七年级数学上册第五章一元一次方程5.3应用一元一次方程_水箱变高了同步作业无答案新版北师大版2019031339
最新北师大版七年级数学上册第5章《一元一次方程》同步练习及答案—5.3应用一元一次方程:水箱变高了(1)

北师大版七年级数学上册第5章《一元一次方程》同步练习及答案—5.3应用一元一次方程:水箱变高了(1)基础巩固1.内径为300 mm,内高为32 mm的圆柱形玻璃杯内盛满水,倒入内径为120 mm的圆柱形玻璃杯,刚好倒满,则内径为120 mm玻璃杯的内高为( ).A.150 mm B.200 mm C.250 mm D.300 mm2.用一根长为24 cm的铁丝围成一个长与宽的比是2∶1的长方形,则长方形的面积是( ).A.32 cm2B.36 cm2 C.144 cm2D.以上都不对3.一个长方形的长比宽多2 cm,若把它的长、宽分别增加2 cm后,面积增加了24 cm2,求原长方形的长与宽.若设原长方形的宽为x cm,则可列方程为( ).A.x(x+2)=24 B.(x+2)(x+4)=24C.(x+2)(x+4)-x(x+2)=24 D.x(x+4)=244.要锻造一个直径为8 cm,高为4 cm的圆柱形毛坯,至少应截取直径为4 cm的圆钢__________cm.5.钢锭的截面是正方形,其边长是20厘米,要锻造成长、宽、高分别为40厘米,30厘米,10厘米的长方体,应截取这种钢锭的长度为__________厘米.6.班级筹备运动会,要做直角边分别为0.4米和0.3米的三角形小旗,共做64面,要用长1.6米、宽1.2米的长方形红纸________张.7.平阳中学长方形足球场的周长为310米,长比宽多25米,问这个足球场的长和宽分别是多少米?8.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?能力提升9.三个底面为正方形,且高度相等的长方体容器甲、乙、丙,底面边长分别为5,12,13.今将甲、乙两个容器装满的水倒入丙容器中,则水是否会溢出?10.(拔高题)一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?11.(创新应用)李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中玩的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶喝了.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有多少瓶?参考答案1答案:B 点拨:根据题意可知,两个玻璃杯的体积相等.2答案:A 点拨:设长方形的宽为x cm,则长为2x cm,根据题意,得2(2x+x)=24,解得x=4.则2x=8,长方形的面积是4×8=32(cm2).3答案:C4答案:165答案:306答案:27解:设这个足球场的长为x米,那么宽为(x-25)米,根据题意,得2[x+(x-25)]=310.解这个方程,得x=90.所以x-25=65.答:这个足球场的长和宽分别是90米、65米.8解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,根据题意可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.9解:设长方体容器的高度为x,则甲、乙两个容器的体积和为52·x+122·x=169x,丙的体积为132·x=169x,所以甲、乙两个容器的体积和等于丙的体积.所以不会溢出.10解:小王的设计方案:设长方形的宽为x米,则长为(x+5)米.根据题意,得2x+(x+5)=35.解得x=10.所以小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计是不符合实际的.小赵的设计方案:设宽为x米,则长为(x+2)米.根据题意,得2x+(x+2)=35.解得x=11.所以小赵设计的长为x+2=11+2=13(米).而墙的长度是14米,显然小赵的设计符合要求.此时,养鸡场的面积为11×13=143(米2).答:小赵的设计符合要求.按他的设计养鸡场的面积是143米2.11解:设第三天李飒喝饮料之前,还有x瓶饮料,则122x-=0.解得x=1.这也是第二天喝饮料之后所剩的饮料瓶数.设第二天喝饮料之前,还有y瓶饮料,则122y-=1.解得y=3,这也是第一天喝饮料之后所剩的饮料瓶数.再设喝饮料之前,有z瓶饮料,则122z-=3.解得z=7.答:妈妈一共买了7瓶饮料.。
七年级数学上册第五章一元一次方程5.3应用一元一次方程—水箱变高了同步作业试题

5.3 应用一元一次方程------水箱变高了班别姓名根底题:1、长方形的周长是30 cm,长比宽多3 cm,这个长方形的面积是________.2、用一根铁丝围成一个长24 cm,宽12 cm的长方形,假如要制成一个正方形,那么这个正方形的面积是________cm2.3、解方程:〔1〕2〔x-2〕=-(x+3) (2)4155 36 x x-+=进步题:图①是边长为30 cm的正方形纸板,裁掉阴影局部后将其折叠成如图②所示的长方体盒子,该长方体的宽是高的2倍,那么它的体积是________cm3.励志赠言经典语录精选句;挥动**,放飞梦想。
厚积薄发,一鸣惊人。
关于努力学习的语录。
