概率论与数理统计第五章最新版本

合集下载

概率论与数理统计(修订版)复旦大学出版第五章答案

概率论与数理统计(修订版)复旦大学出版第五章答案

习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}. 【解】设i X 表每次掷的点数,则41ii X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯=从而 22291735()()[()].6212i ii D X E X E X ⎛⎫=-=-= ⎪⎝⎭又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i ii i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8. 现要求n ,使得1{0.760.84}0.9.nii XP n=≤≤≥∑即0.80.9ni X n P -≤≤≥∑由中心极限定理得0.9,Φ-Φ≥整理得0.95,Φ≥⎝⎭查表 1.64,10≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ查表知1.64,= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k kV,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量20205~(0,1).kVZ N -⨯==∑近似的于是105205{105}10P V P ⎧⎫⎪⎪-⨯⎪>=>1000.3871(0.387)0.348,V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少? (2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩ 第人治愈其他令1001.ii X X ==∑(1) X ~B (100,0.8),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑11(1.09)0.1379.=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故130{20} 6.895 6.895P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T = 故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ=9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时). 【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,ni i P T =≥⨯=∑即0.05.≈Φ故0.95,1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率. 【解】(1) 以X的分布律为易知E (X i=1.1),D (X i )=0.19,i =1,2,…,400. 而400iiX X=∑,由中心极限定理得400400 1.1~(0,1).iXN -⨯=∑近似地于是{450}1{450}1P X P X >=-≤≈-Φ1(1.147)0.13=-Φ= (2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普拉斯中心极限定理得{340(2.5)0.9938.P Y ≤≈Φ=Φ=11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515) 要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.P X ≤≈Φ=Φ-=-Φ=12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入? (2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件{}.n m S ≤=≤ 由中心极限定理知:{}1{}10.95.n n P m S P S m ≤=-<≈-Φ≥从而 0.05,Φ≤ 故1.65,=- 所以 m =900-15.65=884.35≈884人 (2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.{}0.95.n P S M ≤≈Φ=M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”. 于是所求概率为{120}P X =≈21230.18110.0517e 0--===⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60” 于是所求概率为{060}P X ≤≤≈Φ-Φ(0)0.5.⎛=Φ-Φ≈ ⎝ 14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考) 【解】令Z =X -Y ,有()0,()()()()2 3.E Z D Z D X Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.kk k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ(2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知:()50,i E X = 5,=()50,n E T n = .= 依中心极限定理,当n ~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ 2>解出n <98.0199, 即最多可装98箱.。

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

概率论与数理统计(第三版)-第5章

概率论与数理统计(第三版)-第5章
《概率论与数理统计》
第五章《参数估计与假设检验》
参数估计的基本思想 数理统计的主要任务之一是依据样本推断总体.推断的基本内容包括两个方面 推断的基本内容包括两个方面:一是依据 数理统计的主要任务之一是依据样本推断总体 推断的基本内容包括两个方面 一是依据 样本寻找总体未知参数的近似值和近似范围;二是依据样本对总体未知参数的某种假设 样本寻找总体未知参数的近似值和近似范围 二是依据样本对总体未知参数的某种假设 作出真伪判断.本章先介绍求近似值和近似范围的方法 本章先介绍求近似值和近似范围的方法. 作出真伪判断 本章先介绍求近似值和近似范围的方法 点估计用某一数值作为参数的近似值 区间估计在要求的精度范围内指出参数所在的区间 §5.1 点估计概述
i =1 n
5— 3
《概率论与数理统计》
第五章《参数估计与假设检验》
设x1 , ⋯ , xn是相应X 1 , ⋯ , X n的一个样本值,则随 机点( X 1 ,⋯ , X n )落在( x1 , ⋯ , xn )的邻域(边长分别为 dx1 , ⋯ , dxn的n维立方体)内的概率近似为:
∏ f ( x ;θ )dx
例 2.总体服从参数为λ的普阿松分布, x1 , x2 ,⋯ , xn 样本观测值,求参数λ的最大似然估计.
解:X 的分布律为: P{ X = k} = L (λ ) = ∏
i =1 n
λk
k!
i
e− λ , k = 0,1⋯
−λ
λx
xi !
e
=
λ x + x +⋯x
1 2
n
x1 ! x2 !⋯ xn !
D X = D(
1 n
∑X
n
i
)=

