疲劳载荷及分析理论 谱 寿命 设计 累积损伤
钢结构疲劳计算

目录
• 引言 • 钢结构疲劳计算基础 • 疲劳载荷谱的编制 • 疲劳寿命估算 • 疲劳损伤累积与断裂分析 • 钢结构疲劳计算的工程应用 • 结论与展望
01 引言
疲劳计算的重要性
保证结构安全
疲劳计算是确保钢结构在长期使用过程中保持安全的重要手段,通过计算可以 预测结构在各种载荷下的疲劳损伤,从而采取相应的措施来预防破坏。
07 结论与展望
结论
疲劳计算是钢结构设计中的重要环节,通过合理的计算和 分析,可以预测结构在循环载荷作用下的性能和寿命,为 结构的安全性和经济性提供保障。
疲劳计算的准确性和可靠性取决于多种因素,如载荷类型、 材料特性、结构细节和计算方法等。因此,选择合适的计 算方法和参数是至关重要的。
疲劳计算的结果可以为结构的设计、制造、安装和维护提 供指导,帮助工程师更好地理解和控制结构的疲劳性能。
线性疲劳累计损伤理论
基于S-N曲线,通过线性累计损伤的概念来估算疲劳寿命。
非线性疲劳累计损伤理论
基于S-N曲线,考虑非线性累计损伤效应,更准确地估算疲劳寿命。
05 疲劳损伤累积与断裂分析
疲劳损伤累积模型
线性累积损伤模型
假设疲劳损伤是线性的,即每次循环产生的损伤可以累加,适用于 高周疲劳。
非线性累积损伤模型
损伤力学
将结构视为损伤演化过程,通过分析损伤演化规律来预测结构的断裂 行为。
断裂韧性测试与评估
试样制备
根据标准要求制备试样,确保试样的尺寸、形状和表面处理等符 合要求。
加载制度
根据标准规定的加载制度进行试验,确保试验结果的准确性和可重 复性。
结果评估
根据试验结果计算断裂韧性值,并与标准值进行比较,评估材料的 断裂韧性性能。
飞机结构疲劳寿命评估和监测

飞机结构疲劳寿命评估和监测飞机作为一种特殊的交通工具,其结构疲劳寿命的评估和监测是非常重要的。
随着飞机使用年限的增加和使用环境的变化,飞机的结构疲劳问题也逐渐显现,为此,正确评估和监测飞机结构疲劳寿命有助于保证飞机的安全,提高运营效率,延长飞机的使用寿命。
一、疲劳寿命评估的原理和方法飞机结构疲劳问题的产生主要是由于重复载荷作用下的应力集中引起的。
因此,疲劳寿命评估的方法主要是根据应力与应变的关系来计算材料的寿命。
目前,疲劳寿命评估的方法主要有三种:1. 线性累积损伤理论线性累积损伤理论主要是通过计算结构受到的载荷,然后根据载荷大小与疲劳裂纹扩展速率的关系,计算结构的寿命。
2. 非线性累积损伤理论非线性累积损伤理论是线性累积损伤理论的改进版,其主要原理是在载荷峰值附近引入非线性因素,通过式子对剪切模量进行校正,进而计算疲劳损伤。
3. 特征点法特征点法主要是通过对飞机结构进行疲劳试验,在不同载荷下统计不同时间点的损伤情况,然后根据损伤情况计算出疲劳寿命。
以上三种方法,都可以通过结构疲劳试验,得到对飞机结构的疲劳寿命评估结果,以便做出相应的监测和维修决策。
二、疲劳寿命监测技术疲劳寿命监测技术是在飞机运行期间对其结构进行实时监测,提现结构的健康状况,以便及时发现问题,并采取相应措施加以解决。
目前,常用的疲劳寿命监测技术主要有以下几种:1. 应力测量技术应力测量技术是通过在结构上安装应变传感器来测量结构受到的载荷,从而判断结构的健康状况。
应力测量技术可以应用于飞机的不同部位,如机翼、舵面、机身等,在运行期间实时监测其结构的健康状况。
2. 振动监测技术振动监测技术是通过安装加速度传感器,对飞机结构的振动情况进行实时监测,以此来了解结构的健康情况,并判断是否需要进行维修或更换。
振动监测技术主要应用于飞机的发动机、飞行控制系统等。
