一些有名的几何定理
关于平面几何的60条著名定理

关于平面几何的60条著名定理一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有nXAB2+mXAC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有ABXCD+ADXBC=ACXBD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
中考数学必背几何定理

中考数学必背几何定理
中考数学必背几何定理
1。
同角(或等角)的余角相等。
2。
对顶角相等。
3。
三角形的一个外角等于和它不相邻的两个内角之和。
4。
在同一平面内垂直于同一条直线的两条直线是平行线。
5。
同位角相等,两直线平行。
6。
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。
7。
直角三角形中,斜边上的中线等于斜边的一半。
8。
在角平分线上的点到这个角的两边距离相等。
及其逆定理。
9。
夹在两条平行线间的平行线段相等。
夹在两条平行线间的垂线段相等。
10。
一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。
11。
有三个角是直角的四边形、对角线相等的平行四边形是矩形。
12。
菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。
13。
正方形的四个角都是直角,四条边相等。
两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。
14。
在同圆或等圆中,如果两个圆心角、两条弧、两条弦、
23。
相交弦定理;切割线定理;割线定理;。
立体几何常考定理的总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
一些有名的几何定理.

取材自维基百科-中文版. 没事的时候大家可以证着玩! 答案在这里.1. 阿基米德中点定理说明:圆上有两点A,B,M为弧AB的中点,随意选圆上的一点C,D 为AC上的点使得MD垂直AC。
若M、C在弦AB异侧,则AD=DC+BC;若M、C在弦AB 同侧,则AD=DC-CB。
2. 婆罗摩笈多定理指出:若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边。
婆罗摩笈多是印度数学家。
3. 凡·奥贝尔定理(van Aubel's theorem)说明:给定一个四边形,在其边外侧构造一个正方形。
将相对的正方形的中心连起,得出两条线段。
线段的长度相等且垂直。
4. 芬斯勒–哈德维格尔定理(Finsler-Hadwiger Theorem)说明:若两个正方形ABCD和AB'C'D'拥有同一个顶点A。
B'D的中点、BD'的中点、ABCD的中心和AB'C'D'的中心将组成一个正方形。
5. 莫雷角三分线定理(Morley's theorem)说明对所有的三角形,其三个内角作角三分线,靠近公共边三分线的三个交点,是一个等边三角形。
此定理由法兰克·莫雷在1899年发现。
对外角作外角三分线,也会有类似的性质,可以再作出4个等边三角形。
此定理有趣的地方是我们没办法用尺规作图作出其等边三角形,因为已经证明出尺规做图无法做出三等分角。
6. 拿破仑定理,是拿破仑发现的平面几何学定理:“以三角形各边为边分别向外侧作等边三角形,则他们的中心构成一个等边三角形。
”该等边三角形称为拿破仑三角形。
如果向内作三角形,结论同样成立。
同时拿破仑留下这样的名言:''一个国家只有数学蓬勃发展,才能表现他的国力强大。
——拿破仑7. 泰博定理是法国几何学家维克多·泰博(Victor Thébault,1882年-1960年))提出的平面几何问题。
平面几何的几个重要的定理--梅涅劳斯定理

平面几何的几个重要的定理一、梅涅劳斯定理:定理1:若直线l 不经过 ABC 的顶点,并且与的延长线分别交于 P 、Q 、R,贝U BP CQ AR 1 PC QA RB证:设h A 、h B 、h C 分别是A 、B 、C 到直线l 的垂线的长度,贝u :BP CQ AR h B h C hu 』 1PC QA RB h C h A h B注:此定理常运用求证三角形相似的过程中的线段成比例的条件;例1:若直角 ABC 中,CK 是斜边上的高, 在AK 上,D 是AC 的中点, F 是DE 与CK的交点,证明:KF BK ——=—— FC BE KF BK ——=一 KC KE FKB CKE BF //CECE 是 ACK 的平分线, E 点BF // CE 。
