18.函数的单调性(1)

合集下载

17-18版:2.2.1 函数的单调性(一)

17-18版:2.2.1 函数的单调性(一)

2.2.1函数的单调性(一)学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一函数的单调性思考画出函数f(x)=x、f(x)=x2的图象,并指出f(x)=x、f(x)=x2的图象的升降情况如何?梳理一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为单调增函数,该区间称为单调增区间.反之则为单调减函数,相应区间称为单调减区间.因为很多时候我们不知道函数图象是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:设函数y=f(x)的定义域为A,区间I⊆A.(1)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说y=f(x)在区间I上是单调增函数,I称为y=f(x)的单调增区间.(2)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间I上是单调减函数,I称为y=f(x)的单调减区间.单调增区间和单调减区间统称为单调区间.知识点二函数的单调区间思考 我们已经知道f (x )=x 2的单调减区间为(-∞,0],f (x )=1x 的单调减区间为(-∞,0),这两个单调减区间的书写形式能不能交换?梳理 一般地,有下列常识(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大.类型一 求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图象说出函数的单调区间,以及在每一单调区间上,它是单调增函数还是单调减函数?反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D上函数要么是单调增函数,要么是单调减函数,不能二者兼有.跟踪训练1写出函数y=|x2-2x-3|的单调区间,并指出单调性.类型二证明单调性命题角度1证明具体函数的单调性例2证明f(x)=x在其定义域上是单调增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x 在[1,+∞)上是单调增函数.命题角度2 证明抽象函数的单调性例3 已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.求证:函数f (x )在R 上是单调增函数.反思与感悟 因为抽象函数不知道解析式,所以不能代入求f (x 1)-f (x 2),但可以借助题目提供的函数性质来确定f (x 1)-f (x 2)的大小,这时就需要根据解题需要对抽象函数进行赋值. 跟踪训练3 已知函数f (x )的定义域是R ,对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.求证:f (x )在R 上是单调减函数.类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的单调减函数,则a 的取值范围为________.反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要保证在接口处不能反超.另外,函数在单调区间上的图象不一定是连续不断的.跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上单调,则实数a 的取值范围为________________.命题角度2 用单调性解不等式例5 已知y =f (x )在定义域(-1,1)上是单调减函数,且f (1-a )<f (2a -1),求a 的取值范围.反思与感悟 若已知函数f (x )的单调性,则由x 1,x 2的大小,可得f (x 1),f (x 2)的大小;由f (x 1),f (x 2)的大小,可得x 1,x 2的大小.跟踪训练5 在例5中若函数y =f (x )的定义域为R ,且为单调增函数,f (1-a )<f (2a -1),则a 的取值范围又是什么?1.函数y =f (x )在区间[-2,2]上的图象如图所示,则此函数的单调增区间是________.2.函数y =6x的单调减区间是________.3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是________.(填序号)①f (x )=x 2;②f (x )=1x ;③f (x )=|x |;④f (x )=2x +1. 4.给出下列说法:①若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上为单调增函数; ②若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上不可能为单调减函数;③函数f (x )=-1x 在(-∞,0)∪(0,+∞)上为单调增函数;④函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-x 2+1,x <0在定义域R 上为单调增函数.其中说法正确的是________.(填序号)5.若函数f (x )在R 上是单调减函数,且f (|x |)>f (1),则x 的取值范围是________.1.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都为单调减函数,未必有f (x )在A ∪B 上为单调减函数.2.对单调增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0.对单调减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)·[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0.3.熟悉常见的一些函数的单调性,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是单调增函数,h (x )是单调减函数,则:①在定义域的交集(非空)上,f (x )+g (x )为单调增函数,f (x )-h (x )为单调增函数,②-f (x )为单调减函数,③1f (x )为单调减函数(f (x )≠0).5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f (x 1)f (x 2)与1比较.答案精析问题导学 知识点一思考 两函数的图象如下:函数f (x )=x 的图象由左到右是上升的;函数f (x )=x 2的图象在y 轴左侧是下降的,在y 轴右侧是上升的. 知识点二思考 f (x )=x 2的单调减区间可以写成(-∞,0),而f (x )=1x 的单调减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x 的定义域.题型探究例1 解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是单调减函数,在区间[-2,1],[3,5]上是单调增函数.跟踪训练1 解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图象,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调减区间是(-∞,-1],[1,3];单调增区间是[-1,1],[3,+∞). 例2 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2 =(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )=x 在定义域[0,+∞)上是单调增函数.跟踪训练2 证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2, 则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2).∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0,即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )=x +1x在区间[1,+∞)上是单调增函数.例3 证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2.令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1. ∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴函数f (x )在R 上是单调增函数.方法二 设x 1>x 2,则x 1-x 2>0,从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是单调增函数.跟踪训练3 证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0),∵当x >0时,0<f (x )<1,∴f (1)≠0,∴f (0)=1.令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1,又∵-x >0时,0<f (-x )<1,∴f (x )=1f (-x )>1. ∴对任意实数x ,f (x )恒大于0.设任意x 1<x 2,则x 2-x 1>0,∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,∴f (x )在R 上是单调减函数.例4 [18,13) 解析 要使f (x )在R 上是单调减函数,需满足:⎩⎪⎨⎪⎧ 3a -1<0,-a <0,(3a -1)·1+4a ≥-a ·1,解得18≤a <13. 跟踪训练4 (-∞,1]∪[2,+∞)解析 由于二次函数开口向上,故其单调增区间为[a ,+∞),单调减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2.例5 解 f (1-a )<f (2a -1)等价于⎩⎪⎨⎪⎧ -1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23. 跟踪训练5 解 ∵y =f (x )的定义域为R ,且为单调增函数,f (1-a )<f (2a -1),∴1-a <2a -1,即a >23, ∴所求a 的取值范围是(23,+∞). 当堂训练1.[-2,1] 2.(-∞,0),(0,+∞)3.②4.②④解析 由单调增函数的定义,可知①错误;由单调减函数的定义,可知②正确;因为函数f (x )=-1x 在(-∞,0)和(0,+∞)上为单调增函数,所以③错误;作出函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-x 2+1,x <0的图象,如图所示,由图象可知④正确.5.(-1,1)。

