流变学基础(一)
高分子材料加工工艺聚合物流变学基础

A.含义:在定温下表观粘度随剪切持续时间延长而增大的液体称为摇凝性液体。 B.原因:主要原因是溶液中不对称的粒子(椭球形线团)在剪切应力场的速度作用下取向排列形成暂时 次价交联点所致,这种绨合使粘度不断增加,最后形成凝胶状,只要外力作用一停止,暂时交联点就消除,粘 度重新降低。
应变:材料在应力作用下产生的形变和尺寸的改变称为应变。(单位长度的形变量) 根据受力方式不同,通常有三种类型:剪切应变(γ)、拉伸应变(ε)和流体静压力的均匀压缩
剪切速率
表示单位时间内的剪切应变
拉伸速率 牛顿粘度
表示单位时间内的拉伸应变
为比例常数,称为牛顿粘度。是液体自身所固有的性质,其表征液体抵抗外力 引起流动变形的能力。液体不同,粘度值不同与分子结构和温度有关,单位(
高分子材料加工工艺聚合物流 变学基础
流变学 流动+形变
高分子材料加工流变学?
第一节 高分子熔体流变行为
• 1 非牛顿型流动 • (1)牛顿流体 • 服从牛顿流动定律的流体称为牛顿流体 • (2)非牛顿流体 • 凡不服从牛顿流动定律的流体称为非牛顿流体
应力:单位面积上所受的力称为应力。 根据受力方式不同,通常有三种主要类型:剪切应力(τ)、拉伸应力(б)和流体静压力(P)
• 高分子流动不是简单的整个分子的迁移,而是链段的相继蠕动来实现的。类似于蛇的蠕动。链段的尺寸大 小约含几十个主链原子。
• 流动不复合牛顿流体的运动规律。粘度随剪切速率或剪切应力的大小而改变。 • 这个优点利于我们通过改变螺杆转速、压力等工艺参数调节熔体的粘度、改善其流动性。
• 聚合物在流动过程中所发生的形变一部分是可逆的,因为聚合物的流动并不是高分子链之间简单的相对滑 移的结果,而是链段分段运动的总结果,这样在外力作用下,高分子链不可避免地要顺外力方向有所伸展 ,聚合物进行黏性流动时,必然伴随高弹形变。在外力消除后,高分子链又要卷曲起来。
Rheology(流变学基础)

二.非牛顿流动
实际上大多数液体不符合牛顿粘度定律, 实际上大多数液体不符合牛顿粘度定律,如高分子溶 胶体溶液、乳剂、混悬剂、软膏以及固液、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀 体系的流动。把这种不遵循牛顿粘度定律的物质称为非牛 不遵循牛顿粘度定律的物质称为 体系的流动。把这种不遵循牛顿粘度定律的物质称为非牛 顿流体,这种物质的流动现象称为非牛顿流动 非牛顿流动。 顿流体,这种物质的流动现象称为非牛顿流动。 非牛顿流体的剪切速度D和剪切应力S的变化规律,经 非牛顿流体的剪切速度D和剪切应力S的变化规律, 作图后可得四种曲线的类型:塑性流动、假塑性流动、 作图后可得四种曲线的类型:塑性流动、假塑性流动、胀 形流动、触变流动。 形流动、触变流动。 对于非牛顿流体可以用旋转粘度计进行测定。 对于非牛顿流体可以用旋转粘度计进行测定。
对于这种粘弹性, 对于这种粘弹性,我们用弹性模型化的弹簧和把 粘性通过模型的缓冲器的复合型模型加以表示: 粘性通过模型的缓冲器的复合型模型加以表示: 麦克斯韦尔(Maxwell) (一)麦克斯韦尔(Maxwell)模型 福格特(Voigt) (二)福格特(Voigt)模型 (三)双重粘弹性模型 (四)多重粘弹性模型
