光子晶体
光子晶体的特征

光子晶体的特征光子晶体是一种具有周期性介电常数或折射率的光学材料,其特点是在某些频率范围内产生布拉格反射,形成光子带隙。
这种材料结构的存在使得它在光学传输、光纤通信、光学传感、太阳能电池等领域都有广泛的应用。
1. 呈周期性结构光子晶体的具有周期性的介电常数或折射率,呈现出周期性结构。
这种结构的存在使得光子晶体在特定频率范围内的光子带隙形成,产生高效的布拉格反射。
这种特殊的反射现象使得光子晶体在光学传输、光纤通信、光学传感等领域都有广泛的应用。
2. 光子晶体的色散特性光子晶体可以通过改变其周期性结构来调节其色散特性。
因此,光子晶体可以作为光学器件中的色散补偿器使用。
这种特性使得光子晶体在光学通信、激光器等领域有广泛的应用。
3. 具有高度选择性光子晶体具有高度的选择性,可以选择性地传递某些频率的光,而过滤掉其他频率的光。
这种特性被广泛应用于光学传感和光学滤波器等领域。
4. 具有非线性光学特性光子晶体具有非线性光学特性,可以通过改变其结构来调节其非线性光学特性。
这种特性使得光子晶体可以用来制备光学调制器和光学开关等器件,以及在生物医学成像和激光技术中有广泛的应用。
5. 具有可控光学性质光子晶体的光学性质可以通过改变其结构来调节。
这种可控性使得光子晶体在光学器件中具有广泛的应用,如可调谐滤波器、可调谐激光器等。
6. 可以制备多种材料光子晶体可以由多种材料制备,包括聚合物、玻璃、氧化物等,可以根据需要选择不同的材料来制备不同性质的光子晶体,这种特性使得光子晶体在不同领域有广泛的应用。
光子晶体作为一种具有周期性介电常数或折射率的光学材料,具有许多特殊的光学性质,如高度的选择性、非线性光学特性、可控光学性质等。
这些特性使得光子晶体在光学传输、光纤通信、光学传感、太阳能电池等领域都有广泛的应用。
光子晶体及其在激光电磁学中的应用

光子晶体及其在激光电磁学中的应用光子晶体是一种具有周期性结构的材料,其晶格常数比可见光波长要小得多,所以具有对光的完美控制特性,其光学性质优于普通的材料。
因此,光子晶体在激光电磁学中有着广泛的应用。
一、光子晶体的构造及其特性光子晶体是一种由周期性结构单元构成的材料,其周期性结构单元必须满足材料中的光子能够在其中传播的条件,也就是说,其周期应该与波长相当。
光子晶体可以用于在某些特定波段和极化状态下完美地反射和透射光线,其光学特性与普通材料不同。
光子晶体的物理特性随着结构和材料的变化而发生变化。
通过调整其内部的构造和成分,可以实现对光场的高度定制,可以控制光的传播方向、速度、损耗等性质。
光子晶体还具有非线性光学性质,可以产生与普通材料不同的非线性光学效应。
二、光子晶体在激光电磁学中的应用光子晶体是一种典型的光学材料,其在激光电磁学中有着很多的应用。
1. 光子晶体光纤光子晶体光纤是一种由光子晶体材料制成的光纤,受到物理尺寸和波长限制的传统光纤无法彻底解决多模干扰问题,导致光纤通信中的数据传输质量下降。
与传统光纤相比,光子晶体光纤的中心井宽和周期性结构单元的数量可以调整,改变传播模式,可实现单模传输,光传输带宽更大,并且混合模式可以避免在传输中的失真。
因此,光子晶体光纤可以用于长距离通讯、高速通讯、卫星通讯等领域。
2. 光子晶体激光器光子晶体激光器是一种基于光子晶体材料制成的激光器,可以用于光通信、光信息存储等领域。
光子晶体激光器利用光子晶体中的光子能带结构,实现了高效的光增强效应,它的光学特性比传统的激光器具有更好的稳定性和更高的高功率输出。
光子晶体激光器也可以实现波长调制,可以在大范围内实现波长调整,具有优良的单模性、高精度和低成本等优点。
这种波长可调激光器可以用于激光雷达、气体探测、医学诊断等领域。
3. 光子晶体光学振荡器光子晶体光学振荡器是一种基于光子晶体材料制成的光学器件,有着极高的透过率和较低的损耗率。
光子晶体能带计算

光子晶体能带计算
摘要:
1.光子晶体的概念
2.光子晶体原理
3.光子晶体能带计算方法
4.光子晶体在现代科技中的应用
5.总结