函数的单调性-(新教材)人教A版高中数学必修第一册全文课件

函数的单调性-(新教材)人教A版高中数学必修第一册全文课件

函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt 函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件- ppt

函数单调性的习题及答案

函数单调性的习题及答案

函数单调性的习题及答案函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是()A .y =2x +1B .y =3x 2+1C .y =D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于()A .-7B .1C .17D .259.函数的递增区间依次是()A .B .C .D 10.已知函数在区间上是减函数,则实数的取值范围是( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥310.已知函数的单调递减区间上是减函x2)2()(||)(x x x g x x f -==和]1,(],0,(-∞-∞),1[],0,(+∞-∞]1,(),,0[-∞+∞),1[),,0[+∞+∞()()2212f x xa x =+-+(]4,∞-a ()()2212f x xa x =+-+(]4,∞-数,则实数的取值范围是( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥3二、填空题:13.函数y =(x -1)-2的减区间是____.14.函数y =x -2+2的值域为_____.15、设是上的减函数,则的单调递减区间为.16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f () = f (x )-f (y )(1)求f (1)的值. (2)若f (6)= 1,解不等式 f ( x +3 )-f () <2 .a x-1()y f x =R ()3y f x =-y x x118.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=在区间[-1,1]上的单调性.21x20.设函数f (x )=-ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.12 x22.已知函数f (x )=,x ∈[1,+∞](1)当a =时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞,f (x )>0恒成立,试求实数a 的取值范围.xax x ++2221)参考答案一、选择题: CDBBD ADCCA BA 二、填空题:13. (1,+∞), 14. (-∞,3),15.,三、解答题:17.解析:①在等式中,则f (1)=0.②在等式中令x=36,y=6则故原不等式为:即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.[)3,+∞⎥⎦⎤⎝⎛-∞-21,0≠=y x 令.2)6(2)36(),6()36()636(==∴-=f f f f f ),36()1()3(f xf x f <-+.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x xf (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+)2+x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+)2+x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=-==∵x 2-x 1>0,>0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2).当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=在区间[-1,0]上是增函数,f (x )=在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+且x 1<x 2,则f (x 1)-f (x 2)=--a (x 1-x 2)=-a (x 1-x 2)=(x 1-x 2)(-a )22x 4322x 43211x -221x -2221222111)1()1(x x x x -+----2221121211))((x x x x x x -+-+-222111x x -+-21x -21x -)∞121+x 122+x 1122212221+++-x x x x 11222121++++x x x x(1)当a ≥1时,∵<1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数.(2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=,满足f (x 1)=f (x 2)=1∴0<a <1时,f (x )在[0,+上不是单调函数注: ①判断单调性常规思路为定义法;②变形过程中<1利用了>|x 1|≥x 1;>x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现. 21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴解得,∴m 的取11222121++++x x x x 212aa-)∞11222121++++x x x x 121+x 122+x ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即3221<<-m值范围是(-)22.解析: (1)当a =时,f (x )=x ++2,x ∈1,+∞)设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+=(x 2-x 1)+=(x 2-x 1)(1-)∵x 2>x 1≥1, ∴x 2-x 1>0,1->0,则f (x 2)>f (x 1)可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞上的最小值为f (1)=.(2)在区间[1,+∞上,f (x )=>0恒成立x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数,当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.32,2121x211122121x x x --21212x x x x -2121x x 2121x x )27)xax x ++22⇔。

