可靠性维修性设计报告

合集下载

制造工艺中的可靠性与维修性设计

制造工艺中的可靠性与维修性设计

制造工艺中的可靠性与维修性设计在制造工艺中,可靠性与维修性的设计是至关重要的因素。

可靠性设计指的是通过合理的工艺选择和设计来确保产品在使用过程中能够稳定可靠地发挥其功能。

而维修性设计则强调产品在发生故障或需要维护时,能够方便、快捷地进行维修和维护操作,以减少维修时间和成本。

本文将从设计角度探讨制造工艺中可靠性与维修性设计的重要性以及相关的方法和策略。

一、可靠性设计可靠性设计是指在产品设计阶段,通过选择合适的工艺和采用适当的措施,确保产品能够稳定可靠地运行,并满足用户的需求和期望。

以下是一些常见的可靠性设计方法和策略:1. 优化材料选择:选择具有良好可靠性和性能的材料,以确保产品的稳定性和耐久性。

同时,考虑材料的供应和成本因素。

2. 合理的结构设计:在产品结构设计中考虑到负载分布和应力集中等因素,采用合理的结构和强度设计,以增强产品的可靠性。

3. 可靠性测试与验证:在产品开发过程中,进行可靠性测试和验证,通过模拟实际使用环境和条件,评估产品的可靠性,并及时发现和解决潜在问题。

4. 系统故障分析:通过对产品系统的故障分析,找出可能导致故障的薄弱环节,并采取相应的措施进行改进和优化。

二、维修性设计维修性设计是指在产品设计阶段,考虑到维修和维护的需求,合理选择工艺和设计方式,使产品在发生故障时能够方便快捷地进行维修和维护。

以下是几个简要的维修性设计建议:1. 模块化设计:采用模块化设计,将产品划分为不同的模块和组件,通过模块之间的拆卸和更换,降低维修时间和成本。

2. 使用标准化零部件:在设计过程中优先选择使用标准化和通用化的零部件,这样能够方便地获取和更换零部件,减少维修周期。

3. 易于访问和维修的布局:在产品设计中,充分考虑到维修人员的实际操作需求,合理布局和安排元件、接口和连接线路,以便于维修人员的访问和维修操作。

4. 提供清晰的维修指南:设计产品时,提供明确清晰的维修指南和维修流程,以便维修人员能够快速准确地进行故障诊断和排除。

开关可靠性、维修性、保障性、测试性、安全性、环境适应性分析实施报告

开关可靠性、维修性、保障性、测试性、安全性、环境适应性分析实施报告

WORD文档可编辑编号:XXXX式开关可靠性、维修性、保障性、测试性、安全性、环境适应性分析报告拟制:审核:批准:XXXXXXXX有限公司二零一一年三月1 概述为确保产品质量符合要求,达到顾客满意,根据《XXXX式开关产品质量保证大纲》的规定,对该产品的可靠性、维修性、保障性、测试性、安全性、环境适应性进行分析。

2 可靠性分析2.1 元器件清单本器件选用元器件如下:2.2 可靠性预计本器件所采用的元器件有7类13种共57个。

其中任一元器件失效,都将造成整个器件失效,即器件正常工作的条件是各元器件都能正常工作。

因此,本器件的可靠性模型是一个串联模型。

该器件是可修复产品,寿命服从指数分布,根据可靠性理论,其平均故障间隔时间与失效率成反比,即:MTBF= 1/∑pi λ (1) 所用元器件均是通用或固化产品,其质量水平、工作应力及环境条件都相对固定,其失效率因子等有关可靠性参数可参考《GJB/Z299C-2006电子设备可靠性预计手册》,从而采用应力分析法来预计本器件的可靠性指标。

本器件一般内置于系统机箱内,使用大环境是舰船甲板或舰船舱内,其环境代号Ns2,工作温度-40℃~+70℃,现计算其可靠性指标。

2.2.1 PIN 二极管的工作失效率1p λ本器件使用PIN 二极管,其工作失效率模型为K Q E b p πππλλ=1 (2) 式中:b λ —— 基本失效率,10-6/h ;E π —— 环境系数;Q π —— 质量系数;K π —— 种类系数。