《概率论与数理统计》课件 概率学与数理统计 第五章

《概率论与数理统计》课件 概率学与数理统计 第五章

时,
n
n
X k =BnZn + k
k 1
k 1
n
近似地服从正态分布 N( k,Bn2) 。这说明无论随机变量 Xk (k
i 1
n
=1, 2,…)具有怎样的分布,只要满足定理条件,那么它们的和Xk
k 1
当n很大时就近似地服从正态分布。而在许多实际问题中,所
考虑的随机变量往往可以表示为多个独立的随机变量之和,因
实测值的算术平均值
时,取
作为 a 1 n
n i1 X i
1 n
n i 1
Xi
,根据此定理,当
n
足够大
的近似值,可以认为所发生的误差是
很小的,所以实用上往往用某物体的某一指标值的一系列
实测值的算术平均值来作为该指标值的近似值。
第二节 中心极限定理
在第二章,我们说只要某个随机变量受到许多相互独立 的随机因素的影响,而每个个别因素的影响都不能起决定性 的作用,那么就可以断定这个随机变量服从或近似服从正态 分布。这个结论的理论依据就是所谓的中心极限定理。概率 论中有关论证独立随机变量的和的极限分布是正态分布的一 系列定理称为中心极限定理( Central limit theorem) 。下面介 绍几个常用的中心极限定理.
P{X 102} P{ X 100 102 100} 1 P{X 100 2}
1
1
1 (2) 1 0.977250 0.022750.

对敌人的防御地进行100次轰炸,每次轰炸命中目标的炸弹数目是 一个随机变量,其期望值是2,方差是。求在100次轰炸中有180颗到 220颗炸弹命中目标的概率。 解 令第 i 次轰炸命中目标的炸弹数为 Xi ,100次轰炸中命中目

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

概率论与数理统计 第五章

概率论与数理统计 第五章
n →∞ n →∞
∑ X − ∑µ
k =1 k =1
k
Bn
≤ x} = ∫
ቤተ መጻሕፍቲ ባይዱ
x
1 2π
−∞
e
t2 − 2
dt=Φ(x).
说明: 说明
在定理条件下, r.v. Zn =
∑ X − ∑µ
k =1 k k =1
n
n
k
Bn
当 n很 大
时, 近似地服从正态分布N(0, 1),由此当n很大时,
∑X
k =1 n
n
t2 2
(本定理 可以由独立同分布 的中心极限定理证 明)
说明: 说明 本定理不难看出 :若ηn
~ b(n,p), 有
t2 2
b ηn − np 1 lim P a < e dt = Φ(b) − Φ(a), ≤ b = ∫ a n →∞ npq 2π 因 而 当 n较 大 时 , 我 们 可 以 用 正 态 分 布 近 似 计 算 二 项 分布 的 概率 。
2. 切比雪夫大数定律: 设X1 , X 2 , L Xn , L 是由两两互 不相关的随机变量所构成的序列, 每一个随机变量都 有有限的方差, 并且它们有公共的上界 , D(X1 ) ≤ C, D(X 2 ) ≤ C, L , D(Xn ) ≤ C, L 则对∀ε > 0, 都有 1 n 1 n lim P ∑ Xk − ∑ E(Xk ) < ε = 1. n →∞ n k =1 n k =1
k
2 , k = 0,1, L ,90000. 3 ≤ 30500}
90000-k
显然直接计算十分麻烦, 我们利用德莫佛-拉普拉斯定理 来求它的近 似 值 即有P{29500 < X ≤ 30500} 29500-np = P < np(1-p ) 30500-np ≤ np(1-p ) np(1-p ) X-np