胀性液体的流动公式: 胀性液体的流动公式: /η D= Sn /ηa n<1,为胀性流体; n<1,为胀性流体; 当n接近1时,流动接近牛顿流动。 接近1 流动接近牛顿流动。
(d)胀性流动
胀性流体的结构变化示意图
• 胀性流动的特点:没屈伏值;过原点;切应速度很小时, 胀性流动的特点:没屈伏值;过原点;切应速度很小时, 液体流动速度较大,当切应速度逐渐增加时, 液体流动速度较大,当切应速度逐渐增加时,液体流动速度 逐渐减小,液体对流动的阻力增加,表观粘度增加, 逐渐减小,液体对流动的阻力增加,表观粘度增加,流动曲 线向上弯曲。 线向上弯曲。 • 在制剂中表现为胀性流动的剂型为含有大量固体微粒的高 浓度混悬剂如50%淀粉混悬剂、糊剂等。 50%淀粉混悬剂 浓度混悬剂如50%淀粉混悬剂、糊剂等。
流变学基础 第一部分 流变学基础

材料是均匀的,各向同性的,而材料被施加
的应力及发生的应变也是均匀和各向同性的。
简单实验:
各向同性的压缩与膨胀,拉伸和单向压缩,
简单剪切和简单剪切流动
1 应变(Strain)
1.1 各向同性的压缩和膨胀 1.2 拉伸和单向压缩 1.3 简单剪切和简单剪切流动
1.1 各向同性的压缩和膨胀
第一部分 流变学基础
第一章 流变学的基本概念
第一节高分子液体的奇异流变现象 第二节 基本概念 1 应变 2 应力 3 粘度与牛顿定律
第一章 流变学的基本概念
第一节 高分子液体的奇异流变现象
引入:高分子液体(熔体和溶液)在外力或 外力矩作用下,表现出既非胡克弹性体, 又非牛顿粘流体的奇异流变性质。它们 既能流动,又有形变,既表现出反常的 粘性行为,又表现出有趣的弹性行为。
图8 与流变时间相关的非牛顿流体的流变图
第二节 基本概念
引入:
变形 流动 应力~应变 应力~应变速率
定义应力、应 变、应变速率
注意:
实际材料发生的变形和受力情况是复杂的,要找 出其应力~应变之间的关系十分困难。因此,在流变学 中采用一些理想化的实验——简单实验。
简单实验
(Simple experiment)
高分子液体的奇异流变现象
其力学响应十分复杂,而且这些响应还 与体系内外诸多因素相关,主要的因素 包括高分子材料的结构、形态、组分; 环境温度、压力及外部作用力的性质(剪 切力或拉伸力)、大小及作用速率等。下 面简单介绍几种著名的高分子特征流变 现象。
高粘度与“剪切变稀”行为
1、现象:例:牛顿液体(N):水、甘 油;高分子溶液(P):聚丙烯酰胺的水 溶液分别从深浅不同的两对管中流出的 现象。
2011本科流变学基础修改稿(第一章)

流变学的分支和方法论地位
生物流变学和 血液流变学 红细胞直径7-8微米,毛细血管直径4微米左右
光、电、磁流变学 Smart Fluids 日用化工流变学
化妆品、乳液、 牙膏、涂料、油墨流变学等 表面活性剂流变学 界面流变学 Interfacial Rheology
心理与精神流变学
七情——喜怒忧思悲恐惊 五脏——心、肝、脾、肺、肾
剪切诱导粘度的特殊变化
Effect of the shear rate on the viscosity of a 1-wt.% solution of 12-2-12 in D2 O.