函数的单调性课件-高一数学人教A版(2019)必修第一册

函数的单调性课件-高一数学人教A版(2019)必修第一册
3.会利用单调性求参数取值范围.(重点)
学运算素养.
新课引入
问题1:观察下面函数图象,从中你发现了图象的哪些特征?



= 2
=




= >0

升降变化、对称性,最高点或最低点等
今天,我们重点研究图象从左到右升降变化的规律。
随的增大而增大(或减小)——
函数的单调性


= 2
1
y
0
那么就称函数 在
区间D上时减函数
y
1
1 2 x
2
0
1 2
x
特别地,只有当函数 在它的定义域上单调递增(递减)时,
我们才称它是增(减)函数。
合作探究
思考1:−1 < 2时,有 −1 < 2 ,
说函数在区间 −1,2 上单增对吗?并说出你的理由。
不对,如图,虽−1 < 2时,有 −1 < 2 ,
函数值随自变量的增大(或减小)的性质叫做函数的单调性.
图形语言:在 轴右侧,从左到右图象是上升的;
也就是说,在区间 , +∞ 上,随的增大而增大

你能类比说出函数在y轴右侧的符号表示及单调性吗?
符号语言:


∀ , ∈ , +∞ , = , =
当 < 时,有 < 成立.
结论 这时, f (x)=kx +b是减函数。
结论:一次函数 = + ≠ 的单调性由的正负确定。
> 在R上单调递增; < 在R上单调递减.
k
(k为正常数)告诉我们,
例3、 物理学中的玻意耳定律 p =

高中数学(人教B版)必修第一册:函数的单调性【精品课件】

高中数学(人教B版)必修第一册:函数的单调性【精品课件】

x
则称 y f (x) 在 I 上是增函数(也称在 I 上单调递增),
(1) y
如图(1)所示;
f (x1)
(2)
如果对任意 x1, x2 I ,当 x1
x2 时,都有
f (x1)
f ( x ) , f (x2) 2
O
x1
x2
x
则称 y f (x) 在 I 上是减函数(也称在 I 上单调递减),
(1)当 a
0 时,
f
x

,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值________________;
(2)当 a
0 时,
f
x

,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值_________________.
f
x2
x2
f x1
x1
,
则:
(1) y f x 在 I 上是增函数的充要条件是 y 0 在 I 上恒成立;
x
(2) y f x 在 I 上是减函数的充要条件是 y 0 在 I 上恒成立.
x
定义:
一般地,当 x1 x2 时,称
f f x2 f x1
x
x2 x1
为函数 y f (x) 在区间x1, x2 x1 x2时或x2, x1 x2 x1时 上的平均变化率.
x
想一想:能否说 f x 2 在定义域内是增函数?为什么?
x
新知提炼:
(1)单调区间是定义域的子区间,对于单调性,首先要考虑函数的 定义域。因此,单调性是函数的局部性质.

高一 函数的单调性及其最值知识点+例题+练习 含答案

高一 函数的单调性及其最值知识点+例题+练习 含答案

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x 2”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________. 答案 ①解析 对于①,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;②,③,④函数在(0,+∞)上均不单调.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1解析 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减, 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增, 则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________. 答案 (1)① (2)(-∞,-2) (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用命题点1 比较大小例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系) 答案 < >解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), 得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________.(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)⎣⎡⎦⎤-14,0 (2)[32,2) 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是__________.(2)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是__________.答案 (1)(8,9] (2)(0,1]解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (14分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1, ∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1] =f (x 2-x 1)+f (x 1)-1,[4分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[14分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法.[失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练(时间:40分钟)1.下列函数f (x )中,①f (x )=1x;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)答案 ①解析 由题意知f (x )在(0,+∞)上是减函数.①中,f (x )=1x满足要求; ②中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;③中,f (x )=e x 是增函数;④中,f (x )=ln(x +1)在(0,+∞)上是增函数.2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.答案 b <a <c解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________. 答案 -2解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.答案 [0,34] 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎨⎧ a >0,-4(a -3)4a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.函数f (x )=⎩⎪⎨⎪⎧12log ,x x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x <2,-x +3,x ≥2.当0<x <2时,h (x )=log 2x 是增函数;当x ≥2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.12.定义新运算:当a ≥b 时,ab =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.答案 (-3,-1)∪(3,+∞)解析 由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