正文:
光子晶体是一种具有周期性结构的光学材料,其内部折射率不同,可以对光波进行散射和限制。
在光子晶体内部的波导可以具有非常尖锐的低损耗弯曲,这可以使集成密度增大多个数量级。
光子晶体原理是由苏联科学家
V.G.Veselago 在1968 年提出的左手介质理论,而美国物理学家D.R.Smith 在2000 年做出了人工左手介质。
光子晶体能带计算方法是通过研究光子晶体中的光子带隙,即在某一频率范围内的光波将发生反射,而不是通过晶体传播。
移除晶体结构中的部分砷化镓晶柱后,将产生适合带隙内频率的波导,随后光可以沿波导几何轮廓传播。
光子晶体在现代科技中的应用非常广泛,例如在集成光子学领域,光子晶体可以作为光波导、光开关、光调制器等光学器件。
此外,光子晶体还可以用于太阳能电池、LED 照明、光纤通信等领域。
总之,光子晶体是一种具有特殊光学性质的材料,其原理和能带计算方法为现代科技提供了新的解决方案。
光子晶体理论和制备技术

光子晶体理论和制备技术
光子晶体,也叫光子带隙材料,是一种具有高度有序结构的材料,具有一定的光学特性和电学特性,并且对光的波长或频率具
有选择性反射和传输的能力,可广泛应用于光波分析、信息存储、光电通信、传感等领域。
光子晶体的理论基础是布拉格反射定律和光子带隙理论。
布拉
格反射定律是指入射角等于反射角时,波在介质中传播时受到空
间周期性折射的现象。
光子带隙理论是指光子晶体对特定的波长
或频率的光有反射作用,对剩余波长或频率的光则有透过作用,
并且反射率可以非常高,甚至接近于100%。
制备光子晶体有多种方法,包括自组装法、溶胶-凝胶法、气相沉积法等。
其中自组装法是一种简单易行的方法,是指让颗粒自
发地在表面自组装到一定程度,形成一定的空间排布结构。
溶胶-
凝胶法是将溶胶液加热,使其蒸发形成凝胶体,通过煅烧或热处
理形成光子晶体。
气相沉积法是通过高温化学气相沉积,沉积出
一定厚度的半导体晶体。
光子晶体的应用领域非常广泛。
例如,在生物检测领域,通过
改变光子晶体的结构和成分,可以制备出高灵敏度的生物传感器,
用于检测细胞生长状态和传染病细菌感染情况等。
在光波分析领域,利用光子晶体的选择性反射能力,可以制备出高精度光纤陀螺仪等精密仪器,用于测量光波的频率、相位和强度等。
总的来说,光子晶体是一种非常重要的材料,具有广泛的应用前景和丰富的理论基础,近年来在科研和实践中得到越来越广泛的关注和应用。
光子晶体原理及应用

一、绪论1.1光子晶体的基本概念光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。
在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。
人们又将光子晶体称为光子带隙材料。
与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。
一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。
实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。
二维光子晶体是介电常数在二维空间呈周期性排列的结构。
光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。
1.2光子带隙光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。
研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。
所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。
所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。
总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。