由表5.3.11-1查得基本失效率b λ =0.212×10-6/h ; 由表5.3.11-2查得环境系数E π=14; 由表5.3.11-3查得质量系数Q π=0.05; 由表5.3.11-4查得种类系数K π=0.5;本器件中使用了18只PIN 二极管,故其工作失效率为:h p /103356.1185.005.01410212.0661--⨯=⨯⨯⨯⨯⨯=λ2.2.2 片状电容器的工作失效率2p λ本器件选用的片状电容器,其工作失效率模型为:ch K CV Q E b p πππππλλ=2 (3)b λ —— 基本失效率,10-6/h ;E π —— 环境系数;Q π —— 质量系数;CV π —— 电容量系数;K π —— 种类系数; ch π —— 表面贴装系数。

机械设计中的可靠性与维修性分析

机械设计中的可靠性与维修性分析

机械设计中的可靠性与维修性分析在机械设计领域中,可靠性和维修性是两个非常重要的考虑因素。

机械产品的可靠性决定了其在使用过程中的稳定性和寿命,而维修性则关系到产品的维修和保养的难易程度。

本文将对机械设计中的可靠性与维修性进行详细分析。

1. 可靠性分析可靠性是指机械产品在一定时间内正常工作的能力。

对于机械产品而言,可靠性的高低直接关系到产品使用的安全性和经济性。

因此,在设计过程中应该重点考虑以下几个方面:1.1 材料选用材料的选用在机械设计中起着至关重要的作用。

合适的材料可以提高产品的可靠性。

在选择材料时,需要考虑产品所处的使用环境、受力情况以及材料的性能等因素,确保选用的材料具有足够的强度和耐腐蚀性能。

1.2 结构设计结构设计是机械产品可靠性的关键因素之一。

合理的结构设计可以减小零部件在工作过程中的应力和变形,降低零部件失效的风险。

此外,还需要合理分配零部件之间的连接方式和配合尺寸,以确保产品的稳定性和可靠性。

1.3 运动传动系统设计运动传动系统是机械产品中常见的关键组成部分。

在设计过程中,需要根据产品的工作要求和使用寿命,选择合适的传动方式和传动元件。

同时,还需要注意传动链路的设计,减小传动效率损失和传动误差,提高产品的可靠性。

2. 维修性分析维修性是指机械产品在出现故障或需要保养时能够方便、快捷地进行维修和保养的能力。

良好的维修性设计可以减少产品的停机时间和维修成本,提高设备的可用性。

以下是维修性设计的一些重要考虑因素:2.1 模块化设计模块化设计是提高产品维修性的有效手段之一。

将机械产品分解为多个独立的模块或部件,每个模块可以独立进行维修或更换。

这样在出现故障时只需要更换具体的模块而无需对整个产品进行维修,大大缩短了维修时间。

2.2 易损部件设计针对机械产品中容易出现故障的部件,设计时可以采用易损部件的形式。

易损部件可以在出现故障时方便地进行更换,减少了维修的难度和成本。

同时,还可以提供易损部件的备件,进一步提高产品的可用性。

【航空航天】可靠性、维修性和保障性(共19页)

【航空航天】可靠性、维修性和保障性(共19页)

国外直升机可靠性、维修性和保障性发展综述1. 引言可靠性、维修性和保障性(RMS)是响影军用直升机作战效能、作战适用性和寿命周期费用的关键特性。

特别是在现代高技术战争中,RMS成为武装直升机战斗力的关键因素。

美国武装直升机AH-64“阿柏支”由于在研制中重视RMS工作,具有较高的RMS水平,保证AH-64具有较的战备完好性和任务成功概率。

在1990年12月至1991年4月的海湾战争中,美国陆军101师攻击直升机营的8架AH-64直升机,突袭伊拉克,摧毁了通往巴格达沿途的雷达站,为盟国空军执行空战任务开辟了空中通道,仅在2月28日,第一武装分队的AH-64摧毁了36辆坦克,俘获了850名伊军官兵。

在海湾战争中,美军出动了288架AH-64,累计飞行18700小时,仅有一架AH-64被地面炮火击落,在“沙漠盾牌”和“沙漠风暴”行动中,AH-64的能执行任务率分别达到80%和90%,超过了设计要求。