高中数学必修一:函数的单调性与最值


返回
2 6.函数 f(x)= 在[-2,0]上的最大值与最小值之差为_____. x- 1
解析:易知 f(x)在[-2,0]上是减函数, 2 4 ∴f(x)max-f(x)min=f(-2)-f(0)=- -(-2)= . 3 3
4 答案: 3
返回
课 堂 考 点突破
练透基点,研通难点,备考不留死角
返回
3.谨防 3 种失误 (1)单调区间是定义域的子集,故求单调区间应以“定义 域优先”为原则.(如冲关演练第 1 题) (2)单调区间只能用区间表示,不能用集合或不等式表示. (3)图象不连续的单调区间要分开写,用“和”或“,” 连接,不能用“∪”连接.
返回
[冲关演练] 1.(2017· 全国卷Ⅱ)函数 f(x)=ln(x2-2x-8)的单调递增区间是 ( A.(-∞,-2) C.(1,+∞) B.(-∞,1) D.(4,+∞) )
返回
考点一
确定函数的单调性区间
[考什么·怎么考]
确定函数的单调性是函数单调性问题的基础,是 高考的必考内容,多以选择题、填空题的形式出现, 但有时也出现在解答题的某一问中,属于低档题目.
[典题领悟]
ax 1.试讨论函数 f(x)= (a≠0)在(-1,1)上的单调性. x-1
返回
x-1+1 1 1 + 解:法一:设-1<x1<x2<1,f(x)=a = a , x - 1 x-1
为减函数, 为增函数;
3 x∈2,+∞时,f(x)=x2-3x
1 当 x∈(0,+∞)时,f(x)=- 为增函数; x+1 当 x∈(0,+∞)时,f(x)=-|x|为减函数.
答案:C
返回
3.函数 f(x)=|x-2|x 的单调减区间是 A.[1,2] C.[0,2] B.[-1,0] D.[2,+∞)

第05节+函数的基本性质(课件帮)2024高考数学一轮复习+PPT(新教材)


条件 A.充分不必要 C.充分必要 【答案】A
B.必要不充分 D.既不充分也不必要
【解析】若函数 f x 在 R 上严格递增,对任意的 x1 、 x2 R 且 x1 x2 , f x1 f x2 ,
由不等式的性质可得 f x1 x1 f x2 x2 ,即 g x1 g x2 ,
所以 a 0 ,即实数 a 的取值范围是 ,0 .故选:D
2.已知 y f x 在定义域 1,1 上是减函数,且 f 1 a f a2 1 ,则 a 的取值范围为( )
A.(0,1) 【答案】A
B.(-2,1)
C.(0, 2 )
【解析】因为 y f x 在定义域 1,1 上是减函数,所以由
2
2
所以,“ f x 在 R 上严格递增” “ g x f x x在 R 上严格递增”.
因此,“ f x 在 R 上严格递增”是“ g x f x x在 R 上严格递增”的充分不必要条件.
故选:A.
方法技巧
定义法 一般步骤为设元—作差—变形—判断符号—得出结论 若f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的上升或下降确定单调
f
x在
,
1 2
上单调递减,D
正确.故选:D.
7.(2020
年全国统一高考数学试卷(文科)(新课标Ⅱ))设函数
f
(x)
x3
1 x3
,则
f
(x)


A.是奇函数,且在(0,+∞)单调递增
B.是奇函数,且在(0,+∞)单调递减
C.是偶函数,且在(0,+∞)单调递增
D.是偶函数,且在(0,+∞)单调递减
03