概率论与数理统计----第五章大数定律及中心极限定理

概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>

+∞
−∞

概率论数理统计基础知识第五章

概率论数理统计基础知识第五章

C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}

Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

175
178 166 181 162
161
168 166 162 172
156
170 157 162 154
4/29/2020
华东师范大学
第五章 统计量及其分布
第25页
对这20个数据(样本)进行整理,具体步骤如下:
(1) 对样本进行分组:作为一般性的原则,组数通 常在5~20个,对容量较小的样本;
(2) 确定每组组距:近似公式为 组距d = (最大观测值 最小观测值)/组数;
(3) 确定每组组限: 各组区间端点为
a0, a1=a0+d, a2=a0+2d, …, ak=a0+kd, 形成如下的分组区间
(a0 , a1] , (a1, a2], …, (ak-1 , ak]
其中a0 略小于最小观测值, ak 略大于最大观测值.
思考:
若总体的密度函数为p(x),则其样本的(联 合)密度函数是什么?
4/29/2020
华东师范大学
第五章 统计量及其分布
第19页
§5.2 样本数据的整理与显示
5.2.1 经验分布函数
设 x1, x2, …, xn 是取自总体分布函数为F(x)的样 本,若将样本观测值由小到大进行排列,为 x(1), x(2), …, x(n),则称 x(1), x(2), …, x(n) 为有序样本,
3 (167,177] 172 5 0.25 85
4 (177,187] 182 2 0.10
95
5 (187,197] 192 1 0.05
100
合计
20 1
4/29/2020
华东师范大学
第五章 统计量及其分布
第27页
5.2.3 样本数据的图形显示
一、直方图
直方图是频数分布的图形表示,它的横坐标表 示所关心变量的取值区间,纵坐标有三种表示方 法:频数,频率,最准确的是频率/组距,它可 使得诸长条矩形面积和为1。凡此三种直方图的 差别仅在于纵轴刻度的选择,直方图本身并无 变化。
4/29/2020
华东师范大学
第五章 统计量及其分布
第14页
样本的要求:简单随机样本
要使得推断可靠,对样本就有要求,使样本能很 好地代表总体。通常有如下两个要求:
➢ 随机性: 总体中每一个个体都有同等机会
被选入样本 -- xi 与总体X有相同的分布。
➢ 独立性: 样本中每一样品的取值不影响其
它样品的取值 -- x1, x2, …, xn 相互独立。
华东师范大学
第五章 统计量及其分布
第29页
例5.2.3 某公司对应聘人员进行能力测试,测试 成绩总分为 150分。下面是50位应聘人员的测 试成绩(已经过排序):
64 67 70 72 74 76 76 79 80 81 82 82 83 85 86 88 91 91 92 93 93 93 95 95 95 97 97 99 100 100 102 104 106 106 107 108 108 112 112 114 116 118 119 119 122 123 125 126 128 133
4/29/2020
华东师范大学
第五章 统计量及其分布
第9页
表5.1.1 各等级彩电的比例(%) 等级 I II III IV
美产 33.3 33.3 33.3 0
日产 68.3 27.1 4.3 0.3
4/29/2020
华东师范大学
第五章 统计量及其分布
第10页
5.1.2 样本
样品、样本、样本量: 样本具有两重性
品,如果第一次抽到不合格品,则
P(x2 = 1 | x1 = 1) = (Np1)/(N1) 而若第一次抽到的是合格品,则第二次抽到不合 格品的概率为
P(x2 = 1 | x1 = 0) = (Np)(N1)
4/29/2020
华东师范大学
第五章 统计量及其分布
第18页
显然,如此得到的样本不是简单随机样本。 但是,当N 很大时,我们可以看到上述两种 情形的概率都近似等于p 。所以当N 很大,而 n不大(一个经验法则是 n N 0.1)时可以 把该样本近似地看成简单随机样本。
第13页
表5.1.2 100只元件的寿命数据
寿命范围 ( 0 24] (24 48] (48 72] (72 96] (96 120] (120 144] (144 168] (168 192]
元件数 4 8 6 5 3 4 5 4