二、光子晶体的晶体结构和能带结构特性研究2.1一维光子晶体的传输矩阵法设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的折射率是nb,厚度为hb,那么周期d=a+b,A、B总层数为N。
以AB材料进行仿真计算。
仿真程序clear allna=2.35;nb=1.38;ha=63.8e-9;hb=108.7e-9;yeta1=na;yeta2=nb;yeta0=1;bo=400:1:900;derta1=(2*pi*na*ha)./(bo*1e-9);derta2=(2*pi*nb*hb)./(bo*1e-9);num=length(bo);for j=1:num;Ma=[cos(derta1(j)),-i*sin(derta1(j))./yeta1;-i*yeta1*sin(derta1(j)),cos(derta1(j))]; Mb=[cos(derta2(j)),-i*sin(derta2(j))./yeta2;-i*yeta2*sin(derta2(j)),cos(derta2(j))]; Mab=Ma*Mb;N=10;M=Mab^N;Rfan(j)=abs((M(1,1)*(yeta0)+M(1,2)*(yeta0)*(yeta0)-M(2,1)-M(2,2)*(yeta0))./(M(1, 1) *(yeta0)+M(1,2)*(yeta0)*sqrt(yeta0)+M(2,1)+M(2,2)*(yeta0)))^2;endfigure(1);plot(bo,Rfan,'k');box on;首先,我们A材料的折射率为2.35,B材料的折射率为1.38,AB材料组成的光子晶体的介质层数为10层,进行了matlab仿真,得到如下的图形然后我们更改介质层数为20层:最后我们更改介质层数为30层:对比以上三个图我们可以看出,一维二元光子晶体的投射特性与组成光子晶体的介质层数有关,介质层周期越大,越有利于形成禁带。
光子晶体和光子晶体结构

光子晶体和光子晶体结构光子晶体是一种具有周期性层状结构的材料,其特点是能够控制光波的传播和调制。
光子晶体的研究和应用在光学、电子、通信等领域有着广泛的应用前景。
光子晶体结构的形成是通过改变材料中介质折射率的分布而实现的。
光子晶体的基本单元是具有不同折射率的周期性结构,每个单元的尺寸一般在光波的波长范围内。
通过改变周期性结构的尺寸和形状,可以调控光的传播速度、频率和波长选择性。
光子晶体能够形成光子带隙,使光波在特定频率范围内被禁止传播,这种特性使得光子晶体在光学器件设计和光学信号处理中具有重要的作用。
在光子晶体的研究中,最常见的结构包括一维、二维和三维的光子晶体。
一维光子晶体是由多个介质层交替叠加而成,如Fabry-Perot腔、DBR腔等,可用于制备窄带滤波器和调制器。
二维光子晶体是由周期性排列的柱状或球状结构组成,可用于制备光学波导、微透镜和分光器。
三维光子晶体具有更复杂的结构,可以形成全息拓扑结构,制备出具有高度对称性和复杂功能的光学器件。
光子晶体的制备通常采用自组装、光刻、溶胶凝胶法等方法。
其中,自组装是一种常用的方法,通过微流控技术和界面控制来实现光子晶体的组装。
自组装方法可以制备出具有高度有序结构和周期性的光子晶体,并且具有较高的可扩展性和可控性。
光子晶体的应用涵盖了众多领域。
在光学传感方面,光子晶体可以通过改变环境折射率来实现对光波传播的调控,从而实现对环境中物质浓度、温度和压力等参数的检测。
在光学通信中,通过光子晶体的结构设计和调控,可以实现高效率的光信号传输和调制,提高通信系统的性能。
此外,光子晶体还可以应用于光子计算、光子集成电路、太阳能电池和光子器件等领域。
光子晶体的研究还面临着一些挑战。
首先,光子晶体的制备技术需要进一步发展,提高自组装方法的可控性和稳定性。
其次,光子晶体的性能和应用还需要深入研究,特别是在高温、高压和强光照射等复杂环境下的应用。