AH-64的战例充分表明,RMS是现代武装直升机形成战斗力的基础,是发挥其作战效能的保证,也是现代军用直升机设计中必须考虑的、与性能同等重要的设计特性。

2. 国外直升机RMS技术的发展随着直升机在现代战争中和国民经济建设中的作用及地位的日益提高,直升机RMS越发引起各工业发达国家的重视,特别是对直升机可靠性和安全性问题早就得到重视;随着武装直升机的应用与发展、机载雷达及火控系统的可靠性及维修性也相继引起各国军方的重视;近十多年来,尤其是海湾战争之后,为了满足现代高技术战争的需要,要求直升机具有快速出动能力和高的战备完好性,降低武装直升机的寿命周期费用,要求直升机具有低的维修工时、少量维修人力、少量备件和良好的测试性和保障性。

总的说来,近50年来,国外直升机RMS技术的发展大至可划分为如下3个阶段。

2.1 50年代中期至60年代末期50年代中期或末期开始研制或60年代初期开始研制、在60年代投入服役的直升机,如美国的CH-47A、CH-53A、AH-1A、AH-56A、OH-58A、UH-1A等。

电连接器六性分析报告

电连接器六性分析报告

电连接器六性分析报告电连接器作为电子设备中不可或缺的关键组件,其性能的优劣直接影响着整个系统的可靠性和稳定性。

为了全面评估电连接器的性能,我们对其“六性”——可靠性、维修性、保障性、测试性、安全性和环境适应性进行了深入分析。

一、可靠性可靠性是电连接器最重要的性能指标之一,它反映了电连接器在规定的条件下和规定的时间内,完成规定功能的能力。

影响电连接器可靠性的因素众多,包括设计、材料、制造工艺、使用环境等。

在设计方面,合理的结构设计能够减少接触电阻、提高插拔寿命,并降低失效的风险。

例如,采用多点接触的设计可以增加接触的稳定性,减小接触电阻的波动。

材料的选择也至关重要。

优质的导电材料,如铜合金,能够提供良好的导电性和耐腐蚀性,而绝缘材料则需要具备高绝缘电阻、耐磨损和耐高温的特性。

制造工艺的精度和稳定性直接影响电连接器的质量。

例如,精确的冲压、注塑和电镀工艺可以保证零件的尺寸精度和表面质量,从而提高接触的可靠性。

使用环境中的温度、湿度、振动和冲击等因素也会对电连接器的可靠性产生影响。

在高温环境下,材料的性能可能会下降,导致接触电阻增大;在潮湿环境中,容易发生腐蚀和绝缘性能降低的问题;而振动和冲击则可能导致接触不良甚至零件损坏。

为了提高电连接器的可靠性,我们需要在设计阶段充分考虑各种因素,选择合适的材料和制造工艺,并在使用过程中进行严格的质量控制和可靠性测试。

二、维修性维修性是指电连接器在发生故障后,能够迅速、方便地进行修复或更换的能力。

良好的维修性可以减少设备的停机时间,提高系统的可用性。

电连接器的维修性主要取决于其结构设计和标识。

易于拆卸和安装的结构设计可以大大缩短维修时间。

例如,采用插拔式连接方式的电连接器,在维修时只需直接插拔即可,无需复杂的工具和操作。

清晰的标识也是提高维修性的重要因素。

标识应包括连接器的型号、规格、引脚定义等信息,以便维修人员能够快速准确地识别和更换故障的连接器。

此外,维修性还与备件的供应和维修工具的可用性有关。

设备维保的可靠性分析与可维护性设计

设备维保的可靠性分析与可维护性设计

可维护性评估
采用合适的评估方法对设备进 行全面评估,识别存在的问题 和改进点。
方案实施与验证
将改进方案付诸实施,在实际 环境中验证改进效果。
需求分析
明确设备维保的目标和要求, 确定评估与改进的范围和重点 。
改进方案制定
根据评估结果制定针对性的改 进措施和方案。
持续改进
根据实施效果和反馈,持续优 化改进方案,提高设备的可靠 性和可维护性。
维保工作标准化
制定维保标准操作流程
根据设备特点和维保经验,制定标准化的维保操作流程,包括操作步骤、安全注意事项和维护要点等 。
培训员工掌握标准操作
对设备操作和维护人员进行培训,确保他们熟练掌握标准操作流程,提高维保工作的效率和安全性。
维保工作信息化
建立设备管理信息系统
利用信息技术手段,建立设备管理信息系统,实现设备信息的实时录入、查询和统计分析。
06
设备维保管理案例分析
案例一:某化工企业设备维保管理优化
总结词
全面优化,显著提升
详细描述
某化工企业通过对设备维保管理流程进行全面优化,包括定期检查、预防性维护、快速 响应等措施,显著提升了设备的可靠性和生产效率,降低了故障停机时间和维修成本。
案例二
总结词
科学分析,合理设计
VS
详细描述
某电力企业采用先进的可靠性分析方法, 对设备进行故障模式影响分析,并根据分 析结果进行可维护性设计改进,如简化维 护操作、优化备件管理、提高设备可维修 性等,有效提升了设备的可靠性和运行效 率。
设备维保的可靠性分析与可维护性设计
目录 CONTENTS
• 设备可靠性分析 • 设备可维护性设计 • 设备维保流程优化 • 设备可靠性评估与改进 • 设备可维护性评估与改进 • 设备维保管理案例分析