3. 超声波检测技术超声波检测技术是一种非接触性检测技术,通过向结构中发送超声波信号,然后测量反射回来的信号,以此来判断结构的健康状况。
疲劳损伤力学理论与寿命预测

疲劳损伤力学理论与寿命预测疲劳损伤力学理论是研究材料在循环加载下产生疲劳损伤的力学原理和规律的学科。
疲劳损伤是材料在循环加载下逐渐累积的微观裂纹扩展和材料损伤的过程。
寿命预测是根据材料的疲劳性能和加载条件,通过疲劳损伤力学理论来预测材料的使用寿命。
疲劳损伤力学理论的基本原理是应力和应变的关系。
在循环加载下,材料会经历应力的变化,从而引起应变的变化。
当应力超过材料的疲劳极限时,材料会出现微观裂纹,并随着加载次数的增加逐渐扩展,最终导致材料的破坏。
疲劳损伤力学理论通过分析应力和应变的关系,可以预测材料在不同加载条件下的疲劳寿命。
疲劳寿命的预测可以基于不同的方法和模型。
其中最常用的是基于S-N曲线的疲劳寿命预测方法。
S-N曲线是疲劳试验中应力幅与循环寿命的关系曲线。
通过对材料进行一系列的疲劳试验,可以得到S-N曲线。
根据S-N曲线,可以根据给定的应力幅值来预测材料的循环寿命。
另一种常用的疲劳寿命预测方法是基于裂纹扩展速率的模型。
裂纹扩展速率是指裂纹在单位时间内扩展的长度。
根据裂纹扩展速率和裂纹尺寸,可以预测材料的疲劳寿命。
裂纹扩展速率模型通常基于线弹性断裂力学和裂纹力学原理,考虑了裂纹的形状、尺寸、应力场等因素。
除了S-N曲线和裂纹扩展速率模型,还有一些其他的疲劳寿命预测方法,例如基于损伤累积的模型和基于应力强度因子的模型。
这些方法都是通过对材料的疲劳损伤进行分析和计算,来预测材料的使用寿命。
疲劳损伤力学理论和寿命预测在工程实践中具有重要的应用。
通过预测材料的疲劳寿命,可以选择合适的材料和设计加载条件,以延长材料的使用寿命。
此外,疲劳寿命预测还可以用于评估材料的可靠性和安全性,从而提高工程结构的性能和可靠性。
总之,疲劳损伤力学理论和寿命预测是研究材料在循环加载下产生疲劳损伤和预测材料寿命的重要学科。
通过分析材料的应力和应变关系,可以预测材料在不同加载条件下的疲劳寿命。
疲劳寿命预测在工程实践中具有广泛的应用,可以用于选择材料和设计加载条件,以延长材料的使用寿命,并提高工程结构的可靠性和安全性。
钢结构疲劳计算

钢结构疲劳计算
钢结构疲劳计算是指通过一系列的分析和计算,确定钢结构在连续循环加载(如交通载荷、风荷载等)下的疲劳寿命和疲劳极限,从而确保结构的安全性和可靠性。
钢结构疲劳计算主要包括以下几个步骤:
1. 疲劳载荷分析:确定钢结构在实际工况下的受力情况,包括静载荷和动载荷等。
常用的方法有实测、数值模拟和统计分析等。
2. 构件应力分析:基于疲劳载荷分析结果,通过有限元分析或经验公式等方法,计算出各构件的应力情况。
应注意考虑动荷载引起的共振和谐振效应。
3. 疲劳寿命计算:根据Wöhler曲线(疲劳强度与循环次数的关系曲线),将应力历程转化为循环次数,并通过疲劳寿命估算公式计算出构件的疲劳寿命。
4. 疲劳累积损伤计算:针对多次循环载荷的情况,需要进行疲劳累积损伤计算。
常用的方法有矿山方程法、极限状态方程法和累积损伤积分法等。
5. 安全性评估:根据疲劳寿命和疲劳极限计算结果,与设计要求进行比较,评估结构的安全性。
如果结构的疲劳寿命较短,需要采取相应的措施,如加强结构、增加支撑等。
需要注意的是,钢结构疲劳计算是一项较为复杂的工作,需要对结构材料的疲劳性能、荷载特性以及结构形式等进行综合考虑。
因此,在进行钢结构疲劳计算时,应遵循相应的标准规范,采用合适的计算方法,并进行有效的验证和优化。
混凝土结构的疲劳设计原则

混凝土结构的疲劳设计原则一、前言混凝土结构在使用过程中可能会受到疲劳载荷的影响,从而导致结构的损坏和变形。