双瓢尔菜基-2-羟乙基-丁基-双季铵盐
双瓢尔菜基-2-羟乙基-丁基-双季铵盐 粘弹性胶束体系特殊的粘温关系
CTAB与水杨酸钠胶束体系粘温关系
Constitutive equation for vescoelastic – thixotropic fluid
(t)
G
t dt
0
C1Bn
exp( C1
t ndt)
0
G elastic index viscous index C1 kinetic rate constant of aggregates breaking into
涨塑性流体(dilatant fluid) 粘度随剪切速率增大而增大,剪切增稠流体。
含屈服应力的流体(fluid with yield stress) 当外力大于某临界应力值时,材料才始流动,该 临界应力称为屈服应力。 牙膏等膏霜类产品常具有屈服应力。
非牛顿流体及种类
非牛顿流体的分类
剪切变稀和剪切增稠
Constitutive equation for “8”-form hysteresis loops
药剂学流变学基础课件

(二)剪切应力和剪切速度 剪切应力与剪切速度是表征体系流变性 质的两个基本参数。 流体的层流速度不同,形成速度梯度, 或称剪切速度。速度梯度的产生是由于 流动阻力的存在,流动较慢的液层阻滞 流动较快液层的运动。 使各液层间产生相对运动的外力叫剪切 力,在单位液层面积(A)上所需施加的 这种力称为剪切应力,简称剪切力。
胀性流体的结构变化示意图
(四)触变流动(thixotropic flow)
随着剪切应力增大,粘度下降,剪切应力消除后 粘度在等温条件下缓慢地恢复到原来状态的现象 称为触变性。 产生触变的原因:对流体施加剪切力后,破坏了 液体内部的网状结构,当剪切力减小时,液体又 重新恢复原有结构,恢复过程所需时间较长,因 而触变流动曲线中上行线和下行线就不重合。 触变流动的特点:等温的溶胶和凝胶的可逆转换。 塑性流体、假塑性流体、胀性流体中多数具有触 变性。
混悬剂在振摇、倒出及铺展时能自由流 动是形成理想的混悬剂的最佳条件。
(二)流变学在乳剂中的应用
乳剂在制备和使用过程中经常会受到各 种剪切力的影响,大部分乳剂表现为非牛 顿流动。 在使用和制备条件下乳剂的特性是否适 宜,主要由制剂的流动性决定。体现在乳 剂铺展性、通过性、适应性等方面。 掌握制剂处方对乳剂流动性的影响非常 重要。
塑性流体的结构变化示意图
(二)假塑性流动(pseudoplastic flow)
假塑性流动:没屈服值;过原点;剪切 速度增大,形成向下弯的上升曲线,粘 度下降,液体变稀。 假塑性液体的流动公式:D=Sn/a 或 log D=log 1/a +nlog S D为剪切速度;S为 剪切应力;a 为表观粘度(随切变速度的 不同而不同);n>1, a 随S增加而增加。 在制剂中表现为假塑性流动的剂型有某 些亲水性高分子溶液及微粒分散体系处 于絮凝状态的液体。
聚合物流变学的基础方程及本构方程(一)

Vz
Vz x
dx
dVs
dz
xyVy
x dx
xy
xy
x
dx Vy
Vy x
dx
dx xxVx
x dx
xx
xx
x
dx
Y
Vx
Vx x
dx
dy
第四节:流变学的基础方程
(4)重力做功
g •V
E • EV • q • V • g •V t
第四节:流变学的基础方程
三、能量方程 1、推导思路
CV
T t
•
q
T
P T
•V
: V
CV
T t
K T
T
P T
•V
: V
第四节:流变学的基础方程
三、能量方程
2、物理意义
CV
dT dt
单位时间单位体积流体因温度变化而引起的热量变化
• q或kT 因温差与周围流体产生热传导引起的热量变化
: V 流体层之间相对运动,应力做功,转化呈热量引起的热
能量守恒定律:
E—单位质量流体的能量
E
dxdydz t dz
(1)流体流动净带入的能量
dx Y (2)热传导净带入的能量(温差)
(3)应力做功 (4)重力做功
第四节:流变学的基础方程
三、能量方程 1、推导思路
(1)流体流动净带入的能量 (2)热传导净带入的能量(温差) (3)应力做功 (4)重力做功
四、流变状态方程 1、牛顿流体的本构方程 (1)普适(广义)牛顿流体的本构方程
ij
ij
k
2
3
•V
ij
第四节:流变学的基础方程
第七章 流变学基础

塑性流体、假塑性流体、胀性流体、假黏性流体中多数具
有触变性。