寿命范围 (192 216] (216 240] (240 264] (264 288] (288 312] (312 336] (336 360] (360 184]
用有序样本定义如下函数
0, Fn(x) k/n, 1,
x<x(1) x(k)xx(k1), x(n)x
k1,2,...,n1
4/29/2020
华东师范大学
第五章 统计量及其分布
第20页
则Fn(x)是一非减右连续函数,且满足 Fn() = 0 和 Fn() = 1
由此可见,Fn(x)是一个分布函数, 并称Fn(x)为经验分布函数。
4/29/2020
华东师范大学
第五章 统计量及其分布
第24页
5.2.2 频数--频率分布表
样本数据的整理是统计研究的基础,整理数据的最 常用方法之一是给出其频数分布表或频率分布表。
例5.2.2 为研究某厂工人生产某种产品的能力, 我们随机调查了20位工人某天生产的该种产品 的数量,数据如下
160
196 164 148 170
这是一个容量为10的样本的观测值, 对应的总体为该厂生产的瓶装啤酒的净含量。
这样的样本称为完全样本。
4/29/2020
华东师范大学
第五章 统计量及其分布
第12页
例5.1.4 考察某厂生产的某种电子元件的 寿命,选了100只进行寿命试验,得到 如下数据:
4/29/2020
华东师范大学
第五章 统计量及其分布
4/29/2020
华东师范大学
第五章 统计量及其分布
第3页
• p 的大小如何; • p 大概落在什么范围内;
• 能否认为 p 满足设定要求
(如 p 0.05)。
4/29/2020
华东师范大学
第五章 统计量及其分布
第4页
§5.1 总体与个体
总体的三层含义:
• 研究对象的全体; • 数据; • 分布
• 一方面,由于样本是从总体中随机抽取的,抽 取前无法预知它们的数值,因此,样本是随机 变量,用大写字母 X1, X2, …, Xn 表示;
• 另一方面,样本在抽取以后经观测就有确定的 观测值,因此,样本又是一组数值。此时用小 写字母 x1, x2, …, xn 表示是恰当的。
简单起见,无论是样本还是其观测值,样本一般均 用 x1, x2,… xn 表示,应能从上下文中加以区别。
4/29/2020
华东师范大学
第五章 统计量及其分布
第5页
例5.1.1 考察某厂的产品质量,以0记合格品,以1记 不合格品,则
总体 = {该厂生产的全部合格品与不合格品} = {由0或1组成的一堆数}
若以 p 表示这堆数中1的比例(不合格品率),则该 总体可由一个二点分布表示:
X01 P 1p p
4/29/2020
华东师范大学
第五章 统计量及其分布
第28页
二、茎叶图
把每一个数值分为两部分,前面一部分(百 位和十位)称为茎,后面部分(个位)称为 叶,然后画一条竖线,在竖线的左侧写上茎, 右侧写上叶,就形成了茎叶图。如:
数值 分开 茎 和 叶 112 11 | 2 11 和 2
4/29/2020
4/29/2020
华东师范大学
第五章 统计量及其分布
第6页
比如:两个生产同类产品的工厂的产品的总体 分布:
X
0
1
p
0.983
0.017
X
0
1
p
0.915
0.085
4/29/2020
华东师范大学
第五章 统计量及其分布
第7页
例5.1.2 在二十世纪七十年代后期,美国消费 者购买日产SONY彩电的热情高于购买美产 SONY彩电,原因何在?
4/29/2020
华东师范大学
第五章 统计量及其分布
第23页
更深刻的结果也是存在的,这就是格里纹科定理。
定理5.2.1(格里纹科定理) 设x1,x2,…,xn是取自 总体分布函数为F(x)的样本, Fn(x) 是其经验分 布函数,当n时,有
PsupFn(x) F(x)0 = 1
格里纹科定理表明:当n 相当大时,经验分布函 数是总体分布函数F(x)的一个良好的近似。 经典的统计学中一切统计推断都以样本为依据, 其理由就在于此。
4/29/2020
华东师范大学
第五章 统计量及其分布
第26页
(4) 统计样本数据落入每个区间的个数——频数,
并列出其频数频率分布表。
表5.2.1 例5.2.2 的频数频率分布表
组序 分组区间 组中值 频数 频率 累计频率(%)
1 (147,157] 152 4 0.20 20
2 (157,167] 162 8 0.40 60
n
F(x ,..., x ) F(x ).
1
n
i
i 1
4/29/2020
华东师范大学
第五章 统计量及其分布
第16页
总体分为有限总体与无限总体
实际中总体中的个体数大多是有限的。当个体 数充分大时,将有限总体看作无限总体是一种 合理的抽象。
对无限总体,随机性与独立性容易实现,困难在 于排除有意或无意的人为干扰。
相关文档
最新文档