函数单调性的判断与证明

函数单调性的判断与证明【方法综述】 1.函数的单调性(1).增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.要确定t =g (x )(常称内层函数)的值域,否则无法确定f (t )(常称外层函数)的单调性.3.用定义证明函数单调性中的变形策略由定义证明函数f (x )在区间D 上的单调性,其步骤为:取值→作差→变形→定号.其中变形是最关键的一步,合理变形是准确判断f (x 1)-f (x 2)的符号的关键所在.常见变形方法有因式分解、配方、同分、有理化等,下面举例说明.例1.求证:函数f (x )=x 2-4x 在(-∞,2]上是减函数.证明:设x 1,x 2是(-∞,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(x 21-4x 1)-(x 22-4x 2)=(x 1-x 2)(x 1+x 2-4).因为x 1<x 2≤2,所以x 1-x 2<0,x 1+x 2-4<0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 故函数f (x )在(-∞,2]上是减函数.评注 因式分解是变形的常用策略,但必须注意,分解时一定要彻底,这样才利于判断f (x 1)-f (x 2)的符号.例2.求证:函数f (x )=x 3+1在R 上是增函数.证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 31+1-x 32-1=x 31-x 32=(x 1-x 2)(x 21+x 1x 2+x 22)=(x 1-x 2)⎣⎡⎦⎤⎝⎛⎭⎫x 1+x 222+34x 22. 因为x 1<x 2,所以x 1-x 2<0,⎝⎛⎭⎫x 1+x 222+34x 22>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故函数f (x )在R 上是增函数.评注 本题极易在(x 1-x 2)(x 21+x 1x 2+x 22)处“止步”而致误.而实际上当我们不能直接判断x 21+x 1x 2+x 22的符号,又不能因式分解时,采用配方则会“柳暗花明”.例3.已知函数f (x )=x +1x,求证:函数f (x )在区间(0,1]上是减函数.证明:设x 1,x 2是区间(0,1]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)+⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1x 2-1x 1x 2. 因为x 1<x 2,且x 1,x 2∈(0, 1],所以x 1-x 2<0,0<x 1x 2<1.所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).故函数f (x )在(0,1]上是减函数.评注 同样,我们可以证明f (x )=x +1x在区间[1,+∞)上是增函数.例4.已知函数f (x )=x -1,求证:函数f (x )在区间[1,+∞)上是增函数.证明:设x 1,x 2是区间[1,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-1-x 2-1=x 1-x 2x 1-1+x 2-1 .因为x 1<x 2,且x 1,x 2∈[1,+∞),所以x 1-x 2<0,x 1-1+x 2-1>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 故函数f (x )在[1,+∞)上是增函数.评注 对于根式函数常采用分子或分母有理化变形手段以达到判断f (x 1)-f (x 2)符号的目的. 例5.求函数y =1(x +1)2的单调区间.解:函数y =1(x +1)2的定义域为(-∞,-1)∪(-1,+∞),设t =(x +1)2,则y =1t(t >0).当x ∈(-∞,-1)时,t 是x 的减函数,y 是t 的减函数,所以(-∞,-1)是y =1(x +1)2的递增区间;当x ∈(-1,+∞)时,t 是x 的增函数,y 是t 的减函数,所以(-1,+∞)是y =1(x +1)2的递减区间.综上知,函数y =1(x +1)2的递增区间为(-∞,-1),递减区间为(-1,+∞).例6. 求y =1x 2-2x -3的单调区间.解:由x 2-2x -3≠0,得x ≠-1或x ≠3,令t =x 2-2x -3(t ≠0),则y =1t ,因为y =1t在(-∞,0),(0,+∞)上为减函数,而t =x 2-2x -3在(-∞,-1),(-1,1)上为减函数,在(1,3),(3,+∞)上是增函数,所以函数y =1x 2-2x -3的递增区间为(-∞,-1),(-1,1),递减区间为(1,3),(3,+∞). 【针对训练】1.下列四个函数中,在上为减函数的是( )A .B .C .D .【答案】A【解析】对于选项A,函数的图像的对称轴为开口向上,所以函数在上为减函数.所以选项A 是正确的.对于选项B,在在上为增函数,所以选项B 是错误的. 对于选项C,在在上为增函数,所以选项C 是错误的.对于选项D,,当x=0时,没有意义,所以选项D 是错误的. 2.