传热膜系数的测定[1]

合集下载

化工原理传热膜系数测定实验报告

化工原理传热膜系数测定实验报告

化工原理传热膜系数测定实验报告SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 32 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。

其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。

最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。

关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。

三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。

当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。

管内强制对流传热膜系数的测定实验报告

管内强制对流传热膜系数的测定实验报告

管内强制对流传热膜系数的测定实验报告一、实验目的本实验旨在通过实验测定管内强制对流传热膜系数,并掌握传热膜系数的测定方法和技术。

二、实验原理管内强制对流传热是指在管内流体中,由于流体的运动而产生的传热现象。

传热过程中,液体或气体与固体表面接触时,会因为温度差而发生传热。

在强制对流条件下,由于流体的动力作用,会增加固体表面附近的液体或气体的速度,从而增加了固体表面附近的换热系数。

本实验采用垂直放置的管道,在管道内通过水来进行强制对流传热。

通过测量水进出口温度差、水流量以及管道内壁温度差等参数,计算出管内强制对流传热膜系数。

三、实验器材1. 垂直放置的导热试件2. 水泵和水箱3. 流量计和温度计等测试仪器四、实验步骤1. 将导热试件放入垂直放置的试件支架中,并连接好进出水管道。

2. 打开水泵,调整水流量,使其稳定在一定范围内。

3. 测量进口和出口水温,并计算出温度差。

4. 测量导热试件内壁的温度差。

5. 根据测量得到的参数,计算出管内强制对流传热膜系数。

五、实验结果分析通过实验测量和计算,得到了不同条件下的管内强制对流传热膜系数。

根据实验结果可以发现,在相同的流速下,传热系数随着壁温度差的增大而增大。

这是因为在强制对流条件下,液体或气体与固体表面接触时,会因为温度差而发生传热。

当壁温度差增大时,液体或气体与固体表面接触的面积增大,从而增加了换热系数。

六、实验误差分析本实验中可能存在的误差主要来自于以下几个方面:1. 测量仪器误差:如温度计、流量计等仪器精度限制;2. 实验环境误差:如室内温度变化、水泵压力变化等;3. 实验操作误差:如读数不准确、流量控制不稳定等。

七、实验结论本实验通过测量水进出口温度差、水流量以及管道内壁温度差等参数,计算出管内强制对流传热膜系数。

实验结果表明,在相同的流速下,传热系数随着壁温度差的增大而增大。

本实验为管内强制对流传热膜系数的测定提供了一种简单有效的方法和技术。

传热膜系数测定

传热膜系数测定

传热膜系数测定实验一、报告摘要在工业生产中,要实现热量的交换,须采用一定的设备,此种交换的设备称为换热器。

化工生产中所指的换热器,常指间壁式换热器,它利用金属壁将冷、热两种流体间隔开,热流体将热传到壁面的另一侧(对流传热),通过坚壁内的热传递再由间壁的另一侧将热传递给冷流体。

从而使热流体物流被冷却,冷流体被加热,满足化工生产中对冷物流或热物流温度的控制要求。

对流传热的核心问题是求算传热膜系数 ,本实验中,可用图解法和最小二乘法计算准数关联式中的指数m 、n 和系数A 。

二、目的及任务1. 掌握传热膜系数的测定方法;2. 测定强化与非强化传热过程中,传热膜系数准数关联式的系数A 和指数m 、n ;3. 测定套管换热器的静压损失与雷诺准数的关系;4. 通过实验提高对传热膜系数准数关联式的理解,并分析影响传热膜系数的因素,了解工程上强化传热的措施。

三、基本原理对流传热的核心问题是求算传热膜系数 ,当流体无相变时对流传热准数关联式的一般形式为:p n m Gr A Nu ⋅⋅⋅=Pr Re对于强制湍流而言,Gr 准数可以忽略,故 n m A Nu Pr Re ⋅⋅= 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m 、n 和系数A 。

用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。

本实验可简化上式,即取n =0.4(流体被加热)。

这样,上式即变为单变量方程,在两边取对数,即得到直线方程:Re lg lg Prlg 4.0m A Nu +=在双对数坐标中作图,找出直线斜率,即为方程的指数m 。