证:在 则:EBC 中,作 B"分线BH EBC ACK HBC ACEHBC HCB ACE HCB 90即:BH CEEBC 为等腰三角形作BC 上的高EP,则:对丁 ACK 和三点D 、 CK EPE 、F 依梅涅劳斯定理有:CD AE KF , 1 DA EK FC匚曰KF EK CK 『是——=一 一FC AE ACEP BP BK AC BC BE依分比定理有: ABC 的三边BC 、CA 、AB 或它们【练习1从点K 引四条直线,另两条直 -一 一 、…AC和 A 1、B 1、C 1、D 1,试证: ------- 1 1 1BC线分别交这四条直线丁 A 、B 、C 、DAD BD定理2:设P 、Q 、R 分别是 ABC 的三边 BC 、CA 、AB 上或它们的延长线上的 P 、Q 、R 三点中,位于 ABC 边上的点的个数为 0或2,这时若 既 PC 三点,并且 CQ AR QA RB 1, 求证:P 、Q 、R 三点共线; 证:设直线PQ 与直线AB 交丁 R ', 丁是由定理 BP CQ AR _ __ ' PC QA R B乂 BP CQ AR PC QA RB 由丁在同一直线上的 _ ' ____ AR AR1,则:^―=—— R B RB P 、Q 、R '三点中,位丁 ABC 边上的点的个数也为 0或2,因此R 与R '或者同在AB 线段上,或者同在 AB 的延长线上; 若R 与R '同在AB 线段上,则R 与R '必定重合,不然的话, 设AR AR ', AR AR BR BR 这时AB AR AB AR ',即BR BR ',丁是可得 _ ____ ' 这与AR =竺 矛盾 BR BR 类似地可证得当 R 与R '同在AB 的延长线上时,综上可得:P 、Q 、R 三点共线; 注:此定理常用于证明三点共线的问题,且常需要多次使用 R 与R '也重合再相乘;例2点P 位丁 ABC 的外接圆上;A 1、B 1、C 1是从点P 向BC 、CA 、AB 引的垂线的垂足, 证明点A 1、B 1、 BA 1BP cos PBC CA 1 CP cos PCB CB 1 CP cos PCA AB 1 AP cos PAC AC 1AP cos PABBC 1 PB cos PBAC i 共线; 证:易得: 将上面三条式子相乘, 且 PAC PBC , PAB PCB , 十曰 BA 1 CB 1 AC 1可得 一111= 1 ,CA 1 AB 1 BC 1依梅涅劳斯定理可知 A 1、B 1、C 1三点共线;PCA PBA 180A 1C 1 A 1D 1B 1C ; :BD【练习2设不等腰 ABC 的内切圆在三边 BC 、CA 、AB 上的切点分别为 D 、E 、F,则EF 与BC , FD 与CA , DE与AB 的交点 X 、Y 、Z 在同一条 直线上;【练习&已知直线 AA i, BB i, CC i 相交于O,直线AB 和A 1B 1的交点为C 2,直线 BC 与B 1C 1的交点是 A 2,直 线AC 与A i C i 的交点是B 2,试证:A 2、B 2、C 2三点共线;【练习M 在一条直线上取点 E 、C 、A,在另一条上取点 B 、F 、D,记直线AB 和ED , CD 和AF ,CD 和AF , EF 和BC 的交点依次为 L 、M 、N,证明:L 、M 、N 共线练习i 的证明练习2的证明乂 AE AF 代人上式可得:BXXC FB =—— CE CY DC AZ EA同理口」彳寸: — —YA AFZB BD将上面三条式子相乘可 得:乳CY J i XC YA ZB 乂 X 、Y 、Z 都不在 ABC 的边上,由定理 2可得X 、Y 、 证: ABC 被直线XFE 所截,由定理 Z 三点共线 证:若AD // A i D^,结论显然成立;若AD 与A i D i 相交与点 AD LD LD BD LD 〔 A i K A i D i AK BK BQ B i K LDi L,则把梅涅劳斯定理分 LC AK A 。
2.3几个著名的几何定理

例10 在⊿ABC中, AB>AC, 点O是外心,两条高BE, CF交于H点,点M, N分别在线段BH, HF上, 且满足 BM=CN. MH NH 求证: 3 的充分必要条件是∠A=60°.