产品可靠性设计报告

产品可靠性设计报告

产品可靠性设计报告1. 引言本报告旨在分析和评估产品的可靠性设计,并提出可靠性改进措施。

产品可靠性是指产品在特定使用条件下,保持满足要求功能和性能的能力。

高可靠性是现代产品设计中至关重要的一个特征,因为它关乎用户的安全和满意度。

通过对产品进行可靠性分析和改进,可以减少故障率、延长产品的使用寿命,提高产品的市场竞争力。

2. 可靠性分析为了评估产品的可靠性设计,我们采用了以下方法进行可靠性分析:2.1. 故障模式与影响分析(FMEA)故障模式与影响分析(Failure Mode and Effects Analysis,FMEA)是一种用于分析和评估系统、组件或过程中潜在故障模式及其影响的方法。

在本次可靠性分析中,我们对产品的不同部件和系统进行了FMEA分析。

2.2. 可靠性块图(Reliability Block Diagram,RBD)可靠性块图是一种图形化方法,用于分析系统中不同组件之间的可靠性关系。

通过构建可靠性块图,我们可以评估系统中关键组件的可靠性,并确定潜在的故障点。

2.3. 可靠性测试通过实际测试和模拟实验,我们对产品进行了可靠性测试。

测试包括环境适应性测试、振动测试、温度和湿度测试等。

通过测试,我们发现了产品在一些特定条件下的故障模式,并根据测试结果进行了相应的改进。

3. 可靠性改进措施基于可靠性分析的结果,我们提出了以下可靠性改进措施:3.1. 设计优化通过对产品设计的优化,可以减少故障发生的概率。

我们将加强对关键部件和系统的设计验证,并增加冗余机制,以提高产品的可靠性。

同时,我们还将采用更耐用和可靠的材料,以延长产品的使用寿命。

3.2. 生产过程控制在生产过程中,我们将加强对关键工艺参数的控制,并建立完善的质量控制和检测机制。

通过提高生产过程的可控性,能够有效降低产品的制造缺陷率,提高产品的可靠性。

3.3. 供应链管理供应链管理对于产品可靠性至关重要。

我们将与供应商建立长期稳定的合作关系,并加强对供应商的审核和监督。

(完整)六性报告参考内容

(完整)六性报告参考内容

六性设计报告参考内容注:因可靠性单独写了设计报告,此文档没有再具体写出.●维修性维修性是产品的一种质量特性,即:由产品设计赋予的使其维修简便、迅速和经济的固有特性.维修性要求:1.具有良好的维修可达性.(首要要求)维修可达性:是指维修产品时,能够迅速方便地达到维修部位的特性。