流变学在药剂学中的应用
流变学在药学研究中的重要意义在于可以应用流变学理 论对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成 以及制备、质量控制等进行评价。
下的粘度。
根据公式得知牛顿液体的切变速度D与切变应力S 之间如下图所示,呈直线关系且直线经过原点。
(a)牛顿流动
二.非牛顿流动
实际上大多数液体不符合牛顿粘度定律,如高分子溶液 、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀体 系的流动。把这种不遵循牛顿粘度定律的物质称为非牛顿 流体,这种物质的流动现象称为非牛顿流动。
非牛顿流体的剪切速度D和剪切应力S的变化规律,经 作图后可得四种曲线的类型:塑性流动、假塑性流动、胀 形流动、触变流动。
对于非牛顿流体可以用旋转粘度计进行测定。
(一)塑性流体 塑性流动的流动曲线:曲线不经过原点,在横轴 S 轴上 的某处有交点,得屈服值(yield value)或降伏值。 当切变应力增加至屈伏值时,液体开始流动,切变速度 D和切变应力S呈直线关系。液体的这种性质称为塑性流动 。引起液体流动的最低剪切应力为屈服值S0:
(二)假塑性液体
当作用在物体上的剪切应力大于某一值(S0) 时物体开始流动,表观黏度随着剪切应力 的增大而减小,这种流体称~ 特点:具有屈服值(S0) ,剪切应力超过S0 值时才开始流动。 剪切稀化 如MC、CMC等大多数高高分子溶液
(三)胀性流体
胀性流动曲线曲线经过原点,且随着切变应力的增大其粘 性也随之增大,表现为向上突起的曲线称为胀性流动曲线( dilatant flow curve)。 胀性流体的流动公式: D= Sn /a n<1,为胀性流体; 当n接近1时,流动接近牛顿流动。
药剂学 第十四章 流变学基础

(二)剪切应力与剪切速度
力
粘度(viscosity):它表示物质 在流动时内摩擦力的大小
为使液层能维持一定的速度流动,必须施加一个 与阻力相等的反方向力,在单位液层面积上所施
加的这种力称为剪切应力S(shearing force):
简称切力.单位为N.m-2 Shear stress is the stress component parallel to a given surface, such as a fault plane, that results from forces applied parallel to the surface or from remote forces transmitted through the surrounding rock.
运动粘度:即液体的动力粘度与同温度下该流体密度ρ之 比。用小写字母v表示。
旋转粘度计的类型很多,包括 同轴双筒旋转粘度计、单筒旋 转粘度计、锥板粘度计、转子 型旋转粘度计,可以根据实际 需要来选择不同类型的粘度计。
圆锥平板粘度计
針入度
在指定温度和外力下滑
脂被插入的深度叫“针 入 度”。
“针入度”越大则表明
力轴相交一点fB
使塑性体开始流动所需加的临界切应力即为屈服值 (yield value)
(二) 假塑性流体(pseudo plastic flow)
体系没有屈服值,流变曲线经过原点, 黏度随切 速增加而减少.显示这种流动性质的流体即为假 塑性流体. 从流动曲线某一特定点切线斜率的倒数求得的
黏度称为表观黏度(happ).表观黏度一定要标明
(二)流变学在乳剂中的应用
▪ 乳剂在制备和使用过程中经常会受到各种剪 切力的影响,大部分乳剂表现为非牛顿流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流变测量学基础(一)一、流变学的基本概念1. 流变学研究内容流变学—Rheology ,来源于希腊的Rheos=Sream (流动)词语,是Bingham 和Crawford 为了表示液体的流动和固体的变形现象而提出来的概念。
流变学主要是研究物质的流动和变形的一门科学。
流动是液体和气体的主要性质之一,流动的难易程度与流体本身的粘性(viscosity )有关,因此流动也可视为一种非可逆性变形过程。
变形是固体的主要性质之一,对某一物体外加压力时,其内部各部分的形状和体积发生变化,即所谓的变形。
对固体施加外力,固体内部存在一种与外力相对抗的内力使固体保持原状。
此时在单位面积上存在的内力称为内应力(stress )。