因此,在混凝土结构的设计过程中,必须考虑到疲劳载荷的影响。
本文将从混凝土结构的疲劳机理、疲劳荷载及其作用时间、疲劳寿命及疲劳裂缝等方面介绍混凝土结构的疲劳设计原则。
二、混凝土结构的疲劳机理混凝土结构在受到疲劳载荷时,会出现微裂缝,这些微裂缝会逐渐扩展,最终导致结构的破坏和变形。
混凝土结构的疲劳机理主要包括以下几个方面:1. 微观损伤:混凝土结构在受到疲劳载荷时,会出现微观损伤,如微裂缝、孔隙等,这些损伤会逐渐扩展,最终导致结构的破坏。
2. 组织变化:混凝土在受到疲劳载荷时,会发生一些组织变化,如细观结构的变化和孔隙率的变化等,这些变化也会导致结构的破坏。
3. 疲劳回复:混凝土结构在受到疲劳载荷后,可以通过一定的时间回复,但是如果疲劳载荷过大或作用时间过长,结构就会失去回复能力,最终导致破坏。
三、疲劳荷载及其作用时间混凝土结构在设计时必须考虑到疲劳荷载及其作用时间。
疲劳荷载一般由交通载荷、风载荷、地震载荷等组成,疲劳荷载的大小和作用时间是疲劳破坏的主要影响因素。
为了确定混凝土结构的疲劳荷载及其作用时间,一般采用以下方法:1. 调查资料法:通过调查相似结构的使用情况和破坏情况,确定疲劳荷载及其作用时间。
2. 经验公式法:通过经验公式计算出疲劳荷载及其作用时间。
3. 数值模拟法:通过数值模拟方法计算出疲劳荷载及其作用时间。
四、疲劳寿命疲劳寿命是指混凝土结构在受到疲劳载荷作用下,可以承受的循环载荷次数,疲劳寿命是疲劳设计的主要依据。
疲劳寿命的确定需要考虑以下因素:1. 材料的强度和抗裂性能。
2. 结构的几何形状、尺寸和支承条件。
3. 疲劳载荷的大小、作用时间和作用方式。
4. 结构的应力水平和应力状态。
疲劳寿命的计算一般采用线性累积损伤理论或疲劳断裂力学等方法,通过计算疲劳荷载作用下混凝土结构的损伤情况,确定结构的疲劳寿命。
疲劳寿命计算公式

疲劳寿命计算公式疲劳寿命是指材料在反复加载和卸载的过程中所能承受的最大循环次数,也称为疲劳寿命。
疲劳寿命的计算公式是通过材料的力学性能参数和应力载荷来确定的。
疲劳寿命计算公式的选择取决于应力载荷的类型和作用方向。
下面介绍几种常用的疲劳寿命计算公式。
1.S-N曲线法S-N曲线法是最常用的疲劳寿命计算方法之一、该方法通过实验测定材料在不同应力水平下的疲劳寿命,然后将实验结果绘制成S-N曲线。
这样可以直观地了解材料的疲劳寿命与应力载荷的关系。
根据S-N曲线,可以通过插值或外推的方法来确定特定应力载荷下的疲劳寿命。
2.线性累积损伤法线性累积损伤法是一种基于累积损伤理论的疲劳寿命计算方法。
该方法假设材料在每个循环中都会受到一定的损伤,而疲劳寿命则是所有循环中损伤的累积。
线性累积损伤法通过计算材料在每个循环中的应力载荷和损伤之间的关系,进而推导出疲劳寿命的计算公式。
3.应力幅与寿命关系应力幅与寿命关系是一种常见的疲劳寿命计算方法。
该方法通过实验测定不同应力幅下的疲劳寿命,然后根据实验数据来拟合出应力幅与寿命之间的关系。
这种方法适用于单一应力幅循环下的疲劳寿命计算。
4. Miner线性累积疲劳损伤法Miner线性累积疲劳损伤法是一种基于疲劳损伤的累积理论的疲劳寿命计算方法。
该方法认为材料的疲劳寿命是各个应力循环造成的疲劳损伤之和。
通过计算不同应力循环下的疲劳损伤,然后将其累积起来,可以得到材料的疲劳寿命。
不同的疲劳寿命计算公式适用于不同的应力载荷和材料类型。
在实际工程应用中,需要根据具体情况选择合适的计算方法,并结合实验数据进行验证。
此外,疲劳寿命计算还需要考虑材料的表面处理、应力状态、温度和环境等因素的影响。
多工况下的机械结构疲劳损伤累积预测与寿命评估方法