OH
[证明]
连OB、OC,则
F O
A
∠BOC=2∠A, ∠BHC=180°-∠HBC- ∠HCB=∠B+∠C=180 - ∠A
A
F
B
K
· · · · · · · · ··
I J E H L D
G
C
9. 蝴蝶定理 设AB是⊙O的弦, M 是AB 的中点, 过M作任意二弦CD, EF, 记P, Q依次为与CF, ED 的交点. 则 PM=PQ.
证法一:利用对称造全等形.
· 1` 1 · O
Q
B
3 4 2` D
bdmdbembedmeacmaafmfcfmc???mcfbdeacfmdemcfbcabdebeamdebeabcaacfssmpbqapmqssssssssss???????????????????由mfedcbaqpmfmcbdedbeaeabbcmemdabaebcacafcfmfmcbdbeedmemdacafcfmfmcmdmbmememdmamfmcmb????????????????????????mbma?mpmqmambapbqmpmqambmmpmq???????从而合比分比mfedcbaqp证法三
DE AO1 AG . DF AO2 AH
P P
·
AH AG . 故 FD ED
G ·
O1
又CE=CG, 则
·
·
·
A
· ·
O ·
高中平面几何常用定理总结

(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2.射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b ma -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:Cb Bc A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7.余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11.弦切角定理:弦切角等于夹弧所对的圆周角.12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.14.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE 交AB于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r r r r r r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA=1. 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB 分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC 的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC 的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q 两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N 点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.。
立体几何的八个判定定理

立体几何的八个判定定理立体几何的八个判定定理是指由英国数学家约翰·威尔逊(John Wallis)在17th century所提出的一套定理。
其中包括:(1)贝瑟尔定理:任意一个平面三角形的内角之和等于180度。
(2)杨氏定理:任意一个对角相交的多边形,其内部角之和等于其外部角之和。
(3)特斯克定理:在同样边上的三个面有关的角相加等于180度。
(4)柯尔定理:在同样边上的四个面有关的角相加等于360度。
(5)高斯定理:任意一个多面体的角之和等于360度乘以面的数量。
(6)伯尔定理:任意一个多边形的角之和大于360度。
(7)双旋定理:任意一个多面体的内角之和等于多边形的角之和减去多边形的边的数量。
(8)欧几里得定理:任意一个多面体的角之和等于多边形的角之和加上多边形的边的数量乘以180度。
贝瑟尔定理是最重要的立体几何判定定理,表明任意一个平面三角形的三个内角之和都等于180度。
这个定理是用来表示平面三角形的构成的,而这个定理也被用来表示一个多边形的构成。
杨氏定理是贝瑟尔定理的推广,即任意一个对角相交的多边形,其内部角之和等于其外部角之和。
特斯克定理是杨氏定理的一个特殊情况,表示在同样边上的三个面有关的角相加等于180度。
柯尔定理也是杨氏定理的一个特殊情况,表示在同样边上的四个面有关的角相加等于360度。
高斯定理是一个重要的立体几何判定定理,即任意一个多面体的角之和等于360度乘以面的数量。
这个定理与贝瑟尔定理的相似之处在于,它们都可以用来表明多面体的构成,它们都表示了一个多面体的性质。
伯尔定理是高斯定理的一个推广,表明任意一个多边形的角之和大于360度。
双旋定理是一个重要的立体几何判定定理,表明任意一个多面体的内角之和等于多边形的角之和减去多边形的边的数量。
欧几里得定理也是一个重要的立体几何判定定理,表明任意一个多面体的角之和等于多边形的角之和加上多边形的边的数量乘以180度。
总的来说,立体几何的八个判定定理是一个重要的数学工具,它们不仅可以帮助人们更好地理解多面体和多边形的构造,还可以帮助人们解决一些复杂的问题,比如求解三角形的面积,求解多面体的体积等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取材自维基百科-中文版. 没事的时候大家可以证着玩! 答案在这里.