在直线上任取一点的函数值代入方程中,则可得到系数A ,即:m Nu A RePr 4.0⋅= 用图解法,根据实验点确定直线位置有一定的人为性。

而用最小二乘法回归,可以得到最佳关联结果。

应用微机,对多变量方程进行一次回归,就能同时得到A 、m 、n 。

对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。

化工原理-传热膜系数测定实验报告

化工原理-传热膜系数测定实验报告

化工原理-传热膜系数测定实验报告
实验名称:传热膜系数测定实验
实验目的:通过实验测量不同流速下铜管内传热膜系数,掌握传热膜系数实验测量方法,并熟悉其影响因素。

实验原理:传热膜系数是表征流体间传热的一项重要指标。

通过传热膜系数来描述传
热强度与传热面的关系。

传热膜系数的计算公式为:
α=q/(S·ΔT) (1)
其中,q为传热量,S为传热面积,ΔT为传热温差。

传热膜系数α与流速、流体性质、传热管材料、管径等因素有关。

实验器材:传热器、温度计、流量计、水泵、水池、电源、压力表等。

实验步骤:
1、打开电源,调节水泵和流量计,控制水流量,调节出口温度在稳定范围内。

2、预热传热器,调整流量计使水流量稳定。

3、调节传热器进水温度和出水温度,稳定后记下温度。

4、根据公式(1)求出传热膜系数α。

5、改变流速,重复以上步骤,记录数据。

实验结果与分析:
|流速(m/s) | 温差(℃) | 传热膜系数 |
|--------|------------|------------|
| 0.4 | 20.4 | 346.21 |
| 0.6 | 19.7 | 420.31 |
| 0.8 | 20.2 | 524.28 |
| 1.0 | 21.1 | 602.60 |
根据实验结果可以看出,传热膜系数α随着流速的增加而增加。

这是由于流速越快,对流传热强度越大,传热膜系数也就越大。

同时,由于传热膜系数与温差成正比,所以温
差越大,传热膜系数也越大。

因此,我们可以通过控制流速和温差来实现对传热膜系数的控制。

实验3化工原理实验传热膜系数的测定

实验3化工原理实验传热膜系数的测定

实验3化工原理实验传热膜系数的测定引言:传热膜系数是衡量传热效果的一个重要参数。

在化工工程中,准确测定传热膜系数对于设计和优化传热设备具有重要意义。

本实验旨在通过实验方法测定传热膜系数。

材料与方法:材料:水、试验设备、温度计仪器设备:传热装置、恒温器、温度计、流量计实验步骤:1.接通电源,打开恒温器,使其内部温度稳定在所需温度。

2.打开冷水和热水进水阀门,调节流量计开度至所需流量。

3.记录冷水、热水的入口和出口温度,并计算平均温度。

4.根据冷水和热水的平均温度与进出口温差,计算传热膜系数。

结果与讨论:实验中,我们进行了多组实验数据的测定,并计算了传热膜系数。

以下是两组实验结果的示例数据:实验1:冷水入口温度:20℃冷水出口温度:25℃热水入口温度:70℃热水出口温度:40℃冷水平均温度:22.5℃热水平均温度:55℃冷水和热水的进出口温差:2.5℃传热膜系数:10W/(m²·℃)实验2:冷水入口温度:15℃冷水出口温度:28℃热水入口温度:75℃热水出口温度:30℃冷水平均温度:21.5℃热水平均温度:52.5℃冷水和热水的进出口温差:3℃传热膜系数:15W/(m²·℃)通过多组实验数据的测定,我们可以发现传热膜系数与温差成正比例关系。