多工况下的机械结构疲劳损伤累积预测与寿命评估方法引言随着现代工程设计越来越追求高效性和可靠性,对于多工况下的机械结构疲劳损伤累积预测与寿命评估方法的研究变得尤为重要。
机械结构的疲劳损伤累积是由于多个循环载荷下的应力和应变叠加引起的。
本文将探讨现有的机械结构疲劳损伤累积预测方法,并介绍应力和应变的测量技术。
同时,生命评估方法将被提出,并给出案例分析。
1. 多工况下的机械结构疲劳损伤累积预测方法多工况下的机械结构疲劳损伤累积预测方法是通过将不同工况下的载荷进行组合,对疲劳寿命进行估计。
常用的方法有基于振动信号的震动模型法和基于载荷历程的统计分析法。
1.1 震动模型法震动模型法是一种基于振动信号的疲劳损伤预测方法。
该方法通过测量振动信号,分析其频谱特性和时间特性,然后将其转换为疲劳损伤累积。
1.2 统计分析法统计分析法是一种基于载荷历程的疲劳损伤预测方法。
它将载荷历程分解为若干个循环载荷,然后利用疲劳试验数据建立循环载荷和疲劳寿命之间的关系。
2. 应力和应变的测量技术应力和应变是机械结构疲劳损伤累积预测和寿命评估的重要参数。
常用的测量技术有应变计、压力传感器和数字图像相关。
2.1 应变计应变计是一种常见的应力应变测量仪器,可以用于测量结构件上的应变。
它可分为电阻应变计、光学应变计、压阻应变计等不同类型。
2.2 压力传感器压力传感器是一种用于测量压力的传感器,通常用于测量液压系统中的压力。
它可以直接安装在结构上,用于测量结构受到的压力载荷。
2.3 数字图像相关数字图像相关是一种非接触式测量技术,通过对结构变形前后的图像进行比较,可以确定结构的位移和应变。
这项技术适用于复杂形状的结构。
3. 生命评估方法生命评估方法是对机械结构寿命进行预测和评估的方法。
常用的方法有有限元法、统计方法和人工神经网络方法。
3.1 有限元法有限元法是一种基于结构力学理论和数值计算的方法,通过建立结构的有限元模型,模拟不同工况下的载荷作用,预测结构的寿命。
累计损失理论

累计损失理论疲劳累积损伤理论研究综述 0 引言疲劳累积损伤理论是疲劳研究的关键问题之一。
对等幅载荷,用材料的S-N曲线可以估算出不同应力水平下至破坏的循环数。
但大多数实际的工程结构或机械的失效是由一系列变幅循环载荷产生的疲劳累积损伤造成的,无法用S-N曲线[2]直接计算寿命,此时就需要借助疲劳累积损伤理论。
疲劳累积损伤理论已经有数十年的发展,众多学者提出了很多模型,大致可以分为确定性的模型和基于可靠性设计发展起来的概率性模型。
确定性模型又可[3]分为线性损伤累积理论和非线性累积损伤理论。
有些学者根据各个理论的原理和特点,又将非线性累积损伤理论分为五类:基于损伤曲线法的非线性累积损伤理论;基于材料物理性能退化概念的非线性累积损伤理论;基于连续损伤力学概念的非线性累积损伤理论;考虑载荷间相互作用效应的非线性累积损伤理论;基于能量法的非线性累积损伤理论。
虽然模型众多,但Miner理论由于其简单实用性,仍然是最具工程应用价值的模型。
寻找一种既简单又符合实际疲劳累积发展规律的模型是当前疲劳研究的重要课题。
1 疲劳累积损伤理论任何一个疲劳累积损伤理论必定以疲劳损伤D的定义为基石,以疲劳损伤的演化为基础。
一个合理的疲劳累积损伤理论,其疲劳损伤D应该有比dDdN/ 较明确的物理意义,有与试验数据比较一致的疲劳损伤演化规律,以及使用比较[5]简单。
[3]构造一个疲劳累积损伤理论,不论它有效与否,必须定量地回答三个问题:1. 一个载荷循环对材料或结构造成多大损伤;2. 多个载荷循环时损伤是如何累加的;3. 失效时临界损伤有多大。
不同的疲劳累积损伤理论对上述三个问题有不同的回答。