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f(x)=3-x B .f(x)=x 2-3xC .f(x)=-1x +1 D .f(x)=-|x|【答案】C【解析】当x>0时,f(x)=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f(x)=x 2-3x 为减函数;当x ∈⎝⎛⎭⎫32,+∞时,f(x)=x 2-3x 为增函数;当x ∈(0,+∞)时,f(x)=-1x +1为增函数;当x ∈(0,+∞)时,f(x)=-|x|为减函数.3.若函数y ax =与b y x=-在()0,+∞上都是减函数,则()2f x ax bx =+在()0,+∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增 【答案】B【解析】由函数y ax =与by x=-在()0,+∞上都是减函数,可得0,b 0a <<.则一元二次函数()2f x ax bx=+在()0,+∞上为减函数.故选B.4.定义在R 上的函数()f x 对任意两个不相等实数a ,b ,总有()()0f a f b a b->-成立, 则必有( )A.()f x 在R 上是增函数B.()f x 在R 上是减函数C.函数()f x 是先增加后减少D.函数()f x 是先减少后增加【答案】A【解析】若a b <则由题意()()0f a f b a b->-知,一定有()()f a f b <成立,由增函数的定义知,该函数()f x 在R 上是增函数;同理若a b >,则一定有()()f a f b >成立,即该函数()f x 在R 上是增函数.所以函数()f x 在R 上是增函数.故应选A.5.已知,那么( ) A. 在区间上单调递增 B. 在上单调递增 C. 在上单调递增 D. 在上单调递增【答案】D 【解析】,记,则当时,单调递增,且而在不具有单调性,故A 错误;当时,不具有单调性,故B 错误;当时,单调递增,且而在不具有单调性,故C 错误;当时,单调递减,且而在单调递减,根据“同增异减”知,D 正确.故选:D 6.试讨论函数f(x)=axx -1(a≠0)在(-1,1)上的单调性. 【解析】设-1<x 1<x 2<1,f(x)=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f(x 1)-f(x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a>0时,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),函数f(x)在(-1,1)上递减; 当a<0时,f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),函数f(x)在(-1,1)上递增.综上,当a>0时,f(x)在(-1,1)上单调递减;当a<0时,f(x)在(-1,1)上单调递增.7.已知a>0,函数f(x)=x +ax (x>0),证明:函数f(x)在(0,a]上是减函数,在[a ,+∞)上是增函数.【解析】任意取x 1>x 2>0,则f(x 1)-f(x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-ax 2=(x 1-x 2)+ax 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 此时,函数f(x)=x +ax(a>0)在(0,a]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0,有f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),此时,函数f(x)=x+ax(a>0)在[a,+∞)上为增函数;综上可知,函数f(x)=x+ax(a>0)在(0,a]上为减函数,在[a,+∞)上为增函数.8.已知函数的图象经过点(1,1),.(1)求函数的解析式;(2)判断函数在(0,+)上的单调性并用定义证明;【答案】(1).(2)见解析.【解析】(1)由f(x)的图象过A、B,则,解得.∴(x≠0).(2)证明:设任意x1,x2∈0+∞(,),且x1<x2.∴.由x1,x2∈0+∞(,),得x1x2>0,x1x2+2>0.由x1<x2,得.∴,即.∴函数在0+∞(,)上为减函数.9.已知函数在上满足,且,.(1)求,的值;(2)判断的单调性并证明;【答案】(1);(2)单调递增,证明见解析;(3).【解析】(1)令,即可得到,再令,可得,令即可求得;(2)单调递增,证明:任取且,则,,因为,所以,所以在上单调递增.10.已知定义在区间上的函数满足,且当时,. (1)求的值;(2)证明:为单调增函数;(3)若,求在上的最值.【答案】(1)f(1)=0.(2)见解析(3)最小值为﹣2,最大值为3.【解析】试题分析:(1)利用赋值法进行求的值;(2)根据函数的单调性的定义判断在上的单调性,并证明.(3)根据函数单调性的性质,并利用赋值法可得函数的最值.试题解析:(1)∵函数f(x)满足f(x1•x2)=f(x1)+f(x2),令x1=x2=1,则f(1)=f(1)+f(1),解得f(1)=0.(2)证明:(2)设x1,x2∈(0,+∞),且x1>x2,则>1,∴f()>0,∴f(x1)﹣f(x2)=f(x2⋅)﹣f(x2)=f(x2)+f()﹣f(x2)=f()>0,即f(x1)>f(x2),∴f(x)在(0,+∞)上的是增函数.(3)∵f(x)在(0,+∞)上的是增函数.若,则f()+f()=f()=﹣2,即f(•5)=f(1)=f()+f(5)=0,即f(5)=1,则f(5)+f(5)=f(25)=2,f(5)+f(25)=f(125)=3,即f(x)在上的最小值为﹣2,最大值为3.。