通俗地说就是维修部位能够“看得见、够得着"或者容易看见、够着,而不需拆卸、搬动其他机件。

可达性好,维修就迅速、简便,而且差错、事故也会减少,所需费用也少。

所以,可达性是维修性定性要求中最重要的一条。

为此,要合理地布置装备各组成部分及其检测点、润滑点、维护点;要保证维修操作有足够的空间,包括使用工具、器材的空间;合理开设维修通道、窗口。

2.提高标准化和互换性程度(重要要求)标准化、系列化、通用化、模块化和互换性,是现代设计与制造的要求。

它们对于武器装备的维修与保障尤其有意义.不但可简化维修,而且利于减轻后勤保障(备件、工具、设备等)负担和战时拆拼修理。

3.具有完善的防差错措施及识别标记(重要要求)从结构设计上消除差错的可能性。

如要使零部件只有装对了才能装得上,装错、装反就装不上;插头、插件只有插对才插得上,发生差错能立即发觉并纠正。

合理地设置标记也是防止差错的辅助措施,标记还有助于提高维修效率。

因此,要从便于维修和防差错的角度,设置必要的文字、数字、符号、图形等标记。

4.保证维修安全(必须考虑的问题)是指防止维修时损伤人员、装备的一种设计特性。

维修常常是在装备处于故障状态、分解状态下进行的操作。

这就需要在设计时考虑并采取必要的保护装置、措施,包括防机械损伤、防电击、防火、防爆、防毒等。

5.检测诊断准确、快速、简便-良好的测试性(重要要求)通过设计实现检测诊断方便、迅速、准确是装备设计和开发的重要要求。

在装备研制早期就应考虑检测诊断问题,包括:检测方式、检测系统、检测点配置等。

测试性应与其他性能综合权衡,检测系统与主装备同步研制或选配、试验与评定.6.重视贵重件的可修复性(不可缺少的要求)零部件的可修复性:是指其磨损、变形、损耗或以其他形式失效后,能够对原件进行修理,使之恢复原有功能的特性.装备上一些重要而昂贵的零部件应具有可修复型.为此,应使之具有可调(整)、可矫(正)、可焊(接)、可拆(装)、可镀性,以便采用有效的原件修复措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XX研制可靠性、维修性设计报告编制:审核:批准:工艺:质量会签:标准化检查:XX有限公司2015年4月目录1 概述................................................... 2维修性设计.............................................. 设计目的................................................ 设计原则................................................. 维修性设计的基本内容.................................... 简化设计................................................ 互换性.................................................. 防差错设计.............................................. 检测性.................................................. 维修中人体工程设计......................................3 维修性分析............................................. 产品的维修项目组成...................................... 系统平均故障修复试件(MTTR)计算模型 .................... MTTR值计算.............................................. 4可靠性设计.............................................. 可靠性设计原则........................................... 可靠性设计的基本内容.................................... 简化设计................................................. 降额设计................................................. 缓冲减振设计............................................. 抗干扰措施...............................................热设计...................................................5 可靠性分析............................................. 可靠性物理模型(MTBF)................................... 可靠性计算...............................................1 概述XX是集音视频无缝切换、实时字幕叠加、采集、存储、传输、显示于一体的综合性集成设备。

在平台上集成了视频编辑、图片编辑、文稿编辑软件,编辑后的视频、图片能通过平台播放出去。

系统配置2-4部4G手机,内置专用软件,通过云平台与本处理平台连接,把手机视频、图片、草图、短消息、位置实时上传到处理平台上,处理平台可以实时将手机视频无缝切播出去,在手机上可以在地图上看到相互的轨迹与位置,平台的地图窗口也可以看到手机的位置与轨迹。

也可通过联网远程对本平台上的实时视频流或存储的视频资料进行选择读取播放、存储、编辑。

使用专门定制的带拉杆的高强度安全防护箱,外形尺寸56x45x26cm, 重量小于20kg, 便于携带。

2维修性设计设计目的维修性工程是XX研制系统工程的重要部分,为了提高XX的可维修性,XX 在研制过程中必须进行有效的维修性设计,提出设计的目标,以便在随后的试制、试验等环节中严格贯彻设计要求,保证XX的维修性达到设计的要求。

设计原则设计遵循可达性、互换性、防差错性、标准化的原则;严格参照GJB368A-94《装备维修性通用大纲》的规定执行。

维修性设计的基本内容简化设计不少于2部4G手机,远程采集音频视频图片,绘制草图,短消息,手机实时运动轨迹,发送到平台上显示。

手机与平台通信应适当加密。

手机连续视频与模拟输入视频能无缝切换到任意一路模拟输出上。

视频插头(座)、电源插头(座)、控制信号插头(座)进行了区分设计标号,避免错查,并在接插件间预留了插拔空间。

互换性设备的零部件互换性列表,见表1表1 设备零部件一览表防差错设计 检测性维修中人体工程设计本产品表面无锐刺,对人体无伤害。

3 维修性分析 产品的维修项目组成系统平均故障修复试件(MTTR )计算模型若系统有n 个可修项目组成,每个可修项目的平均故障率和相应的平均修复时间为已知,则系统的平均修复时间为:Mcti =式中 λi——第i 个项目的平均故障率——第i 个项目的平均修复时间MTTR 值计算 根据系统产品多年来的维修记录以及我公司设计人员的多方面计算,形成了系统各部件维修参数一览表,见下表3。