最后,光子晶体在制备成本和规模化生产方面还存在一定的限制,需要寻找更加经济和可行的制备方法。
光子晶体
光子晶体光子晶体(Photonic Crystal)指能对光作出反应的特殊晶格。
光子晶体是指能够影响光子运动的规则光学结构,这种影响类似于半导体晶体对于电子行为的影响。
光子晶体以各种形式存在于自然界中,科学界对它的研究已经长达一百年。
原理光子晶体是在1987年由S.John和E.Yablonovitch分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。
由于介电常数存在空间上的周期性,引起空间折射率的周期变化,当介电系数的变化足够大且变化周期与光波长相当时,光波的色散关系出现带状结构,此即光子能带结构(Photonic Band structures)。
这些被禁止的频率区间称为“光子频率带隙”(Photonic Band Gap,PBG),频率落在禁带中的光或电磁波是被严格禁止传播的。
我们将具有“光子频率带隙”的周期性介电结构称作为光子晶体。
特别需要指出的是,介电常数周期性排列的方向并不等同于带隙出现的方向,在一维光子晶体和二维光子晶体中,也有可能出现全方位的三维带隙结构。
应用光子晶体体积非常小,在新的纳米技术中、光计算机、芯片等领域有广泛的应用前景。
使用光子晶体制造的光子晶体光纤,也有比传统光纤更好的传输特性,可以进而应用到通信、生物等诸多前沿和交叉领域。
2005年美国的研究人员成功地使用两种新式二维光子晶体,将光的群速度降低了超过一百倍。
这项装置未来可望被应用于各种光学系统及元件中,其中包括高功率、低阈值的光子晶体激光。
光子晶体也可以将拉曼光讯号放大一百万倍。
英国的Mesophotonics宣称,该公司于2005年的Photonics West会议中发表这种结合光子晶体与表面增强拉曼光谱术(surface enhanced Raman spectroscopy, SERS)的产品,由于灵敏度超高,未来可望应用在医疗诊断、药物输送,以至于环境监控上。
光子晶体光纤光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。
光子晶体
光子晶体绪论光子晶体是一种在微米亚微米等光波长的量级上折射率呈现周期性变化的介质材料,按照其折射率变化的周期性,可以分为一维、二维和三维光子晶体。
光子晶体的概念首先在1987年被E.Yablonovitch提出[1]。
1991年,由E. Yablonovitch制成了第一个微波波段的光子晶体后,随着各种工艺的发展,多种多样的晶体结构陆续的被制备出来,许多理论预测得到了验证。
光子晶体的原理光子晶体的原理是从类比晶体开始的。
晶体中原子的周期性的排列使晶体中产生了周期性的势场,当电子在这种周期性势场中运动时会受到布拉格散射,从而形成能带结构。
带与带之间可能存在带隙,电子波的能量如果落在带隙中,就无法继续传播。
不论电磁波还是其它波(如光波),只要受到周期性调制,都有能带结构,也都可能出现带隙,而能量落在带隙中的波一样也不能传播。
光子晶体是在高折射率材料的某些位置周期性地出现低折射率(如人工造成的气泡)的材料,高低折射率的材料交替排列形成周期性结构就可以产生光子晶体带隙,从而由光带隙结构控制着光在光子晶体中的运动[2~5]。
自然界中存在一些有着光子晶体结构的物质,例如用来装饰的蛋白石( Opal),还有一种深海老鼠身上的毛以及一种特殊的蝴蝶翅膀上的粉,它们在不同的角度反射不同波长的光。
通过研究发现它们都是由大小均匀的微米、亚微米量级的结构密堆积而成的[6~7]。
参见图1~5。
但是,这些都是粗糙的光子晶体,因为它们没有形成完全的禁带的形成与大小同两种材料的折射率的差、填充比以及排列方式有着密切的联系。
一般说来,两种材料的折射率差值越大,就越有可能形成光子禁带,当两种材料的折射率差大于2的情况,可以形成完全禁带。
在自然界尚未曾发现此类的晶体。
因实验研究使用的光子晶体必须经过人工制备。
