导数知识点总结复习

合集下载

总结导数的知识点归纳

总结导数的知识点归纳

总结导数的知识点归纳一、导数的概念1. 导数的定义导数是描述函数在某一点处的变化率的概念。

如果函数f(x)在点x处可导,那么它的导数表示为f'(x),即函数f(x)在点x处的导数为f'(x)。

导数可以理解为函数曲线在该点处的切线的斜率,它描述了函数在该点附近的变化情况。

2. 函数的可导性函数在某一点可导,意味着该点处函数曲线存在切线,并且切线的斜率存在有限值。

如果函数在某一点处可导,那么该点也称为函数的导数存在的点。

函数在某一点处可导的充分必要条件是该点处函数的左极限和右极限存在且相等。

3. 导数的图像解释函数的导数可以理解为函数曲线在该点处的切线斜率。

当函数曲线上升时,导数为正;当函数曲线下降时,导数为负;当函数曲线水平时,导数为零。

函数曲线的凸凹性可以通过导数的正负来判断。

二、导数的性质1. 可导函数与连续函数可导函数必定是连续函数,但是连续函数不一定可导。

可导函数的导数在其定义域内连续,也就是说,可导函数的导数也是连续函数。

2. 导数的四则运算函数的导数满足四则运算的性质。

设函数f(x)和g(x)在点x处可导,那么它们的和、差、积、商的导数分别为(f+g)' = f' + g',(f-g)' = f'-g',(fg)' = f'g + fg',(f/g)' = (f'g - fg') / g^2。

3. 复合函数的导数复合函数的导数可以通过链式法则来求导。

设函数y=f(u)和u=g(x)都可导,那么复合函数y=f(g(x))的导数为f'(g(x))g'(x)。

4. 高阶导数函数的导数也可以再求导,得到的导数称为原函数的高阶导数。

高阶导数的符号表示一阶导数的凸凹性。

三、导数的计算方法1. 导数的基本求导法则导数的基本求导法则包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数以及反三角函数的导数等。

求导公式知识点归纳总结

求导公式知识点归纳总结

求导公式知识点归纳总结一、基本导数公式1. 基本导数:函数y = k,y' = 0 (常数函数导数为0)函数y = x^n,y' = nx^(n-1) (幂函数的导数是指数减1乘以原指数)函数y = sinx,y' = cosx (正弦函数的导数是余弦函数)函数y = cosx,y' = -sinx (余弦函数的导数是负的正弦函数)函数y = e^x,y' = e^x (指数函数自身的导数是自身)2. 基本导数的性质:(1)常数法则:若f(x) = k,f'(x) = 0(2)幂法则:若f(x) = x^n,f'(x) = nx^(n-1)(3)和差法则:若f(x) = g(x) ± h(x),f'(x) = g'(x) ± h'(x)(4)积法则:若f(x) = g(x) * h(x),f'(x) = g'(x) * h(x) + g(x) * h'(x)(5)商法则:若f(x) = g(x) / h(x),f'(x) = (g'(x) * h(x) - g(x) * h'(x)) / (h(x))^2 (6)复合函数法则:若f(x) = g(h(x)),f'(x) = g'(h(x)) * h'(x)3. 根据基本导数公式,我们可以求出一些特殊函数的导数,比如:(1)常数函数 f(x) = c,导数为 f'(x) = 0(2)幂函数 f(x) = x^n,导数为 f'(x) = nx^(n-1)(3)指数函数 f(x) = e^x,导数为 f'(x) = e^x(4)对数函数 f(x) = ln(x),导数为 f'(x) = 1/x(5)三角函数 f(x) = sinx,导数为 f'(x) = cosx(6)反三角函数 f(x) = arcsinx,导数为f'(x) = 1 / √(1 - x^2)二、常见函数的导数1. 常见初等函数的导数:(1)幂函数:y = x^n,y' = nx^(n-1)(2)指数函数:y = a^x (a > 0, a ≠ 1),y' = a^x * ln(a)(3)对数函数:y = loga(x) (a > 0, a ≠ 1),y' = 1 / (x * ln(a))(4)三角函数:y = sinx,y' = cosx(5)双曲函数:y = sinhx,y' = coshx(6)反三角函数:y = arcsinx,y' = 1 / √(1 - x^2)2. 常用初等函数的导数:(1)常数函数 f(x) = c,导数为 f'(x) = 0(2)幂函数 f(x) = x^n,导数为 f'(x) = nx^(n-1)(3)指数函数f(x) = a^x (a > 0, a ≠ 1),导数为 f'(x) = a^x * ln(a)(4)对数函数f(x) = loga(x) (a > 0, a ≠ 1),导数为 f'(x) = 1 / (x * ln(a))(5)三角函数 f(x) = sinx,导数为 f'(x) = cosx(6)双曲函数 f(x) = sinhx,导数为 f'(x) = coshx(7)反三角函数 f(x) = arcsinx,导数为f'(x) = 1 / √(1 - x^2)3. 常见非初等函数的导数:(1)绝对值函数 f(x) = |x|,导数为 f'(x) = x / |x|(2)分段函数f(x) = {x^2, x > 0; 2x, x ≤ 0},导数为f'(x) = {2x, x > 0; 2, x ≤ 0}三、高阶导数1. 高阶导数的定义:高阶导数是指一个函数的导数再次求导后所得到的导数。