自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。
好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。
含泪播种的人一定能含笑收获。
贵在坚持、难在坚持、成在坚持。
功崇惟志,业广为勤。
耕耘今天,收获明天。
成功,要靠辛勤与汗水,也要靠技巧与方法。
常说口里顺,常做手不笨。
不要自卑,你不比别人笨。
不要自满,别人不比你笨。
高三某班,青春无限,超越梦想,勇于争先。
敢闯敢拼,**协力,争创佳绩。
丰富学校体育内涵,共建时代校园文化。
奋勇冲击,永争第一。
奋斗冲刺,誓要蟾宫折桂;全心拼搏,定能金榜题名。
放心去飞,勇敢去追,追一切我们为完成的梦。
翻手为云,覆手为雨。
二人同心,其利断金。
短暂辛苦,终身幸福。
东隅已逝,桑榆非晚。
登高山,以知天之高;临深溪,以明地之厚。
大智若愚,大巧若拙。
聪明出于勤奋,天才在于积累。
把握机遇,心想事成。
奥运精神,永驻我心。
“想”要壮志凌云,“干”要脚踏实地。
**燃烧希望,励志赢来成功。
楚汉名城,喜迎城运盛会,三湘四水,欢聚体坛精英。
乘风破浪会有时,直挂云帆济沧海。
不学习,如何养活你的众多女人。
不为失败找理由,要为成功想办法。
七年级数学上册第五章一元一次方程5.3应用一元一次方程—水箱变高了作业设计(新版)北师大版

5.3应用一元一次方程——水箱变高了一、选择题1. 某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A. 54-x=20%×108B. 54-x=20%(108+x)C. 54+x=20%×162D. 108-x=20%(54+x)2. 某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程()A. 22+x=2×26B. 22+x=2(26-x)C. 2(22+x)=26-xD. 22=2(26-x)3. 甲数是2013,甲数是乙数的还多1.设乙数为x,则可列方程为()A. 4(x-1)=2013B. 4x-1=2013C. x+1=2013D. (x+1)=20134. 学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,设有x辆汽车,可列方程()A. 45x-28=50(x-1)-12B. 45x+28=50(x-1)+12C. 45x+28=50(x-1)-12D. 45x-28=50(x-1)+125. 我校初一所有学生参加2012年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A. 30x-8=31x+26B. 30x+8=31x+26C. 30x-8=31x-26D. 30x+8=31x-266. 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87B. 1.2×0.8x+2×0.9(60-x)=87C. 2×0.9x+1.2×0.8(60+x)=87D. 2×0.9x+1.2×0.8(60-x)=877. 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A. 6x+6(x-2000)=150000B. 6x+6(x+2000)=150000C. 6x+6(x-2000)=15D. 6x+6(x+2000)=158. 希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A. 2(x-1)+x=49B. 2(x+1)+x=49C. x-1+2x=49D. x+1+2x=499. 为创建园林城市,盐城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A. 6(x+22)=7(x-1)B. 6(x+22-1)=7(x-1)C. 6(x+22-1)=7xD. 6(x+22)=7x10. 一个饲养场里的鸡的只数与猪的头数之和是70,鸡、猪的腿数之和是196,设鸡的只数是x,依题意列方程为()A. 2x+4(70-x)=196B. 2x+4×70=196C. 4x+2(70-x)=196D. 4x+2×70=19611. 一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A. (1+50%)x×80%=x-28B. (1+50%)x×80%=x+28C. (1+50%x)×80%=x-28D. (1+50%x)×80%=x+2812. 甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()A. 98+x=x-3B. 98-x=x-3C. (98-x)+3=xD. (98-x)+3=x-313. 甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A. 7x=6.5x+5B. 7x+5=6.5xC. (7-6.5)x=5D. 6.5x=7x-514. 某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A. (1+50%)x•80%-x=8B. 50%x•80%-x=8C. (1+50%)x•80%=8D. (1+50%)x-x=815. 