常见的光子晶体的制备方法有自然生长法,机械制备法,光刻法,光学方法,化学刻蚀方法,薄膜生长法,胶体自组织密堆积方法,反蛋白石光子晶体合成方法等[8~13]。
光子晶体简介-精品文档
三、光子晶体制备
• 光子晶体在自然界是存在的,例如用来装饰的乙烯(折 射率为1.59),理论计算表明由这些材料构成的面心立 方结构的胶体晶体没有光子带隙.对于相对低于空气折 射率的小球与空气空穴造成的折射率差别不足以形成 三维带隙的缺点,人们用以下方法试图克服这个困难使 用TiO2来填充颗粒中的空气间隙,而TiO2有较高的折射 率,最终将颗粒溶解,留下紧密排列的TiO2包围的球状空 气空穴.这样就可以形成三维的光子禁带了.但是这种方 法的缺点也很大,就是在制备的过程中会引入很多很多 的缺陷,而且这些缺陷很难控制,这就使该方法很难应用 。
二、光子晶体应用
1.利用光被禁止出现在光子晶体带隙中作面发射的 激光器 • 可以将发光层置于光子晶体之中,使其发光波长恰 好落于光子晶体的禁带之中.由于这些波长的光是 禁止的,因而可以抑制发光层的自发辐射.而如果通 过引入缺陷就可使原来的晶体的禁带之中出现允 许态,因而这些对应的波长的光就能够产生,这可以 用来制备面发射的激光器
光子晶体简介
目录
光子晶体原理
光子晶体应用 光子晶体制备
一、光子晶体原理
• 光子晶体的原理首先是从类比晶体开始的.对于晶体我 们可以看到原子是周期性有序排列的,正是这种周期性 的排列,才在晶体之中产生了周期性的势场.这种周期势 场的存在,使得运动的电子受到周期势场的布拉格衍射, 从而形成能带结构,带与带之间可能存在带隙.电子波的 能量如果落在带隙中,就无法继续传播。 • 与之类似,光子晶体中是折射率的周期性变化产生了 光带隙结构,从而由光带隙结构控制着光在光子晶体中 的运动.光子晶体是在高折射率材料的某些位置周期性 的出现低折射率(如人工造成的空气空穴)的材料。
3.制备低阈值的激光器
• 当材料可以发射很宽范围内的光时,只有符合缺陷 模式要求的波长的光波都可以在该材料中自由穿梭 而被扩增. • 在这样的材料外层用反射性材料制成“镜子”从而 形成一个激光发射腔.被选择的光不断被连续反射 从而频繁穿梭于光子晶体中间,故此强度不断被集 中而增强.同时,其它波长的光被光子晶体内部吸收 而无法继续增大.这意味着可以简单地得到很窄波 长范围内的激光发射器.
光子晶体
4 1.2% Compressively Strained InGaAsP QWs Slab thichness: 10nm QWs separated by 23nm barriers Lattice constant: = 550nm, Radius of the holes: d=215nm Central defect cavity: 19 holes
Core diameter: 10.5m
PCF 制备工艺
带隙宽度可调PCF
Holes filled with air: TIR n589nm=1.80 2000-1 band gap
Holes filled with high n liquid : PBG 3dB band width for gaps=1400nm
PCF 制备工艺
单模有机聚合物光子晶体光纤
PCF 特性
1. 宽带低损单模传输
Near-field pattern
Interstitial holes
Nearfield pattern
528 nm
458 nm
Far-field pattern
633 nm 528 nm 458 nm
The relative intensities of the six lobes was varied and nearly equal. No other mode field patterns are observed confined to defect region. No confined mode could be observed at 633nn.