我们可以根据实验结果得到传热膜系数与温差的经验公式:q=KΔT,其中q为传热膜系数,ΔT为温差,K为比例常数。

结论:通过化工原理实验传热膜系数的测定,我们可以得到传热膜系数与温差的关系,并可以根据实验数据计算传热膜系数。

得到的实验结果可以在化工工程的传热设备设计和优化中起到重要的指导作用。

气体传热膜系数测定实验报告

气体传热膜系数测定实验报告

气体传热膜系数测定实验报告今天咱们聊聊气体传热膜系数的测定实验,真的是个让人又爱又恨的话题。

说实话,气体传热膜系数听起来挺高大上的,实际上也就是研究气体是如何传递热量的。

这就像你在冬天打开暖气,房间慢慢变暖,哎,你感受到了温暖,但其实热量是通过空气传递的嘛。

哇,科学的魅力真是无处不在呀!我们这次实验可不是光在书本上抠数据,真的是亲自上阵。

我们得准备一套设备,这可不是随便找几样东西凑合的。

这套设备有些复杂,像是一个小实验室,里面有管子、热源、传感器,简直像个科学家的小玩具。

开工之前,大家的心情都特别激动,毕竟动手实验总是比坐在教室里听讲要有趣得多嘛。

然后,咱们就开始了测量。

把气体放进设备里,慢慢加热。

随着温度的升高,大家的脸上都露出了期待的神情。

咱们就像是孩子,盯着蜡烛旁的火焰,心里琢磨着会发生什么奇妙的事。

这时候,传感器开始工作,数据在不停地跳动,真是一场视觉的盛宴。

每当看到数字变化,心里都忍不住欢呼,哦,太棒了!这就是科学的魅力呀!在这个过程中,咱们也碰到了一些小问题。

设备有时候不太稳定,数据波动得像过山车。

唉,有时候真是让人哭笑不得,不过这也是实验的一部分嘛。

没事,调整调整,继续测。

毕竟,科学家可不是一帆风顺的,失败才是成功之母,这话真是有道理。

随着实验的深入,气体的传热膜系数也渐渐明朗。

通过计算,我们可以看到气体在不同温度下的热传导能力。

这时候,大家就像是破了案的侦探,眼前的谜团终于解开,心里那个高兴劲儿,别提有多爽。

气体的传热膜系数就像是它的性格,温暖的、冷淡的,各有各的特点。

做完实验,大家围坐在一起,开始讨论结果。

你一言我一语,热闹得像个市场。

每个人都有自己的见解,真的是个智力的碰撞。

有的小伙伴特别兴奋,开始想象这些数据在现实生活中的应用。

嘿,说不定哪天咱们的研究能帮助到建筑设计,让房子更节能环保呢!想想都觉得美滋滋。

实验结束后,大家的疲惫感一扫而空,心里充满了成就感。

虽然流了不少汗,但那种亲手做实验、得出结果的感觉,简直是无与伦比。

化工原理实验报告(传热)

化工原理实验报告(传热)

北京化工大学化工原理实验报告传热膜系数测定实验院(部):化学工程学院专业:化学工程与工艺班级:化工1005*名:*** 2010011136同组人员:王彬刘玥波方郡实验名称:传热膜系数测定实验实验日期: 2012.11.28传热膜系数测定实验一、摘要本实验以套管换热器为研究对象,以冷空气及热蒸汽为介质,冷空气走黄铜管内,即管程,热蒸汽走环隙,即壳程,研究热蒸汽与冷空气之间的传热过程。

通过测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu ,做出lg (Nu/Pr0.4)~lgRe 的图像,分析出传热膜系数准数关联式Nu=ARemPr0.4中的A 和m 值。

关键词:对流传热 Nu Pr Re α A 二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。

三、实验原理黄铜管内走冷空气,管外走100℃的热蒸汽,壁内侧热阻1/α远远大于壁阻、垢阻及外侧热阻,因此研究传热的关键问题是测算α,当流体无相变时对流传热准数关系式的一般形式为:p n m Gr A Nu Pr Re ⋅⋅=对于强制湍流有: n m A Nu Pr Re =用图解法对多变量方程进行关联,要对不同变量Re 和Pr 分别回归。

本实验可简化上式,即取n=0.4(流体被加热)。

在两边取对数,得到直线方程为Re lg lg Pr lg4.0m A Nu+= 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。

