七年级上册数学第一章知识点总结复习课程
七年级数学上册总复习知识点归纳

第一章有理数知识点归纳一、正数和负数正数和负数的概念负数:比0小的数;正数:比0大的数。
0既不是正数,也不是负数☆注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
强调:带正号的数不一定是正数,带负号的数不一定是负数。
具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。
习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.二、有理数有理数的概念(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)(2)正分数和负分数统称为分数(3)整数和分数统称有理数☆注意:①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
数轴(1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。
注意:数轴是一条向两端无限延伸的直线;原点、正方向、单位长度是数轴的三要素,三者缺一不可;数轴的三要素都是根据实际需要规定的,同一数轴上的单位长度要统一;(2)数轴上的点与有理数的关系所有的有理数都可以用数轴上唯一的点来表示,正有理数可用原点正方向的点表示,负有理数可用原点负方向的点表示,0用原点表示。
相反数(1)只有符号不同的两个数叫做互为相反数;0的相反数是0;任何一个有理数都有相反数。
(2)互为相反数的两数的和为0,;互为相反数的两个点在数轴上分别位于原点两侧,并且与原点的距离相等。
(3)在一个数的前面加上负号“-”,就得到了这个数的相反数。
a的相反数是-a。
(4)多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
绝对值(1)数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:|a|(2)求绝对值:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数;可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
七年级数学上册 第一章 单元复习课课件 鲁教版五四制

第一章
一、三角形的相关概念 1.三角形的概念: 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做 三角形.三条线段叫做三角形的边,公共的端点叫做三角形的 顶点,两边所形成的夹角叫做三角形的内角.三角形用符号 “△”及顶点字母表示.
2.与三角形有关的线段: 三角形的高线、中线、角平分线: (1)三线都经过顶点. (2)都是线段. (3)除直角三角形的两条高线在三角形的两条直角边上,钝角 三角形的两条高线在三角形外部,其他各线均在三角形内. (4)锐角三角形的高交于三角形内部一点,直角三角形的高交 于三角形的直角顶点,钝角三角形的高所在的直线交于三角形 外部一点.
能够完全重合的两个三角形叫做全等三角形.
二、三角形的相关性质和判定 1.三角形的性质: (1)三角形的稳定性:三角形的三边确定了,那么它的形状大 小就都确定了,三角形的这个性质叫做三角形的稳定性. (2)三角形三边之间的性质:三角形任意两边之和大于第三边, 任意两边之差小于第三边. 2.三角形内角和性质: 三角形三个内角的和等于180°.
(5)三角形的一条中线把三角形分成两个面积相等的小三角形.
(6)根据面积法可得,三角形的各边与这边上的高的乘积相等.
3.三角形的分类:
(1)按角分类:锐角三角形、直角三角形、钝角三角形.
(2)按边分类:
没有相等边的三角形
三角形
等腰三角形
等边三角形 底与腰不相等的等腰三角形
4.全等三角形的概念:
6.(2012·眉山中考)在△ABC中,AB=5,AC=3,AD是BC边上的
中线,则AD的取值范围是_________.
【解析】如图,延长AD至点E,使DE=AD, 连接CE.因为AD是BC边上的中线,所以 BD=CD.在△ABD和△ECD中,
2024新人编版七年级数学上册《第一章1.2.3相反数》教学课件

它们的相反数,说明各对数在数轴上的位置特点.
分析:在所求数的前面添上“–”号,即得原数的相反数→ 在数轴上表示出各数→观察各对数在数轴上的位置→结论.
探究新知
解:2的相反数是-2;
1 的相反数是 1
2
2
;
3 的相反数是
2
3 2
;
–2.5的相反数是2.5.把这些数及它们的相反数表示在数
轴上为
2和–2, 1 和 1, 3和 3 ,–2.5和2.5,各对数在数轴上分别位于 2 2 22
–5 –2 0 2
5
探究新知
归纳总结
1. 互为相反数的两个数分别位于原点的两侧;
2. 互为相反数的两个数到原点的距离相等.
3. 一般地,设a是一个正数,数轴上与原点的距 离是a的点有两个,它们分别在原点的左右,表 示a和–a,我们说这两点关于原点对称.
几何意义
探究新知
素养考点 2 相反数的意义
例2 分别写出2, 3 , 1 ,–2.5的相反数,并在数轴上标出各数及
楚国
探究新知
知识点 1 相反数
两位同学背靠背站好(分左右),规定向右为正,以 两位同学未走时的位置为原点,两人各自向前走3步,则:
右边同学所在位置,记作 +3 , 你还能说左出边具同备学这所些在位置 ,记作 –3 .
特征的成对的数吗?
对照数轴,说出–3与+3两数的相同点和不同点.
探究新知
探究一 相反数的概念 活动1:观察下列一组数+1和–1,+2.5和–2.5,+4
5.若a是负数,则–a是__正___数;若–a是负数,则 a是__正___数.
6.
x 2
的相反数是___2x__,–3x的相反数是__3_x__.
2024新人编版七年级数学上册《第一章1.2.有理数的概念》教学课件