求导公式知识点总结

求导公式知识点总结

求导公式知识点总结一、求导的基本概念1. 导数的定义在微积分中,函数f(x)在点x0处的导数定义为:f'(x0) = lim┬(h→0)⁡〖(f(x0+h) - f(x0))/h 〗其中f'(x0)表示函数在点x0处的导数,h表示x的增量。

这个定义可以理解为,当x的增量趋向于0时,函数在点x0处的变化率趋向于某个确定的值,这个值就是函数在点x0处的导数。

2. 导数的几何意义导数的几何意义是函数曲线在某一点处的斜率。

换句话说,导数告诉我们函数在某一点处的变化率,即函数曲线在这一点的切线斜率。

3. 求导的符号表示通常情况下,函数f(x)的导数可以表示为f'(x),也可以表示为dy/dx或者y’。

这些符号都代表函数对自变量x的导数。

二、求导的公式1. 常数函数的求导公式对于常数函数c,它的导数为0,即:(d/dx)⁡(c) = 0这个公式的含义是,常数函数的斜率始终为0,因为它在任何点处都保持不变。

2. 幂函数的求导公式对于幂函数x^n,它的导数为nx^(n-1),即:(d/dx)⁡(x^n ) = nx^(n-1)这个公式可以通过极限的定义进行证明,其中利用了幂函数的导数的推导过程。

3. 指数函数的求导公式对于指数函数e^x,它的导数依然是e^x,即:(d/dx)⁡(e^x ) = e^x这个公式的含义是,指数函数的斜率始终等于自己,这是指数函数独特的性质。

4. 对数函数的求导公式对数函数ln(x)的导数为1/x,即:(d/dx)⁡(ln(x)) = 1/x这个公式可以通过对数函数的定义和求导的推导过程来证明。

5. 三角函数的求导公式三角函数sin(x)和cos(x)的导数分别为cos(x)和-sin(x),即:(d/dx)⁡(sin(x)) = cos(x)(d/dx)⁡(cos(x)) = -sin(x)这两个公式可以通过三角函数的定义和求导的推导过程来证明。

6. 复合函数的求导公式对于复合函数f(g(x)),它的导数可以通过链式法则进行求导,即:(d/dx)⁡(f(g(x))) = f’(g(x)) * g’(x)这个公式是复合函数求导的基本公式,它告诉我们如何对复合函数进行求导。