在直线上任取一点函数值代入方程中,则可得到系数A ,即mNuA RePr4.0=其中 λαλμμρdNu Cp du ===,Pr ,Re 实验中改变空气的流量,以改变Re 值。

根据定性温度计算对应的Pr 值。

同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。

传热膜系数的测定

传热膜系数的测定

传热膜系数的测定一、实验目的及任务1、了解套管换热器的结构和壁温的测量方法2、了解影响传热膜系数的因素和强化传热的途径3、体会计算机采集与控制软件对提高实验效率的作用4、学会传热膜系数的实验测定和数据处理方法二、实验内容1、测定正常条件下空气与铜管内壁间的对流传热膜系数α12、测定强化条件下空气与铜管内壁间的对流传热膜系数α1’3、回归两个条件下联式4.0Pr Re ⋅⋅=a A Nu 中的参数A 、a三、基本原理间壁换热器目前在工业上应用最多,其传热过程都是由壁内部热传导和壁两侧面与流体 的对流传热组合而成。

无论设计还是使用换热器,都离不开这个组合传热过程中的传热系数K ,其倒数1/K 称为总热阻。

总热阻主要由壁外侧热阻、壁热阻、壁内侧热阻三个串联环节叠加而成(可能还有污垢热阻),当三者较大差异时,总热阻将由其中最大的热阻所决定。

本实验选用最简单的套管式换热器为研究对象,管内走冷流体空气,管外走热流体水蒸气。

该换热过程内侧热阻1/α远远大于壁及外侧热阻,因此对流传热的核心问题是求算传热膜系数α。

1、 实验测定方法根据牛顿冷却定律变换得到:当流体无相变时对流传热准数关联式的一般形式为: 牛顿冷却定律: m t A Q ∆=α (1) 式中:α——对流传热膜系数,W •m -2•℃; Q ——传热量,W ;A ——内壁传热面积,m 2;Δt m ——内壁与管内空气温度的对数平均温差,℃。

传热量可由下式求得:3600/)(3600/)(1212t t C V t t WC Q p s p -=-=ρ (2)式中:W ——质量流量,kg •h ;p C ——流体定压比热,J •kg -1·℃-1;21,t t ——流体进、出口温度,℃; ρ——定性温度下流体密度,kg •m -3; V s ——流体体积流量,m 3•s -1以上两式联立,加之部分测得数据,即可求得α。

空气体积流量由孔板流量计测得,其流量V 与孔板流量计压降ΔP 的关系为:54.02.26P V s ∆= (4-4-7)式中:ΔP ——孔板流量计压降,kPa ; V s ——空气流量,m 3•h 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传热膜系数的测定
一、实验目的:
1. 掌握空气对壁传热膜系数的测定方法;
2. 学会传热膜系数测定实验数据的处理方法;
3. 了解影响对流传热系数的因数和强化传热的途径。

二、实验原理:
在生产和科研中经常采用间壁式换热器来进行物料的冷却和加热。

对于一定结构的换热器,如何强化传热过程,除了设法增大传热推动力之外,就只有提高总传热系数。

总传热系数的估算公式可写为: o
i
1so b si 1
R R 1
K αλ
α+
+++=
(1)
由上式可见,要提高K 值,就必须减少各项热阻。

但因各项热阻所占的比重往往不同,因此应设法减少对K 值影响较大的热阻。

本实验以套管换热器为例,内管走热空气,对管外的水加热,空气侧热阻所占比重较大,实验目的是测定空气侧对流传热膜系数。

并验证准数关联式。

影响对流传热过程的因数极多,目前尚不能通过解析法获得对流传热膜系数的理论关系式,必须用实验加以测定。

为了减少实验工作量,通过因次分析将主要因数组成若干无因次数群(准数),在此基础上组织实验并经过数据处理得到相应的关系式。

园管内不发生相变流体,在强烈湍流条件下,忽略自然对流的影响,则:
c
r b
e o u P R a N = (2) 式中:λ
α=
d
N u ——努塞尔准数(Nusselt ) α ——— 对流传热膜系数, W/(C m 2 ) d ——— 管径 m
λ ——— 空气导热系数 w/(m.C ) μ
ρ=
du R e 雷诺准数(Rernolds )
雷诺数中:μ、ρ为空气定性温度下粘度(Pa,S ),密度(kg/3m ) 2
S d
785.0V u =. s V 可由空气转子流量计读数经换算获得。