1. 阿基M德中点定理说明:圆上有两点A,B,M为弧AB的中点,
随意选圆上的一点C,D为AC上的点使得MD垂直AC。
若M、C在弦AB异侧,则AD=DC+BC;若M、C在弦AB同侧,则AD=DC-CB。
b5E2RGbCAP
2. 婆罗摩笈多定理指出:若圆内接四边形的对角线相互垂直,则
垂直于一边且过对角线交点的直线将平分对边。
婆罗摩笈多是印度
数学家。
p1EanqFDPw
3. 凡·奥贝尔定理<van Aubel's theorem)说明:给定一个四边形,在其边外侧构造一个正方形。
将相对的正方形的中心连起,得
出两条线段。
线段的长度相等且垂直。
DXDiTa9E3d
4. 芬斯勒–哈德维格尔定理<Finsler-Hadwiger Theorem)说明:若两个正方形ABCD和AB'C'D'拥有同一个顶点A。
B'D的中点、BD'的中点、ABCD的中心和AB'C'D'的中心将组成一个正方形。
RTCrpUDGiT
5. 莫雷角三分线定理<Morley's theorem)说明对所有的三角形,其三个内角作角三分线,靠近公共边三分线的三个交点,是一个等
边三角形。
此定理由法兰克·莫雷在1899年发现。
对外角作外角三
分线,也会有类似的性质,可以再作出4个等边三角形。
5PCzVD7HxA
此定理有趣的地方是我们没办法用尺规作图作出其等边三角形,因为已经证明出尺规做图无法做出三等分角。
6. 拿破仑定理,是拿破仑发现的平面几何学定理:“以三角形各边为边分别向外侧作等边三角形,则他们的中心构成一个等边三角形。
”该等边三角形称为拿破仑三角形。
如果向内作三角形,结论同样成立。
jLBHrnAILg
同时拿破仑留下这样的名言:
''一个国家只有数学蓬勃发展,才能表现他的国力强大。
——拿破仑
7. 泰博定理是法国几何学家维克多·泰博<Victor Thébault,1882年-1960年>)提出的平面几何问题。
xHAQX74J0X
取平行四边形的边为正方形的边,作四个正方形<同时在平行
四边形内或外皆可)。
正方形的中心点所组成的四边形为正方形。
<此为凡·奥贝尔定理的特例。
)LDAYtRyKfE
取正方形的两条邻边为三角形的边,作两个等边三角形<同时
在正方形内或外皆可)。
这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一
等边三角形。
Zzz6ZB2Ltk
给定任意三角形ABC,BC上任意一点M。
作两个圆形,均与AM、BC、外接圆相切。
该两圆的圆心和三角形内切圆心共线。
<应
用:日本定理)dvzfvkwMI1
第三题是最难的。
1938年《美国数学月刊》曾刊出第三题,但直至1973年才为荷兰数学家H. Streefkerk证出。
2003年,Ayme发现
早在1905年Y. Sawayama已解决这题。
rqyn14ZNXI
8. 维维亚尼(Viviani>定理说明:在等边三角形内任意一点P跟三
边的垂直距离之和,等于三角形的高。
EmxvxOtOco
这个定理可一般化为:等角多边形内任意一点P跟各边的垂直距离
之和,是不变的,跟该点的位置无关。
它以温琴佐·维维亚尼命名。
9. 西姆松定理说明:有三角形ABC,平面上有一点P。
P在三角形
三边上的投影<即由P到边上的垂足)共线<此线称为西姆松线, Simson line)当且仅当P在三角形的外接圆上。
SixE2yXPq5
相关的结果有:
•称三角形的垂心为H。
西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。
•两点的西姆松线的交角等于该两点的圆周角。
•若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。