王大爷存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x,那么可得方程()A. 2500(1+x)=2650B. 2500(1+x%)=2650C. 2500(1+x•80%)=2650D. 2500(1+x•20%)=2650二、填空题16. 某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为______.17. 小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程______.18. “比a的2倍小3的数等于a的3倍”可列方程表示为:______.19. 一台电脑的进价为2000元,原标价为3000元,现打折销售,要使利润率保持20%,那么需要在原标价的基础上打几折?设需要打x折.可列方程为______.20. 七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为______.三、解答题21. 在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)22. 有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?23. A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)24. 抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?25. 一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.答案一、选择题1. 【答案】B【解析】设把x公顷旱地改为林地,根据题意可得方程:54-x=20%(108+x).故选B.考点:一元一次方程的应用.2. 【答案】B【解析】设第二组调到第一组x人,则第一组的现有人数为:(22+x)人,第二组的现有人数为:(26-x)人,又由于第一组现有人数是第二组的2倍,因此可列方程为: 22+x=2(26-x),故选B.3. 【答案】C【解析】设乙数为x,则根据甲数是乙数的还多1,可列出方程:,故选C.4. 【答案】C【解析】本题中等量关系为:45×汽车数量+28=50×(汽车数量-1) -12,设汽车数量为x,根据题意可得: 45x+28=50(x-1)-12,故选C.5. 【答案】D【解析】应根据实际人数不变可列方程,解出即可得出答案.由题意得:30x+8=31x﹣26,故选D.考点:由实际问题抽象出一元一次方程.6. 【答案】B【解析】设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支.由题意得,0.8×1.2x+0.9×2(60﹣x)=87.故选B.7. 【答案】A【解析】设上半年每月平均用电x度,在下半年每月平均用电为(x﹣2000)度,根据全年用电量15万度,列方程即可.设上半年每月平均用电x度,在下半年每月平均用电为(x ﹣2000)度,由题意得,6x+6(x﹣2000)=150000.故选A.点评:本题考查了有实际问题抽象出一元一次方程,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程.8.【答案】A【解析】利用该班少一名男生时,男生人数恰为女生人数的一半用男生的人数表示出女生的人数,利用女生人数+男生人数=49求解.设男生人数为x人,则女生为2(x﹣1),根据题意得:2(x﹣1)+x=49,故选A.点评:本题考查了由实际问题抽象出一元一次方程,解题的关键是找到正确的等量关系.9.【答案】B【解析】设原有树苗x棵,根据首、尾两端均栽上树,每间隔6米栽一棵,则缺少22棵,可知这一段公路长为6(x+22﹣1);若每隔7米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为7(x﹣1),根据公路的长度不变列出方程即可.设原有树苗x棵,由题意得6(x+22﹣1)=7(x﹣1).故选B.点评:查了由实际问题抽象出一元一次方程,本题是根据公路的长度不变列出的方程.“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.10.【答案】A【解析】设鸡的只数为x,则猪的头数为(70-x)头,根据鸡,猪的腿数之和是196,可列方程:2x+4(70-x)=196,故选A.11.【答案】B【解析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选B.考点:由实际问题抽象出一元一次方程.12. 【答案】D【解析】设甲班原有人数是x人,根据甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等可列出方程.设甲班原有人数是x人,(98﹣x)+3=x﹣3.故选D.考点:由实际问题抽象出一元一次方程.13. 【答案】B【解析】等量关系为:甲x秒跑的路程=乙x秒跑的路程+5,找到相应的方程或相应的变形后的方程即可得到不正确的选项.乙跑的路程为5+6.5x,∴可列方程为7x=6.5x+5,A正确,不符合题意;把含x的项移项合并后C正确,不符合题意;把5移项后D正确,不符合题意;故选B.