函数的导数知识点总结

函数的导数知识点总结

函数的导数知识点总结一、导数的定义1. 导数的概念导数是函数在某一点的切线斜率,也是函数在某一点的瞬时变化率。

在几何角度上,导数是函数图像上一点的切线的斜率。

2. 导数的定义对于函数f(x),如果函数在点x处的导数存在,则导数定义如下:f'(x) = lim(h→0) [f(x+h) - f(x)] / h3. 导数的几何意义导数表示函数图像上某一点的切线斜率,即表示函数在该点的瞬时变化率。

二、导数的求法1. 导数的基本求法导数的基本求法有三种:(1)使用导数的定义进行求解;(2)使用导数的基本公式进行求解(如幂函数的导数公式、三角函数的导数公式等);(3)使用导数的运算法则进行求解(如和差积商的导数、复合函数的导数等)。

2. 不定导数当函数是一般函数形式时,可以使用导数的定义进行求解,也可以根据函数的具体形式使用导数的基本公式进行求导。

3. 定导数当函数是特定的函数形式时,可以根据函数的具体形式使用导数的基本公式进行求导。

三、导数的性质1. 导数的性质导数具有以下性质:(1)可加性:[f(x) + g(x)]' = f'(x) + g'(x)(2)可乘性:[f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)(3)常数倍性:[c * f(x)]' = c * f'(x),其中c为常数(4)导数的乘积法则:(f * g)' = f' * g + f * g'2. 高阶导数高阶导数是指对于一个函数的导数再求导数的过程。

如果函数f(x)的导数存在,那么f(x)的导数又称为一阶导数,记作f'(x)。

如果f(x)的一阶导数再求导数,得到的导数称为二阶导数,记作f''(x)。

以此类推,可得到高阶导数。

3. 隐函数导数隐函数是指方程中包含了隐含变量的函数。

数学高考知识点导数总结

数学高考知识点导数总结

数学高考知识点导数总结一、导数的定义1. 导数的定义:设函数y=f(x),若极限lim┬(Δx→0)⁡(f(x+Δx)-f(x))/Δx存在,则称这一极限为函数y=f(x)在点x处的导数,记作f'(x),即f'(x)=lim┬(Δx→0)⁡(f(x+Δx)-f(x))/Δx2. 几何意义:函数y=f(x)在点x处的导数f'(x)表示函数曲线在点(x,f(x))处的切线的斜率。

3. 物理意义:导数也可以表示物理上的速度、加速度等概念,即导数表示函数在某一点的瞬时变化率。

4. 导数的存在性:函数在某一点处存在导数的充分必要条件是函数在该点处的左、右导数存在且相等。

二、导数的计算1. 基本函数的导数:(1)常数函数:(k)'=0(2)幂函数:(xⁿ)'=nxⁿ⁻¹(3)指数函数:(aˣ)'=aˣlna(4)对数函数:(logₐx)'=1/(xlna)(5)三角函数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x(6)反三角函数:(arcsinx)'=1/√(1-x²),(arccosx)'=-1/√(1-x²),(arctanx)'=1/(1+x²)2. 基本导数公式:(1)和差法则:(u±v)'=u'±v'(2)积法则:(uv)'=u'v+uv'(3)商法则:(u/v)'=(u'v-uv')/v²(4)复合函数求导:若y=u(v(x)),则y'=(du/dv)·v'(x)3. 隐函数求导:当函数关系式中含有自变量的隐函数,利用导数的基本运算法则以及求导公式进行求导。

4. 参数方程求导:设x=x(t),y=y(t),则dy/dx=(dy/dt)/(dx/dt)5. 高阶导数的计算:若函数f(x)的导数存在,则f'(x)也是一个函数,可以继续求导,得到f''(x)、f'''(x)等高阶导数。

导数知识点总结大全高中

导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。

函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。

当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。

2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。

当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。

3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。

导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。

4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。

二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。

函数在某一点可导的条件是函数在这一点存在切线。

2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。

3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。

三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。

导数基础知识点总结

导数基础知识点总结一、导数的定义1.1 导数的定义函数f(x)在点x处的导数可以理解为函数在该点处的变化率。

导数表示了函数变化的速度。

导数的定义如下:\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]其中,f'(x)表示函数f(x)在点x处的导数。