函数的单调性1

那么就说f(x)在这个区间上是减函数.函数是增函数还是减 函数.是对定义域内某个区间而言的.有的函数在一些区间上 是增函数,而在另一些区间上可能是减函数,例如函数 y=x2,当x∈[0,+∞]时是增函数,当x∈(-∞,0)时是减函数.
4.复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u) 的单调性密切相关,其规律如下:
2.定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)
在区间[0,+∞)的图象与f(x)的图象重合,设a<b<0,给出
下列不等式:
①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a)
函数
单调性
u=g(x)


y=f(u)


y=f[g(x)]





减பைடு நூலகம்


注意:函数的单调区间只能是其定义域的子区间 返回
课前热身
1.下列函数中,在区间(-∞,0)上是增函数的是( B )
(A)f(x)=x2-4x+8 (B)g(x)=ax+3(a≥0)
(C)h(x)=-2/(x+1) (D)s(x)=log(1/2)(-x)
要点·疑点·考点
1.函数的单调性 一般地,设函数f(x)的定义域为 I : 如果对于属于定义域 I 内某个区间上的任意两个自变量的
值x1 , x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这
个区间上是增函数.如果对于属于定义域I内某个区间上的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
级数 1 2 3 … 9 全月应纳税所得额x 不超过500元部分 超过500元至2000元部分 超过2000元至5000元部分 … 超过10000元部分 税率 5% 10% 15% … 45%
探究拓展1:设函数f(x)=x2-2x+3.
(1)当x∈R时, 求函数f(x) 的最小值.
(2)当x∈[-4,-2]时, 求函数f(x) 的最小值.
. .
4.“依法纳税是每个公民应尽的义务”, 国家收个人工资、薪金所得税是分段 计算的, 总收入不超过1000元的免征个 人工资、薪金所得税; 超过1000元部分 需征税, 设全月纳税所得额(所得额指工 资、薪金中应纳税的部分)为x , x=全月 总收入-1000元, 税率见下表:
(1)若应纳税额为f (x) , 试用分段函数表 示1-3级纳税额f (x)计算公式; (2)某人2005年10月份工资总收入为 4200元, 试计算这个人10月份应纳个人所 得税多少元?
作业: 1.教学案18; 2.订正整理本周教学案与练习; 3.复习3(删去第18题).
单调减函数 设函数y=f(x)的定义域为A, 区间I⊆A. 如果对于区间I内的任意两 个值x1,x2,若当x1<x2时,都 有f(x1)>f(x2),那么就说y=f(x) 在区间I上是单调减函数, I称为y=f(x)的单调减区间.
y
f ( x1 )
f ( x2 )
O
x1
x2x想一想:Fra bibliotek何用两句通俗的话来概括增函 数、减函数的定义? y
单调增函数 设函数y=f(x)的定义域为A, 区间I⊆A. y 如果对于区间I内的任意两 个值x1,x2,若当x1<x2时,都 有f(x1)<f(x2),那么就说y=f(x) O 在区间I上是单调增函数, I称为y=f(x)的单调增区间.
f ( x2 )
f ( x1 )
x1
x2
x
请你类比给出单调减函数、 单调减区间的定义.
18.函数的单调性
请同学们结合成语“蒸蒸日 上”“跌宕起伏”“每况愈下”的含义, 画出相应的函数图象.
y
y=x+1
(1)一次函数;(2)二次函数;(3)反比例函数.
y y=x2
-1
-1
y
1
y
1 x
x
x
1
x
如何用数量关系描述图象的上升? y
f(x2)
f(x1)
O
x
1
x
2
x
形: 图象呈上升的趋势 数: x不断增大,y也不断增大
思考
问题 讨论函数 f
y
(x)
x x 1
的单调性.
1
-1
O
实际问题 在1千克水 中,加入一定量的糖, 糖加得越多糖水就越 x 甜.你能运用所学过 的数学知识来解说这 一现象吗?
讲评作业:
1.若函数y=f(x)的图象经过点(0,-1),那 么函数y=f(x+4)的图象经过 .
2.不等式|1-3x|≥5的解集为 3.不等式|2x+7|<1的解集为
练习6. ①函数y=x2-6x在(-∞,a)上是减函数, 则实数a的取值范围是 . ②函数y=x2-ax在(-∞,0)上是减函数, 则实数a的取值范围是 .
课堂小结
1、单调性的定义. 2、求单调区间. ——图象法 3、判断、证明单调性方法. ——定义法
利用定义证明函数单调性的步骤: ⑴取值:任取x1,x2∈I,且x1<x2; ⑵作差:f(x1)-f(x2); ⑶变形:(通分、因式分解、配方、分 子分母有理化等); 关键得到:x1-x2; ⑷定号:判定差的正负(注意理由要充 分); ⑸判断、下结论.
4. f ( x ) 2009.
例1、如下图是定义在闭区间[-5,5]上的 函数y=f(x)的图象,根据图象说出y=f(x) 的单调区间,以及在每一单调区间上, 函数y=f(x)是增函数还是减函数.
解:函数f(x)的单调区间有 [-5,-2],[-2,1],[1,3],[3,5], 其中f(x)在区间[-5,-2],[1,3]上是减函数, 在区间[-2,1],[3,5]上是增函数.
例2.求下列函数的单调区间:
x 0, x 1, ( 3 ). h ( x ) 2 x 2 x , x 0.
思考1:已知上面的函数h(x)在(-∞,a)上 为增函数,则实数a的取值范围 是 .
例2.求下列函数的单调区间:
x 0, x a, ( 4 ). h ( x ) 2 x 2 x , x 0.
思考2:已知上面的函数h(x)在(-∞,1)上 为增函数,则实数a的取值范围 是 .
例3.已知函数 f ( x ) x
9 x
证明函数f(x)在[3,+∞)是增函数.
任 证明: 取 x 1 , x 2 [ 3 , ), x 1
x2 ,
①取值