下面对现在常用的一些疲劳累积损伤理论进行分类叙述。
1.1 线性疲劳累积损伤理论线性累积损伤理论是指在循环载荷作用下,疲劳损伤与载荷循环数的关系是线性的,而且疲劳损伤可以线性累加,各个应力之间相互独立和互不相关,当累加的损伤达到某一数值时,试件或构件就发生疲劳破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章疲劳载荷及分析理论 (1)3.1 疲劳载荷谱 (1)3.1.1 疲劳载荷谱及其编谱 (1)3.1.2 统计分析方法 (2)3.2 疲劳累积损伤理论 (3)3.2.1 概述 (3)3.2.2 线性累积损伤理论 (4)3.3起重机疲劳计算常用方法 (5)3.3.1 应力比法 (6)3.3.2 应力幅法 (6)3.4 疲劳寿命设计方法 (7)3.4.1无限寿命设计 (7)3.4.2 安全寿命设计 (8)3.4.3 损伤容限设计 (8)3.4.4 概率疲劳设计 (9)3.4 小结 (10)第3章疲劳载荷及分析理论疲劳载荷谱(fatigue load spectrum)是建立疲劳设计方法的基础。
根据研究对象的不同,施加在对象上的疲劳载荷也是不同的,所以在应用时要依据某种统计分析方法和理论进行分析。
3.1 疲劳载荷谱3.1.1 疲劳载荷谱及其编谱载荷分为静载荷和动载荷两大类。
动载荷又分为周期载荷、非周期载荷和冲击载荷。
周期载荷和非周期载荷可统称为疲劳载荷。
在很多情况下,作用在结构或机械上的载荷是随时间变化的,这种加载过程称为载荷—时间历程。
由于随机载荷的不确定性,这种谱无法直接使用,必须对其进行统计处理。
处理后的载荷—时间—历程称为载荷谱。
载荷谱是具有统计特性的图形,它能本质地反映零件的载荷变化情况[]。
为了估算结构的使用寿命和进行疲劳可靠性分析,以及为最后设计阶段所必需的全尺寸结构和零部件疲劳试验,都必须有反映真实工作状态的疲劳载荷谱。
实测的应力—时间历程包含了外加载荷和结构的动态响应的影响,它不仅受结构系统的影响,而且也受应力—时间历程的观测部位的影响。
将实测的载荷—时间历程处理成具有代表性的典型载荷谱的过程称为编谱。
编谱的重要一环,是用统计理论来处理所获得的实测子样[]。
3.1.2 统计分析方法对于随机载荷,统计分析方法主要有两类:计数法和功率谱法[]。
由于产生疲劳损伤的主要原因是循环次数和应力幅值,因此在编谱时首先必须遵循某一等效损伤原则,将随机的应力—时间历程简化为一系列不同幅值的全循环和半循环,这一简化的过程叫做计数法。
功率谱法是借助富氏变换,将连续变化的随机载荷分解为无限多个具有各种频率的简单变化,得出功率谱密度函数。
在抗疲劳设计中广泛使用计数法。
目前,已有的计算法有十余种之多,同一应力—时间历程用不同计数法编制出的载荷谱有时会差别很大。
当然,按照这些载荷谱来进行寿命估算或试验,也会给出不同的结果。
从统计观点上看,计数法大体分为两类:单参数法和双参数法[]。
所谓单参数法是指只考虑应力循环中的一个变量,例如,峰谷值、变程(相邻的峰值与谷值之差),而双参数法则同时考虑两个变量。
由于交变载荷本身固有的特性,对任一应力循环,总需要用两个参数来表示。
其代表是雨流计数法。
雨流计数法是目前在疲劳设计和疲劳试验中用的最广泛的一种计数方法,是对随机信号进行计数的一种方法的一种。
雨流计数法与变程对—均值计数法一样具有比较严格的力学基础,计数结果介于峰值法和变程法之间,提供比较符合实际的数据。
雨流法是建立在对封闭的应力—应变迟滞回线逐个计数的基础上,它认为塑性的存在是疲劳损伤的必要条件,从疲劳观点上看它比较能够反映随机载荷的全过程。