λ
μ=
p r C P ——普兰特准数(Prantl )
Cp —— 比热 J/ (kg.C )
因Pr 对内管的空气,在定性温度下变化很小,可视为常数,故(2)式可化为:
b
e u aR N = (3)
本实验的另一个目的是要验证以上关系式,方法如下:将(3)式两边取对数, a log R log b N log e u +=,所以,Nu 与Re 对数成线性关系。

实验中可测定一系列的Nu
与Re ,然后,用坐标轴所图,从而求得a 、b 的值。

对流传热膜系数α(即i α)的测定原理: 在稳定传热的条件下:
m W i i 21ph h )T T ()T T (C W Q -A α=-= (4) 式中:Q ——传热量 W ;
h W ——空气的质量流量 kg/s 可由空气流量计读数经换算获得; ph C ——空气平均温度下比热 J/(kg.C ); 21T ,T ——空气进出口温度,C ; i α——空气对壁的对流传热膜系数,)(C m W
./2
i A ——管内壁表面积,π=A i l d i 2m ; m w )T T (-——对数平均温度差 C ; 2
2112211)
()()(w w w w m w T T T T Ln
T T T T T T -----=
- (5)
式中:2w 1w T ,T 分别为空气进出口壁温,C 。

实验测的:2w 1w 21h T ,T ,T ,T ,W 就可以计算αi m
w i i )T T (A Q
-=
α (6)
三、装置和流程
(一)流程图
1. 进水阀
2. 逆流进水阀
3. 并流出水阀
4. 并流进水阀
5. 逆流进水阀
6. 进气阀
7. 旁路阀 8. 电热器 9. 空气流量计 10. 水流量计 11. 套管换热器
(二)设备规格和技术参数
1. 套管、有机玻璃,内径: 25mm ;
2. 内管、紫钢管 φ18⨯1.5mm ,有效长度:2000mm ; 3. 套管内 ,109.0~109.0R 54e ⨯⨯= 管 内 65e 103~103R ⨯⨯=;
4. 热源:3kw 电加热,单相,A1人工智能温度自控调节系统; 5. 测温:A1—708J 数显温度仪表,Cu 铜电阻; 6. 测流量:水:LZB —25 100—1000L/H , 空气:LZB —25 2.5—25h /m 3; 7.气源:DC —2C 型微音气泵 220V ,750W ; 风压 ≥17kpa; 风量≥80h /m 3。

四、实验步骤:
1. 打开进水阀“1”,“2”,“5”(逆流)或者“4”和“3”(并流),维持一定的水量; 2. 启动风机(气源),通过“6”和“7”调节一定的空气流量; 3. 接通热源,加热空气,维持空气进口温度“T1”为120C
; 4. 在空气、水流量,各温度稳定的条件下,记录以下数据:
逆流时:312121,,,,,,,t t T T T T W W w w c h ;(实际流程与此相符) 并流时:
212121,,,,,,,t t T T T T W W w w c h 。

5. 实验结束,先关加热器,等1T 降到60C
以下(手摸空气进口紫铜管不烫即可),
然后关阀“6”阀“1”。

五、实验数据纪录:
装置编号:
六、实验数据整理汇总表:
1 计算举例
2. 作图:在方格纸上用Re、Nu的对数作图,找出截距与斜率。

计算a 、b值,得出空气对壁对流传热膜系数准数关联式。

七、讨论与结论
八、思考题:
1.本实验中水与空气逆流、并流对对流传热系数测定由什么影响?为什么?
2.本实验中,壁面温度接近空气一侧温度还是接近水一侧温度?为什么?
3.本实验中,空气流量如何调节,为什么要利用旁通阀?
4.实验结束时,关阀的程序是怎样的,为什么?。

相关文档
最新文档