9 9 y1 y 2 x 1 x2 x1 x2
x1
x2
9 x 2 x1 x1 x 2
9 9 x1 x 2 x2 x1

x1
x2
x1 x 2 9 x1 x 2

x 1 , x 2 [ 3 , ), x 1 x 2 , y 1 y 2,
x 1 x 2 0, x 1 x 2 9, 0,
②比较
∴函数f(x)在[3,+∞)是增函数.③结论
【点评】用定义证明函数单调性的步 结论 取值 作差变形 定号 骤:(1)___;(2)_______;(3)____;(4)____.
练习: 1.判断并证明函数y=x2+4x的单 调性.
f ( x1 )
f ( x2 )
y
f ( x1 )
f ( x2 )
O
x1
x2
x
O
x1
x2
x
• 单调性、单调区间 1.若函数y = f(x)在区间I上是单调增函 数或单调减函数,那么就说函数y = f(x)在区间I上具有单调性; 2.单调增区间和单调减区间统称为单调 区间. 3.函数的单调性是函数的“局部性质”, 讨论函数的单调性要强调在确定的区 间上.
2.证明函数
y
x
在(0,+∞)上是增函数;
3.判断函数y=2x3+4的单调性.
练习4.已知函数f(x)定义域为R, 且f(1)<f(2),则f(x) ④⑤ . ①是R上的增函数 ②是R上的减函数 ③是R上的常数函数 ④在R上单调性不能确定 ⑤不是R上的减函数
练习5.判断下列说法是否正确: ①函数y=3x+1(x∈Z)在Z上是增函数; ②任意函数都有单调性; ③一次函数在定义域上是单调函数; ④反比例函数在定义域上是单调函数; ⑤函数y=x2-6x在(-∞,0)上是减函数.
辨析:[-2,1]∪[3,5]
×
例2.求下列函数的单调区间:
(1). f ( x ) x 3 1;
x 0, x 1, ( 2 ). g ( x ) 2 x 2 x , x 0.
点评:函数的单调性的几何意义就是函 数图像的变化趋势,从左向右看,上升趋 势对应增区间,下降趋势对应减区间.图 象法是求函数单调区间的直观易行之法.
练一练.说说下列函数的单调性:
1 . f ( x ) 2 x 3; 2. f ( x ) x 6 x;
2
f ( x ) kx b k 0
2
3. f ( x )
1 x
f ( x ) ax bx c a 0
k x
;
f (x)
k
0
(3)当x∈[-1,3]时, 求函数f(x) 的最小值.
(4)当x∈[2,5]时, 求函数f(x) 的最小值.
(5)当x∈[a,a+2]时, 求函数f(x) 的最小值.
探究拓展2:设函数g(x)=(x-a)2+1.
(1)当x∈[1,3]时, 求函数g(x) 的最小值.
(2)当x∈[1,3]时, 求函数g(x) 的最大值.
相关文档
最新文档