表3 监视系统各部件维修参数一览表Σλi M cti i=1 nΣλi i=1n M cti依据公式:Mcti =其中,λi=将各部件对应得取值代入计算模型,可得Mcti = (h) 故系统得平均修复时间为小时MTTR ≤ h4可靠性设计 可靠性设计原则1)选择设计方案时尽量不采用还不成熟的新系统和零件,尽量采用已有经验并已标准化的零部件和成熟的技术。

结构简化,零件数削减。

考虑功能零件的可接近性,采用模块结构等以利于可维修性。

设置故障监测和诊断装置。

保证零件部设计裕度(安全系数/降额)。

必要时采用功能并联、冗余技术。

如日本的液压挖掘机等,采用双泵、双发动机的冗余设计。

2)虑零件的互换性。

失效安全设计,系统某一部分即使发生故障,但使其限制在一定范围内,不致影响整个系统的功能。

安全寿命设计,保证使用中不发生破坏而充分安全的设计。

例如对一些重要的安全性零件要保证在极限条件下不能发生变形、破坏。

3)防误操作设计加强连接部分的设计分析,例如选定合理的连接、止推方式。

考虑防振,防冲击,对连接条件的确认。

Σλi M ctii=1nΣλii=1 n1T bfi靠性确认试验,在没有现成数据和可用的经验时,这是唯一的手段。

尤其机械零部件的可靠性预测精度还很低。

主要通过试验确认。

可靠性设计的基本内容本合同可靠性指标要求:MTBF≥1000h。

在可靠性设计方面我们以下方面着手进行:可在保证性能的前提下,尽量采用软件处理接收信号和故障检测信号,减少元器件的种类和数量,使用标准化单元组件和采用模块化设计以提高产品的可靠性;合理地降低元器件所承受的go,使之工作在额定功效以内;合理采用隔离措施,利用减振装置把设备保护起来,以耐受冲击和振动;采用屏蔽方式滤波、屏蔽电缆。

通过合理规划设备内部线路和电路板布局,使热源有效分散以及通过开设2个风口,一个新风口一个排风口,使设备内部气流形成有效对流,起到充分散热的效果。

5 可靠性分析便携式XX由一系列整机、部件组成。

在评估便携式XX可靠性(MTBF)时, 常常不可能获得足够的信息, 利用各分系统、整机和部件的运行信息对全套设备的可靠性进行评估是必然要碰到的问题。

因此, 如何利用整机和部件的运行信息, 构造全系统的靠性评估模型就成为一个十分重要的问题。

可靠性物理模型(MTBF)前面已经提到便携式XX可靠性物理模型的特点是, 设备长时间处于24小时不间断运行状态,每个部件和系统均可能引起整个系统故障,所以为了确保系统有效运行需要对系统定期检测以发现产品缺陷和故障,模型中的任务时间即为周期检测,做好故障分类统计。

可靠性的数学模型和评估方法根据MTBF可靠性物理模型, 可以确定MTBF的数学模型为:MTBF=nt*/r式中:r为故障数;n为参与测试设备数;t*测试时间;对系统中各部件的故障数做统一统计,然后进行累加求和。

如果统计期间无故障,r取1。

可靠性计算我们对便携式XX备进行了可靠性参数MTBF统计计算,测试条件如下:交流供电:最大150W,50Hz, AC160V-230V环境温度:-20℃~ 45℃环境湿度:<85 %(不结露)测试地点:北京首贝科技生产组装车间测试人员:王飞、顾天宇通电运行完整设备3套,但由于生产设备有限,通电运行时间21天(2015年10月8日-2015年10月28),每天运行24小时,每周检查2次检查结果见附件《便携式XX通电运行记录》。

计算结果:根据公式:MTBF=nt*/r式中:n取3,t*取24*21=504,r取1(无故障情况取1)MTBF=nt*/r=3*504/1=1512小时通过对可靠性MTBF物力建模和数学建模,统计计算结果为:MTBF=1512小时>1000小时,满足设计要求统计模型由于条件限制存在一定的局限性,但基本能反映设备的可靠性运行要求,我们希望通过积累经验在以后的工作实践中不断补充和完善。

相关文档
最新文档