有理数 零
正分数
负整数 负有理数
负分数
探究新知
注意 :①分类的标准不同,结果也不同; ②分类的结果应无遗漏、无重复; ③零是整数,但零既不是正数,也不是负数.
探究新知
填一填
(1)既是分数又是负数的数是__负_分__数__; (2)非负数包括___正__数___和____0___; (3)非正数包括___负__数___和____0___;
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
探究新知
问题2:目前我们所学的小数有哪几类?
有限小数,无限循环小数,无限不循环小数.
问题3: 0.1, -0.5, 5.32, -15,0. 2,0.3ሶ 又是什么数?
小学:小数 初中:统归为分数
它们都可以化为分数:
0.1= 1 10
0.5= 1 2
150.25= 150 1 601
4
4
5.32=5 8 133 25 25
-15 +6 -2 -0.9
1
3 0 3 1 0.63 -4.95
5
4
(1)正整数集合:{ +6 , 1 }
(2)负整数集合:{ (3)正分数集合:{ (4)负分数集合:{
七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--章末复习
![七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--章末复习](https://img.taocdn.com/s3/m/af4174bd7e192279168884868762caaedd33baee.png)
解析:因为-3<0,|2|=2>0,(-3)2=9>0,2×103=2000>0, 所以-3最小.
考点四 有理数的大小比较
6.有理数a,b,c在数轴上的位置如图所示. (1)判断正负,用“>”或“<”填空:
c-b______0, a+b ______ 0,a-c ______ 0. (2)化简:|c-b|+|a+b|-2|a-c|.
章末复习
请你带着下面的问题,进入本课的复习吧!
1.梳理已学的数,数的范围扩大了几次?每次扩大数的范围时,引入一类 新的数的原因是什么?
2.你能举出一些实例,说明正数、负数在表示具有相反意义的量时的作用 吗?
3.你能用一个图表示有理数的分类吗? 4.数轴与普通的直线有什么不同?怎样在数轴上表示有理数?怎样利用数 轴解释一个数的相反数和绝对值? 5.如何比较有理数的大小?数轴能发挥怎样的作用?
例5 有理数a,b在数轴上的对应点的位置如图所示,把-a,-b,
0 按照从小到大的顺序排列,正确的是( C ).
A.-a<0<-b
B.0<-a<-b
C.-b<0<-a
D.0<-b<-a
a0
b
解析:因为a<0,所以-a>0.
因为b>0,所以-b<0.
所以-b<0<-a.
考点四 有理数的大小比较
有理数比较大小的常用方法有哪些? (1)数轴比较法:根据在数轴上,右边的点所表
考点四 有理数的大小比较
6.有理数a,b,c在数轴上的位置如图所示. (2)化简:|c-b|+|a+b|-2|a-c|.
a
0b
c
解:(2)原式=c-b+[-(a+b)]-[-2(a-c)] =c-b-a-b+2a-2c =a-2b-c.
有理数
人教版七年级数学上册第一章《有理数》复习PPT课件

2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能
人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数大于的数叫做正数。
在正数前面加上负号“-”的数叫做负数。
数既不是正数,也不是负数,是正数与负数的分界。
在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数凡能写成分数形式的数,都是有理数,整数和分数统称有理数。
注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数包括正整数和正分数,负有理数包括负整数和负分数。
3、数轴【重点】用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:1.在直线上任取一个点表示数,这个点叫做原点;2.通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…数轴的三要素:原点、正方向、单位长度。
画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
4、相反数只有符号不同的两个数叫做互为相反数。
a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。
一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。
3、相反数的概念a和-a互为相反数。
一个数的相反数是指,正数的相反数是负数,负数的相反数是正数。
每个数都有它自己的相反数。
4、相反数的运用在任意一个数前面添加“-”号,这个新的数就表示原数的相反数。
如果两个数a和b互为相反数,那么a+b=0;反之,如果a+b=0,则a和b互为相反数。
七年级数学上册-第一章 有理数 复习课件-冀教版