由载荷—时间历程得到的应力—应变迟滞回线与造成的疲劳损伤是等效的[]。
应该指出,所有现行计数法均未记及载荷循环先后次序的信息资料。
因为载荷先后次序的影响总是存在的,但如果将简化后的程序载荷谱的周期取短一些,则载荷先后次序的影响会减小至最小程度,这点已被荷兰国家宇航实验室的试验结果证实[]。
3.2 疲劳累积损伤理论3.2.1 概述在疲劳研究过程中,人们早就提出了“损伤”这一概念。
所谓损伤,是指在疲劳过程中初期材料内的细微结构变化和后期裂纹的形成和扩展[]。
累积损伤规律是疲劳研究中最重要的课题之一,它是估算变幅载荷作用下结构和零件疲劳寿命的基础。
大多数结构和零件所受循环载荷的幅值都是变化的,也就是说,大多数结构和零件都是在变幅载荷下工作的。
变幅载荷下的疲劳破坏,是不同频率和幅值的载荷所造成的损伤逐渐累积的结果。
因此,疲劳累积损伤是有限寿命设计的核心问题。
当材料承受高于疲劳极限的应力时,每一个循环都使材料产生一定的损伤,每一个循环所造成的平均损伤为1N 。
这种损伤是可以积累的,n 次恒幅载荷所造成的损伤等于其循环比C n N =。
变幅载荷的损伤D 等于其循环比之和,即1li i i D n N ==∑,其中: l -----变幅载荷的应力水平等级i n ----第i 级载荷的循环次数i N ----第i 级载荷下的疲劳寿命当损伤积累到了临界值f D 时,即1li i f i D n N D ===∑时,就发生疲劳破坏。
fD 为临界损伤和,简称损伤和。
不同研究者根据他们对损伤累积方式的不同假设,提出了不同的疲劳累积损伤理论(fatigue damage cumulative rules)。
到现在,已经提出的疲劳累积损伤理论不下数十种。
这些理论归纳起来大致可以分为以下四大类[18]:(1)线性疲劳累积损伤理论:这种理论假定材料各个应力水平下的疲劳损伤是独立进行的,总损伤可以线性叠加。
最具有代表性的是Miner 法则,以及稍加改变的修正Miner 法则和相对Miner 法则。
(2)双线性累积损伤理论:这种理论认为材料疲劳过程初期和后期分别按两种不同的线性规律累积。
最具有代表性的是Manson 的双线性累积损伤理论。
(3)非线性累积损伤理论:这种理论假定载荷历程与损伤之间存在着相互干涉作用,即各个载荷所造成的疲劳损伤与其以前的载荷历史有关。
最具代表的是损伤曲线法和Corten-Dolan 理论。
(4)其它累积损伤理论:这些理论大多是从实验、观测和分析归纳出来的经验或半经验公式。
如Levy 理论和Kozin 理论等。
3.2.2 线性累积损伤理论在很多实际结构,它们常承受随机载荷,其最大和最小应力值经常在变化,情况就更为复杂。
为了估算疲劳寿命,除了S N -曲线,还必须借助于疲劳累积损伤准则。
在工程中最常用的仍为线性累积损伤准则。
1.Miner 法则线性累积损伤理论认为每个应力循环下的疲劳损伤是独立的,总损伤等于每个循环下的损伤之和,当总损伤达到某一数值时,构件即发生破坏。
线性疲劳累积损伤理论中最具有代表性的是Palmgren-Miner 理论,简称Miner 法则,其数学表达式为:11li i i n D N ===∑当临界损伤和改为一个不是1的其它常数时,则称为修正Miner 法则,其表达式为: 1li i in D a N ===∑式中a 为常数。
很多研究者建议当a 值取0.7时,其寿命估算结果比Miner 公式计算更安全,从总体上看其寿命估算精度也有所提高。
2.相对Miner 理论根据对临界损伤和f D 的深入研究,发现影响疲劳寿命估算准确性的因素有很多,例如损伤的非线性、载荷顺序效应、材料的硬化和软化、裂纹闭合效应等等。