1.2 导数的几何意义导数在几何上的意义可以理解为函数图像在某一点处的切线的斜率。

切线的斜率即为函数在该点处的导数。

导数也可以理解为曲线在该点处的瞬时斜率。

1.3 导数的物理意义在物理学中,导数也具有重要的物理意义。

比如,位移函数对时间的导数表示速度;速度对时间的导数表示加速度。

二、导数的计算方法2.1 使用导数的定义进行计算通过导数的定义可以计算函数在某一点处的导数。

需要注意的是,导数的计算中需要考虑极限的计算,因此需要对函数进行分析和运算。

2.2 常见函数的导数常见函数的导数计算可以通过一些基本的导数规则进行计算。

常见函数的导数如下:- 常数函数的导数为0- 幂函数的导数为x^n的导数是nx^(n-1) (n为任意实数)- 指数函数的导数为e^x的导数为e^x- 对数函数的导数为lnx的导数为1/x- 三角函数的导数为sinx的导数为cosx,cosx的导数为-sinx,tanx的导数为sec^2x2.3 复合函数的导数对于复合函数的导数,可以使用链式法则进行计算。

链式法则是导数计算中的一个重要的规则,可以应用于复合函数的导数计算。

2.4 隐函数的导数对于隐函数的导数计算,可以通过求导的方式进行计算。

在求导的过程中,需要利用隐函数的特定性质和求导的基本规则进行计算。

2.5 参数方程的导数对于参数方程描述的函数,可以通过参数消去的方法进行计算。

参数消去是求导的一种特殊方法,可以将参数方程描述的函数转化为一个常规的函数形式,从而通过基本导数规则进行计算。

三、导数的性质3.1 导数存在的条件函数在某一点处的导数存在的条件是函数在该点处可导。

导数知识点总结及答案

导数知识点总结及答案一、导数的定义在数学中,函数f(x)在某一点x=a处的导数定义为:f'(a) = lim (h→0) [f(a+h) - f(a)] / h其中,f'(a)表示函数f(x)在x=a处的导数,lim表示极限运算,h表示自变量x的增量。

导数的定义可以理解为当自变量x在x=a处发生一个很小的变化h时,函数f(x)在此点的增量f(a+h) - f(a)与自变量的增量h的比值。

当h趋向于0时,这个比值就是函数f(x)在x=a处的导数。

二、导数的性质1. 可加性:如果函数f(x)和g(x)在某一点x=a处有导数,那么它们的和、差、积、商函数在此点处也有导数,并且导数的值可以进行相应的运算。

2. 连续性:如果函数f(x)在某一点x=a处有导数,那么函数f(x)在该点处是连续的。

3. 导数与函数的关系:如果函数f(x)在某一点x=a处有导数,那么函数f(x)在该点处是可微的,反之亦然。

4. 导数与函数的图像关系:函数f'(x)在某一点x=a处的导数值,可以描述函数f(x)在该点处的切线的斜率。

5. 高阶导数:如果函数f(x)在某一点x=a处有导数,那么它的导数f'(x)也可以求导,进而得到f''(x),称为函数f(x)的二阶导数,依此类推,可以求得函数f(x)的任意阶导数。

三、常见函数的导数1. 幂函数:f(x) = x^n,其导数为f'(x) = nx^(n-1)。

2. 指数函数:f(x) = a^x,其中a为常数且a>0,a≠1,其导数为f'(x) = a^x*ln(a)。

3. 对数函数:f(x) = ln(x),其导数为f'(x) = 1/x。

4. 三角函数:f(x) = sin(x),其导数为f'(x) = cos(x);f(x) = cos(x),其导数为f'(x) = -sin(x)。

5. 反三角函数:f(x) = arcsin(x),其导数为f'(x) = 1/√(1-x^2);f(x) = arccos(x),其导数为f'(x) = -1/√(1-x^2)。

