的增大该椭圆的形状( )
A .越接近于圆
B .越扁
C .先接近于圆后越扁
D .先越扁后接近于圆
25.已知F 1,F 2分别是双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的左、右焦点,对于左支上任意
一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴),则此双曲线的离心率e 的取值范围是( )
A .(1,+∞)
B .(2,3]
C .(1,3]
D .(1,2]
426.抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN |
|AB |
的最大值为( )
A.
33 B .1 C.233
D .2
27.设F 1,F 2是椭圆x 2
+y 2
b 2=1(0<b <1)的左、右焦点,过F 1的直线l 交椭圆于A ,B
两点,若|AF 1|=3|F 1B |,且AF 2⊥x 轴,则b 2=________.
28.过抛物线y 2=4x 焦点F 的直线交其于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为________.。

相关文档
最新文档