对于外部应力而产生的固体的变形,当去除其应力时恢复原状的性质称为弹性(elasticity )。
把这种可逆性变形称为弹性变形(elastic deformation ),而非可逆性变形称为塑形变形(plastic deformation )。
实际上,多数物质对外力表现为弹性和粘性双重特性,我们称之为粘弹性,具有这种特性的物质我们称之为粘弹性物质。
2. 剪切应力与剪切速度观察河道中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸的水流越慢。
因此在流速不太快时可以将流动着的液体视为由若干互相平行移动的液层所组成的,这种流动方式叫层流,如图1。
由于各层的速度不同,便形成速度梯度dv/dh ,或称剪切速率。
流动较慢的液层阻滞着流动较快液层的运动,使各液层间产生相对运动的外力叫剪切力,在单位液层面积(A )上所需施加的这种力称为剪切应力,简称剪切力(Shear Stress ),单位为N ·m -2,即Pa ,以τ表示。
剪切速度(Shear Rate ),单位为s -1,以γ∙表示。
剪切速率与剪切应力是表征体系流变性质的两个基本参数。
图1 流动时形成的速度梯度3. 粘度粘度是反应物质流动时内摩擦的大小的物理量;根据测量方法的不同,粘度通常有多种表示方法,比如我们最常用的动力学粘度和运动粘度,以及一些特定的粘度测定方法,如流杯、稠度计、恩氏粘度等等。
二.流体的分类根据流动和变形形式不同,将物质分类为牛顿流体和非牛顿流体。
牛顿流体遵循牛顿流动法则,非牛顿流体不遵循该法则。
1. 牛顿流体实验证明,纯液体和多数低分子溶液在层流条件下的剪切应力τ与剪切速率γ∙成正比,式1为牛顿粘度定律(Newtonian equation ),遵循该法则的液体为牛顿流体(Newtonian fluid )。
/F A τη=⋅ 或 τηγ∙=⨯ (1)式中,F :A 面积上施加的力;η:粘度(viscosity )或粘度系数(viscosity coefficient ),是表示流体粘性的物理常数。
SI 单位中粘度用Pas 表示;常用单位还有mPas 、P (泊)、cP (厘泊),其中1P=0.1Pas ,1cP=1mPas 。
根据公式可知牛顿液体的剪切速率γ∙与剪切应力τ之间关系,如图2所示,呈直线关系,且直线经过原点。
这时直线的斜率表示粘度,粘度与剪切速度无关,而且是可逆过程,只要温度一定,粘度就一定。
图2 牛顿流体的流动曲线和粘度曲线表1 20℃条件下几种牛顿流体的绝对粘度液 体 粘 度/mPas蓖麻油 1000氯 仿 0.563乙 醇 1.19甘 油 400橄榄油 100水 1.00192. 非牛顿流动实际上大多数液体不符合牛顿定律,如高分子溶液、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀体系的流动均不遵循牛顿定律,因此称之为非牛顿流体(non-Newtonian fluid ),此种物质的流动现象称为非牛顿流动(non-Newtonian flow )。
对于非牛顿流体可以用旋转粘度计测定其粘度,对其剪切应力τ随剪切速率γ∙ 的变化作图可得,如图3和图4中所示的流动曲线(flow curve )或粘度曲线(viscosity curve)。
根据非牛顿流体流动曲线的类型把非牛顿流动分为塑性流动、假塑性流动和胀性流动三种。
2.1 塑性流动塑性流动(plastic flow )的流动曲线如图14-7(b )所示,曲线不经过原点,在剪切应力τ轴上的某处有交点,将曲线外延至γ∙ =0,在τ轴上某一点可以屈服值(yield value )。
当剪切应力达不到屈服值以上时,液体在剪切应力作用下不发生流动,而表现为弹性变形。
当剪切应力增加至屈服值时,液体开始流动,剪切速率γ∙和剪切应力τ呈直线关系。
液体的这种变形称为塑性流动。
引起液体流动的最低剪切应力为屈服值τ0,图3 具有屈服应力流体的流动曲线2.2 假塑性流动(假塑性流体)假塑性流动(pseudoplastic flow )的流动曲线和粘度曲线如图4中的2号样品所示。
随着剪切速率γ∙值的增大而粘度下降的流动称为假塑性流动,具有这种性质的流体称为假塑性流体或剪切稀化(shear thinning )型流体。
绝大多数粘弹性流体都属于假塑性流体,如聚合物溶液、聚合物熔体、油漆、涂料等等,当原油在凝点以下,以及稠油都会表现出一定的假塑性。