导数知识点归纳总结

导数知识点归纳总结一、导数的定义1. 导数的几何意义导数描述了函数在某一点的切线斜率,即函数曲线在该点的瞬时变化率。

在几何上,导数可以理解为函数曲线在某一点的切线斜率,它表示了函数在该点的瞬时变化情况。

2. 导数的代数定义设函数y=f(x),在x=a处可导的充分必要条件是改点的柯西收敛序列极限为相同的值。

这个值就是在点a处的导数。

它是一个数值,常常用f'(a)表示。

3. 导数的表示导数通常用f'(x)、dy/dx或y'表示。

4. 导数的图形意义导数的图形意义是函数在某点处的导数等于该点处的切线的斜率,即在该点函数的线性增长率。

二、导数的性质1. 导数存在性函数在某点可导的充分必要条件是函数在该点连续,连续函数一定可以导。

2. 导数的基本性质导数满足加法性、乘法性、常数法则、幂法则、反函数法则、复合函数法则、分段函数法则等性质。

三、求导法则1. 基本函数的导数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数。

2. 导数的四则运算导数的四则运算包括两个导数相加、导数与常数相乘、导数的乘积法则、导数的商法则。

3. 高阶导数函数的二阶导数为对其一阶导数进行求导,即f''(x)=(f'(x))',依次类推,得到高阶导数。

四、导数的应用1. 导数在最值问题中的应用y=f(x)在[a,b]上可导,且在[a,b]的端点不可导,则y=f(x)在[a,b]上有最大值和最小值,它们一般在驻点或者在区间的端点。

2. 导数在凹凸性与拐点判别中的应用y=f(x)的凹凸性和拐点以及弯曲率的研究,主要利用f''(x)的正负性和零点。

3. 导数在函数图形的创作中的应用利用导数的计算公式,可以绘制函数的图形,描绘函数的特点,掌握图形的整体特征。

4. 导数在微分中的应用微分可以看作函数的变化量,它与导数之间有着密切的联系。

微分和导数的关系可以帮助我们求解函数的变化率、近似值、极限值等问题。

导数知识点汇总

导数知识点汇总1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0, 即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义函数f (x )在x =x 0处的导数就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率. (3)函数f (x )的导函数 称函数f ′(x )=lim Δx →f (x +Δx )-f (x )Δx为f (x )的导函数. 2.基本初等函数的导数公式3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.函数的单调性与导数的关系 已知函数f (x )在某个区间内可导,则(1)如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增; (2)如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减; (3)若f ′(x )=0恒成立,则f (x )在这个区间内是常数函数. 5.理清导数与函数单调性的关系(1)f ′(x )>0(或<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件; (2)f ′(x )≥0(或≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件 (f ′(x )=0不恒成立).注意:由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少. 6.函数极值的概念函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值. 7.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 8.定积分的概念在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 9.定积分的运算性质(1)⎠⎛a b kf (x ) d x =k ⎠⎛ab f (x ) d x (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )] d x =⎠⎛a b f 1(x ) d x ±⎠⎛abf 2(x ) d x ;(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x ) d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.可以把F (b )-F (a )记为F (x )⎪⎪⎪b a,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪b a=F (b )-F (a ).1.由曲线y =x 2,y =x 3围成的封闭图形的面积为( ) A.112 B.14 C.13 D.712解析:由⎩⎪⎨⎪⎧y =x 2,y =x 3得x =0或x =1,由图易知封闭图形的面积S =⎠⎛01(x 2-x 3)d x =13-14=112,故选A.2.⎠⎛01 1-x 2d x 的值为( )A .2πB .π C.π2 D.π4解析:如图,y =1-x 2(0≤x ≤1)表示以原点为圆心,半径为1的圆位于第一象限的弧,由几何意义知⎠⎛011-x 2d x 即为扇形的面积S =π4.3.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________m. 4.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1的方向和x 轴正向相同,则变力F(x )对质点M 所做的功为________J. (x 的单位:m ,力的单位:N).[解析](1)由题图可知,v (t )=⎩⎪⎨⎪⎧2t , 0≤t ≤1,2, 1<t ≤3,13t +1, 3<t ≤6.因此该物体在12 s ~6 s 间运动的路程为s =⎠⎜⎛126v (t )d t =⎠⎜⎛1212t d t +⎠⎛132 d t +⎠⎛36⎝⎛⎭⎫13t +1 d t =t 2+2t ⎪⎪⎪⎪31+⎝⎛⎭⎫16t 2+t ⎪⎪⎪⎪63=494(m). (2)由题意知变力F (x )对质点M 所做的功为⎠⎛110(x 2+1)d x =⎝⎛⎭⎫13x 3+x ⎪⎪⎪⎪101=342(J).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数知识点总结复习
经典例题剖析
考点一:求导公式。