10. 卡诺定理
设ABC为三角形,O为其外心。
则O到ABC各边的距离之和为
OOA + OOB + OOC = R + r,
其中r为内切圆半径,R为外接圆半径。
这个定理叫做卡诺定理。
11. 塞瓦线段<cevian)是各顶点与其对边或对边延长线上的一点
连接而成的直线段。
塞瓦定理指出:如果的塞瓦线段AD、BE、CF通过同一点O,则6ewMyirQFL
它的逆定理同样成立:若D、E、F分别在的边BC、CA、AB
或其延长线上,且满足
,
则直线AD、BE、CF共点或彼此平行<于无限远处共点)。
当AD、BE、CF中的任意两直线交于一点时,则三直线共点;当AD、BE、CF中
的任意两直线平行时,则三直线平行。
kavU42VRUs
它最先由意大利数学家乔瓦尼·塞瓦证明。
12. 梅涅劳斯定理<Menelaus's theorem)是由古希腊数学家梅涅
劳斯首先证明的。
它指出:如果一直线与的边BC、CA、AB
分别交于L、M、N,则有:y6v3ALoS89。
它的逆定理也成立:若有三点L、M、N分别在的边BC、CA、AB或其延长线上<至少有一点在延长线上),且满足M2ub6vSTnP
则L、M、N三点共线。
利用这个逆定理,可以判断三点共线。
case 1. 直线LMN穿过三角形ABC case 2. 直
线LMN在三角形ABC外面0YujCfmUCw
13. 蝴蝶定理<Butterfly theorem),是古典欧氏平面几何的最精
彩的结果之一。
设M为圆内弦PQ的中点,过M作弦AB和CD。
设AD和BC各相交PQ
于点X和Y,则M是XY的中点。
14. 密克定理
三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别
是C1 和C2, C2和C3, C3和C1的另一交点。
设A为C1的点,
直线MA交C2于B,直线PA交C3于C。
那么B, N, C这三点共线。
eUts8ZQVRd
逆定理:如果是三角形,M, N, P三点分别在边
AB, BC, CA上,那么三角形, , 的
外接圆交于一点O。
sQsAEJkW5T
完全四线形定理:如果ABCDEF是完全四线形,那么三角形
, , , 的外接圆交于一点O,
称为密克点。
GMsIasNXkA
四圆定理:设C1, C2,C3, C4为四个圆,A1和B1是C1和C2的
交点,A2和B2是C2 和C3的交点,A3和B3是C3和C4的交点,
A4和B4是C1和C4的交点。
那么A1, A2, A3, A4四点共圆当
且仅当B1, B2, B3, B4四点共圆。
TIrRGchYzg
五圆定理:设ABCDE为任意五边形,五点F, G, H, I, J分别
是EA和BC , AB和CD, BC和DE, CD和EA, DE和AB的交点,
那么三角形, , , , 的外接圆的五个不在五边形上的交点共圆,而且穿过这些交点的圆也穿过五个外接圆的圆心。
7EqZcWLZNX
逆定理:设C1,, C2, C3, C4, C5五个圆的圆心都在圆C上,相邻的圆交于C上,那么把它们不在C上的交点与比邻同样的点连起来,所成的五条直线相交于这五个圆上。
lzq7IGf02E
15. 帕普斯定理
设U,V,W,X,Y和Z为平面上六条直线。
如果:
<1)U与V的交点,X与W的交点,Y与Z的交点共线,且
<2)U与Z的交点,X与V的交点,Y与W的交点共线,
则<3)U与W的交点,X与Z的交点,Y与V的交点共线。
这个定理叫做帕普斯定理。
16. 托勒密定理
四边形两组对边乘积之和不小于两条对角线的乘积。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。