2.3 胀性流动(胀塑性流体)胀性流动曲线如图4中的3号样品所示,曲线经过原点,且随着剪切应力的增大其粘性也随之增大,虽然这种流体不如假塑性流体常见,然而胀塑性流体常可由存在有不会聚集固体的流体中看到,如泥浆、糖果合成物、玉米淀粉类与水的混合物以及沙/水混合物。
此类流体的行为也可称为剪切增稠(shear thickening )。
三.什么因素影响流变性质?粘度的数据通常具有“透视(window through )”的功能,材料的其余性质可以经由粘度获得。
由于粘度比其它性质更容易测量,因此粘度可以作为判别材料特性的工具。
在这章的前半段,我们讨论了不同型式的流变行为及判断它们的方法,经由材料流变性质的判定,你可能会想了解这项信息暗示了材料的哪些特性。
在这一节中,我们搜集了多年来顾客使用粘度计所遇到”难题”的经验,并让你知道你的粘度计是如何神奇地帮助你解决这些问题。
3.1温度最有可能影响材料流变行为的其中一种因素为温度。
一些材料对于温度非常敏感,且对于粘度变化会出现相对较小的变异;另外一些材料则对于温度具有较小的敏感性。
温度效应对于粘度的影响在材料材料使用及制程上的判别上是基本的,此类材料如机油、油脂和热融性粘着剂。
图4 牛顿流体、假塑性流体、胀塑性流体的流动曲线和粘度曲线3.2剪速非牛顿流体倾向为一个规则,而不是真实世界之外的例子,且其提供了研究流变学应用的人们对于剪率效应的认识。
例如若将膨胀性流体输入系统中,虽然其只是单单将固体打入泵中,但却会对系统带来异常的终止。
虽然这是一个极端的例子,然而剪速对于系统影响的重要性确实是不能被低估的。
当材料必须在不同的剪速下使用时,先了解操作剪速下的粘度行为是基本的,如果你不了解这些行为,至少需先做估计,粘度测量应该要在预估的剪速值与真实数值相近下操作才有意义。
测量粘度时,若剪速的范围在粘度计以外时,此时是不可能大略测出剪速值的,在此情况下,我们就必须在不同剪速下测量粘度值,再以外插得到欲操作剪速下的粘度值。
这虽然不为最精准的方法,但确为获得粘度信息的唯一替代方法,特别是当欲操作剪速特别高时。
事实上,在多个不同剪速下作粘度的测量以观察程序或使用上的流变行为才是适当的。
如果不知道样品剪速值或剪速不重要时,以速度和转速作图即已足够。
材料在制程或使用上会受到剪速影响的例子有:油漆、化妆品、乳液、涂布、一些食品和人类循环系统中的血液,下表为流体不同剪速下的典型例子:3.3时间在剪切的环境下,时间明显地影响材料的摇变性质和流变性质,但是就算样品不受剪力影响,其粘度仍会随着时间而改变,因此在选择与准备样品作粘度测量时,时间的效应是必须做考量的,此外,当样品在程序中有产生化学反应时,材料的粘度也会有所变化,因此在反应某一段时间所做的粘度测量与另依时间所做的结果会有所不同。
3.4压力压力影响并不如其它因素般常见,但压力的变化可能会造成:分解气体产生气泡、扩散或气体的进入造成体积的改变和紊流现象、压缩流体,增加分子内的阻力,亦即增加压力会增加粘度。
在高压下,液体会受到压力压缩所影响,此现象与气体相同,虽然程度上较小,如下述例子:高浓度的泥浆(粒子体积约占70-80%以上),其中不含有足够的液体,使液体不能完全进入粒子间的空隙中,导致了三相系的形成(即固体、液体和气体)。
由于气体的存在,混合物可压缩,亦即压力越大,流动的阻力愈大。
3.5前处理在样品测量粘度前,前处理可能会影响粘度测量的结果,特别是流体会受到热或时间的影响,亦即样品保存状况和样品准备技术必须设计将影响粘度效应的因素减至最低,特别是摇变性材料会受到准备工作的影响,如搅拌、混合、倾倒、或是其它可能使样品产生剪切的动作。
3.6组成和添加物材料的组成是影响粘度的一个重要参数,当组成改变后,不管是组成物质的比率或其它物质的添加,粘度的改变都是可能的。
四.几种具有屈服点流体的流动模型4.1 Bingham 模型:B B ττηγ=+⋅其中,τ为剪切应力,B τ为Bingham 屈服应力,B η为Bingham 流动系数,γ为剪切速率;这种流体称为塑性流体,其特点是当剪切应力小于B τ时,样品只发生弹性形变,当剪切应力大于B τ时,其弹性结构被破坏,之后的流动遵循Newton 粘度定律。
4.2 Herschel-Bulkley 模型:p HB c ττγ=+⋅其中,HB τ是符合HB 模型的屈服应力,c 为流动系数(或称为HB 粘度HB η),p 为HB指数;。