例1. ()f x '是31()213f x x x =
++的导函数,则(1)f '-的值是 。

考点二:导数的几何意义。

例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122
y x =
+,则(1)(1)f f '+= 。

例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

点评:本小题考查导数几何意义的应用。

解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。

函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知()132
3+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

点评:本题考查导数在函数单调性中的应用。

对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;
(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

点评:本题考查利用导数求函数的极值。

求可导函数()x f 的极值步骤:
①求导数()x f ';
②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

考点六:函数的最值。

例7. 已知a 为实数,()()
()a x x x f --=42。

求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。

点评:本题考查可导函数最值的求法。

求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。

考点七:导数的综合性问题。

例8. 设函数3
()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数
'()f x 的最小值为12-。

(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

强化训练
(一) 选择题 1. 已知曲线24x y =的一条切线的斜率为12
,则切点的横坐标为( ) A .1
B .2
C .3
D .4 2. 曲线1323+-=x x y 在点(1,-1)处的切线方程为
( ) A .43-=x y
B .23+-=x y
C .34+-=x y
D .54-=x y 3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )
A .1
B .2
C .3
D .4
4. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( )
A .)1(3)1()(2-+-=x x x f
B .)1(2)(-=x x f
C .2)1(2)(-=x x f
D .1)(-=x x f 5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )
A .2
B .3
C .4
D .5 6. 函数32()31f x x x =-+是减函数的区间为( D )
A .(2,)+∞
B .(,2)-∞
C .(,0)-∞
D .(0,2)
7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( )
8. 函数231()23f x x x =-在区间[0,6]上的最大值是( )
A .323
B .163
C .12
D .9 9. 函数x x y 33-=的极大值为m ,极小值为n ,则n m +为 ( )
A .0
B .1
C .2
D .4 10. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( )
A . 0>a
B .0<a
C .1=a
D .31=a 11. 在函数x x y 83-=的图象上,其切线的倾斜角小于4
π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .0
12. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个 D . 4个
A
x D x C x B
(二) 填空题
13. 曲线3
x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为__________。

14. 已知曲线31433y x =
+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是______________ 15. 已知()()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,都有()()n f x =0,则n 的最少值为 。

16. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.
(三) 解答题
17. 已知函数()c bx ax x x f +++=2
3,当1-=x 时,取得极大值7;当3=x 时,取得极小值.求这个极小值及c b a ,,的值.
18. 已知函数.93)(2
3a x x x x f +++-=
(1)求)(x f 的单调减区间;
(2)若)(x f 在区间[-2,2].上的最大值为20,求它在该区间上的最小值.
19. 设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线。

(1)用t 表示c b a ,,;
(2)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围。

20. 设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。

(1)求b 、c 的值。

(2)求()g x 的单调区间与极值。

21. 用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
22. 已知函数3211()32f x x ax bx =
++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;
(1) 当2
48a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即。

相关文档
最新文档