(c )(d) Patterned photonic crystals with high aspect ratios
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Part Three 光子晶体的应用 光子晶体反射器件
C
由于光子晶体中不允许光子频率禁带范围内的光子的存在,所 以当一束光子频率禁带范围内的光子入射到光子晶体上时,这 束光子将被全反射回去。
利用这一点可以制造出高品质的反射镜,特别是在短波长区域, 金属对光波的损耗很大,而介质对光波的吸收损耗非常小,因 此用介质材料所做成的光子晶体反射镜具有无损耗圈。
Part Three 光子晶体的应用 光子晶体光纤
B
传统的光纤中,不同波长的光穿过光纤纤芯的速度不同, 用于长 距离传输时,信号将出现时间延迟。此外, 传统光纤的损耗也是 个问题
光子晶体弯曲波导利用的是不同方向缺陷模共振匹配原理,原则 上只要达到模式匹配, 不论转多大弯,都能达到很高的传输效率。 这种弯曲效应在全光集成系统中很有应用价值。光子晶体带隙特 性不但保证了能量传输中的基本无损失, 而且不会出现延迟等影 响数据传输率的现象。
D
THANK YOU
Part Three 光子晶体的应用 光子晶体滤波器 由于光子晶体具有光子频率禁带,频率在禁带区内的光子是不 能在光子晶体中存在的。因此,一块光子晶体就是一个自然的 理想带阻滤波器。 宽带带阻滤波器:和传统滤波器相比,光子晶体滤波器的滤波带 宽可以做的比较大。由S.Gupta等人提出的金属-介质复合型光 子晶体可以将从低频(频率接近0Hz)直到红外波段的电磁波完 全滤掉。 极窄带选频滤波器:在光子晶体中引入可在光子带隙中造成很窄 缺陷模的“空穴”,只有与缺陷模相匹配的波可在材料中传播。
被禁止的频率区间称为“光 子频率禁带”,而具有这种 性质的材料为光子晶体
介电常数呈周期性分布的 介质中,光的某些频率被 禁止
Part One 光子晶体的产生 由于周期结构的相似性,普通晶体概念被引入光子晶体
普通晶体
能带 能隙 能态密度
光子晶体
能带 能隙 能态密度
价带
导带
介电带
空气带
光子晶体由两种介电常数不同物质构成,低介电物质采用空气
Part Two 光子晶体的特性 光子晶体与电子晶体的比较
Part Two 光子晶体的特性 光子禁带 光子禁带( photonic band gap , PBG )是光子晶体最根本的特性,频 率落在禁带中的电磁波, 无论其传播方向如何,都是禁止传播的。光 子禁带依赖于光子晶体的几何结构和介电常数比, 比例越大越可能出 现带隙。光子晶体结构对称性越差,其简并度越低, 越容易出现光子 禁带。 受抑的自发辐射 光子局域
光子晶体浅谈
1
1
光子晶体的产生
2 3
光子晶体的特性
光子晶体的应用
Part One 光子晶体的产生
ቤተ መጻሕፍቲ ባይዱ
Part One 光子晶体的产生
电子产业发展的极限
光子作为信息载体替代电子
电子器件基于电子在半导体 中运动
光子子器件基于光子在光子 晶体中运动
Part One 光子晶体的产生 1987年,由S.John和E.Yablonovitch提出概念 晶体中周期性排列的原子产 生周期性电势场对电子有一 个特殊的约束作用 类比
Part Two 光子晶体的特性
Part Two 光子晶体的特性
光子晶体具有周期性结构
光子晶体是一种介电常数周期性排列的材料,可以将其分为一维 光子晶体,二维光子晶体,三维光子晶体
Part Two 光子晶体的特性 光子晶体与电子晶体的比较: (1)特征方程:
电子晶体:
光子晶体:
(2)色散关系: 电子能带结构:电子能量与波矢关系 光子能带结构:光子能量与频率关系 (3)电子自旋为1/2,可用标量波近似方程 描述;光子自旋为1,可用矢量波理论精确描述
Part Three 光子晶体的应用
Part Three 光子晶体的应用
A
光子晶体滤波器
微波天线
D
D
光子晶体反射器件
C
B
光子晶体光纤
Part Three 光子晶体的应用
A
微波天线
传统微波天线制备方法是将天线直接制备在介质基底上,导致大 部分的能量损失在基底之中, 而且带来基底的热效应。 利用光子晶体可以设计出针对某微波频段的光子晶体,并将其 作为天线的基片, 因为此微波波段落在光子晶体的禁带中, 基 底不会吸收微波, 实现了无损耗全反射,把能量全部发射到空中, 很大程度上提高了天线的发射效率。第一个以光子晶体为基 底的偶极平面微波天线于 1993年在美国研制成功。