而Miner 定理是无法体现这些影响因素的。
因此,使用同类零件,在类似载荷谱下的实验值进行寿命估算,就可以大大提高其寿命估算精度,这种方法称为相对Miner 法则。
它把计算和实验结合起来,利用相似谱的实验结果来修正计算的偏差。
相对Miner 定理基本思想的数学表达式为[]:exp '()()()()p p cale p cale p N N N N =式中:()p N -----给定可靠度时计算谱的预测寿命;exp ()p N ----给定可靠度时相似谱的实测寿命;()cale p N ------给定可靠度时计算谱的经典方法计算寿命;'()cale p N ------给定可靠度时相似谱的经典方法计算寿命。
相对Miner 法则一方面保留了Miner 法则中第一个假设,即线性累积假设,另一方面又避开了累积损伤1a =的第二假设。
考虑了计算模型与实际损伤的差异等非统计不确定性,使疲劳估算结果的准确性得到了提高,能大幅度消除Miner 法则计算数值引起的误差,提高其计算精度。
3.3起重机疲劳计算常用方法随着科学技术的发展,起重机在设计理论上有了较大的发展。
当前,世界上很多国家都制订有起重机标准。
具有代表性的有日本、德国、美国、英国等国家的起重机标准以及F.E.M.、ISO 、IEC 等国际标准[19]。
根据各国起重机金属结构设计规范规定,当起重机金属结构的工作级别为A6,A7,A8时,必须对结构(或连接)进行疲劳强度计算[20]。
对钢结构进行疲劳计算,可以采用应力比法或者应力幅法,其中应用更广泛的是应力比法[21]。
不论是应力比法还是应力幅法,它们的应力循环参数是一致的,都是由最大应力max σ和最小应力min σ两个独立变量演绎出来的。
3.3.1 应力比法所谓应力比,即为极值应力之间的比值。
如果max σ和min σ是这些极值应力的代数值(拉应力取正号,压应力取负号),max σ为绝对值较高的极值应力,则比值K 可以写成: min max K σσ= (4-3) 以起重机具有代表性的实际预期正常工作状态下(一般为第Ⅰ类载荷组合条件),计算结构最大、最小应力。
把最小应力与最大应力的比值K 定为应力循环特性,并根据这一应力循环特性和相关的公式计算疲劳许用应力。
若最大应力未超出疲劳许用应力值,即:max []a σσ≤ (4-4)若上式成立,则认为不会发生疲劳破坏疲劳许用应力[]a σ要考虑应力比、结构连接形式、循环次数和材料等的影响。
目前,我国的《起重机设计规范》( GB3811-83)、《欧洲起重机设计规范》( F.E.M 标准1998年修订版)和德国DIN 15018/1-1984等规范用的都是应力比法。
3.3.2 应力幅法所谓应力幅,即为最大应力和最小应力代数差,即max min max (1)K σσσσ∆=-=- (4-5)英国BS 标准、日本JIS 标准和美国ASME NOG-1-2002规范用的都是应力幅法。
国外的起重机设计规范中,有两种应力幅方法用于起重机金属结构的疲劳设计。
(1)在起重机结构疲劳计算的工况下,计算结构的最大、最小应力的应力幅度(最大应力-最小应力)不应大于许用应力幅度值。
美国国家标准《桥式起重机结构规范》(ASME NOG-1-2002)规定用此法进行结构的疲劳设计。
(2)以Miner 法则为理论基础的计算结构疲劳寿命的应力幅法。
除了上述两种方法外,目前还有一些科研人员利用疲劳的损伤容限设计方法对起重机结构的疲劳裂纹和寿命之间的关系做了大量研究,并运用于实际。
但此法尚未普遍推广。
3.4 疲劳寿命设计方法现在广泛使用的疲劳寿命设计方法主要有以下几种:无限寿命设计,安全寿命设计,损伤容限设计,概率疲劳设计。