5.对于任何有理数a,下列各式中一定为负数的是(D ) (A)-(-3+a)(B)-a(C)-|a+1|(D)-a2-1
6.已知|x|=3,|y|=2,且x<y,则x+y=_-_1_或_ -5
7.当a= 0 时,5-a2有最大值为 5 。
度,再向右移动1个单位长度后,A表示_0__或__-_4___
5.数轴上将B向右移动3个单位长度,再向左移动5个单位
长度,终点表示0,那么B表示__2______
6。已知有理数a、b、c在数轴上的位置如图,化简:
|a|-|a+b|+|c-a|+|b+c|
-a
b
a0 c
-48或80
7.已知 | a - b | 4,求(a - b)2 (b a)3的值
两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.
①几个不等于0的数相乘,积的符号由负因数的个数决定 ,当负因数有奇数个时,积为负;当负因数有偶数个 时,积为正.
②几个数相乘,有一个因数为0,积就为0.
ab a1 b
(b≠0)
除以一个不为零的数等于乘以 这个数的倒数
两数相除,同号得正,异号得负,并把绝对值相除;
加法四结合 1.凑整结合法 2.同号结合法
3.两个相反数结合法
4.同分母或易通分的分数结合法
解 题
1.5.6+(-0.9)+4.4+(-8.1)+(-1)
பைடு நூலகம்
0
技 能
2.(4 2) (6 1 ) (3 1 ) (2 1 )
34
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元章有理数及其运算
复习目标:
1.能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小。
2.能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。
3.学会用科学记数法来表示较大的数,会根据精确度取近似数,能判断一个近似数是精确到哪一位。
4.能运用有理数及其运算解决实际问题。
基础知识:
1. 大于0的数叫做正数,在正数的前面加上一个“-”号就变成负数(负数小于0),0 既不是正数,也不是负数。
正数和负数表示的意义相反:例如上升/下降,增加/减少,收入/支出,盈利/亏损,零上/零下,东/西,顺时针/逆时针…
2. 整数和分数统称为有理数。
整数又分为正整数,0,负整数;分数分为正分数和负分数。
3.规定了原点、正方向、单位长度的直线叫做数轴。
任何一个有理数都能在数轴上找到唯一的点来表示(注意:并不是数轴上的每一个点都表示有理数,有一些点表示的是无理数例如π)
4.数轴上两个点表示的数,右边的数的总比左边的数大;正数都大于0,负数都小于0,正数总是大于负数。
5.只有符号不同的两个数互为相反数。
一般地,a和-a是一对互为相反数;特殊地,0的相反数是0。
互为相反数的两个数绝对值相等(绝对值为a的数有两个:a和-a)。
6.在数轴上表示一个数的点与原点之间的距离叫做这个数的绝对值;正数的绝对值是它本身;负数的绝对值是它的相反数,0的绝对值是 0 ;(绝对值是一个非负数)。
两个负数比较大小,绝对值大的反而小。
7.有理数加法法则:(1)同号两数相加,取加数的符号,并把绝对值相加;(2)异号两数相加:绝对值相等时和为 0 ;绝对值不等时,取绝对值较大的加数的符号,并用大绝对值减去小绝对值;(3)任何一个数同0相加仍得这个数。
8. 有理数的减法法则:减去一个数,等于加上这个数的相反数;(减法其实就是加法。
)
9.加减混合运算统一看成是几个数的和的形式(省略加号和括号),根据加法的交换律和结合律进行运算。
通常:(1)互为相反数相结合(2)符号相同相结合(3)分母相同的相结合(4)几个数相加得整数的相结合。
10.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘积为0。
多个数相乘看负因数的个数,偶数个则积为正,奇数个则积为负;并把所有因数的绝对值相乘。
11.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不为0的数,都得0。
12.乘积为1的两个数互为倒数,除以一个不为0的数等于乘以这个数的倒数;(除法其实就是乘法。
)乘除混合运算统一化除为乘,再根据乘法法则进行运算。
13.求几个相同因数的积的运算叫做 乘方(特殊的乘法运算) ,乘方的结果叫做 幂。
其中,a 叫做底数 ,n 叫做指数。
正数的任何次幂都是正数;0的任何次幂都是0;
负数的偶数次幂是正数,奇数次幂是负数。
14.有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号(先算小括号,再中括号,最后大括号)。
15.科学记数法:把大于10的数表示成a × 的形式。
(其中a 是整数位只有一位的数,n 是正整数;n=原数的整数位数-1)。
16.取近似数:精确到哪一位就看后一位,四舍五入。
有效数字:从一个数的第一个非零数字起,到末位数字为止,所有的数字都是这个数的有效数字。
(例如:
1.804有四个有效数字1、8、0、4。
0.0668只有三个有效数字:6、6、8。
)
n
10。