考点:由实际问题抽象出一元一次方程.14.【答案】A【解析】先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x·80%,利用售价-进价=利润即可得到方程.设每个双肩背书包的进价是x元,根据题意得:(1+50%)x•80%﹣x=8.故选:A.考点:由实际问题抽象出一元一次方程.15.【答案】C【解析】根据等量关系:本息和=本金+利息-利息税,设年利率为x,则一年的利息为:2500x,扣除一年的利息税后的利息为: 2500x(1-20%)=2500x•80%,根据题意可列出方程: 2500(1+x•80%)=2650,故选C.二、填空题16.【答案】20x=15(x+4)-10.【解析】根据等量关系:实际15天完成的数量比计划20天完成的数量多10个,设原计划每天生产x个,原计划20天生产数量为:20x,实际15天生产的数量为:15(x+4),根据题意可列出方程为: 20x=15(x+4)-10,故答案为: 20x=15(x+4)-10.17.【答案】3x+2(x+15)=155【解析】根据等量关系:2张成人票的价钱+3张学生票的价钱=共付的钱数,设学生票的单价为x元,因为成人票的单价比学生票的单价贵15元,所以成人票的单价为:(x+15)元,根据题意可列出方程为: 3x+2(x+15)=155,故答案为: 3x+2(x+15)=155.18.【答案】2a-3=3a【解析】因为比a的2倍小3的数为:2a-3,a的3倍为:3a,根据题意可列出方程为: 2a-3=3a,故答案为: 2a-3=3a.19.【答案】3000×=2000(1+20%).【解析】等量关系:售价=进价+进价×利润率,售价=标价×折扣,设需要打x折,根据题意可列出方程为: 3000×=2000(1+20%),故答案为: 3000×=2000(1+20%).20.【答案】2x+56=589-x【解析】因为设到雷锋纪念馆的人数为x人,所以到毛泽东纪念馆的人数是(2x+56)人,根据共589人,可列方程得:x+2x+56=589.考点:列一元一次方程.三、解答题21.【答案】31+x=2[18+(20-x)].【解析】设支援拔草的有x人,则支援植树的有(20-x)人,根据等量关系:原来拔草人数+支援拔草的人数=2×(原来植树的人数+支援植树的人数),列方程即可.解:设支援拔草的有x人,由题意得:31+x=2[18+(20-x)].考点:由实际问题抽象出一元一次方程.22.【答案】飞机票价格应是1200元.【解析】设飞机票价格应是x元,根据该旅客购买了180元的行李票,列方程求解.解:设飞机票价格应是x元,由题意得:(30﹣20)×1.5% x=180,解得:x=1200.答:飞机票价格应是1200元.23.【答案】.【解析】等量关系:快车行驶的路程+慢车行驶的路程=两车相距的路程,设快车开出x小时后两车相遇,快车行驶的路程为:60x千米,慢车行驶的路程为:40(x-)千米,根据题意可列出方程.解:设快车开出x小时后两车相遇,根据题意得:.24.【答案】应调至甲地段20人,则调至乙地段9人解:设应调至甲地段x人,则调至乙地段(29-x)人.根据题意得28+x=2(15+29-x),解得x=20 .经检验,符合题意.所以29-x=9.答:应调至甲地段20人,则调至乙地段9人.25.【答案】3x-(30-x)×1=78.【解析】等量关系为:答题得分=答对的题得分-答错题扣的分,设答对了x道题,则答错了(30-x)道题,答对题得分为:3x,答错的题扣分为: (30-x),根据题意可列出方程.解:设小红答对了x道题,由题意得:3x-(30-x)×1=78.。
2017-2018学年七年级北师大版数学上册练习(PDF版):5.3 应用一元一次方程——水箱变高了

找不准等量ห้องสมุดไป่ตู้系 .
( 凉山州中 考 ) 根 据 图 中 给 出 的 信 息, 解答下列问 1 3. ( ) 放入一个大 放入一个小 球 水 面 升 高 2 c m, 1 球水面升高 3 c m; 各多少个 ? 题.
8 0
国庆节要到了 , 小新所在的班准备做直角边分别为 7.
老师派小新 0. 4 米和 0. 3 米的三角形小旗共 6 4 面. 去买长1. 宽1. 那么小新应 6米、 2 米的长方形红纸 , 买这种尺寸的红纸 A. 1张 B. 2张
7 9 — — 水箱变高了 5 . 3 应用一元一次方程 —
如金 等体积变形 : 同一物体的外形发生了变化 , 但变化前后的 体 积 不 变 , 1.
两个圆柱形 如 图, 等周长变形 : 用同一根铁丝围成不同的图形中 , 形状和 面 积 发 生 了 变 化 , 2. 容器 , A 容器内 底 面 积 是 B 容 但 周长 不变 . 器内 底 面 积 的 2 倍 , A 容器内 的水 高 为 1 等面积变形: 在拼接、 剪切、 割补等图形变化过程中, 图形变化前后的 面积 不 0 c m, B 容 器 是 空 3. 的, 2 c m. B 容器内壁高度为2 变. 若把 A 容 器 内 的 水 倒 入 B 容 器, 问水会不会溢出 ?
π×8x= π×6 × x+5 D. π×8x= π×6 ×5 C. 2 设A 容器内的水倒入 2 a c m, ( 一个长方形的周长为 3 若这个长方形的长减少 1 宽 2 0 1 7 年绥化市 ) 0 c m, c m, 则2 B 容器后 的 高 度 为x c m, a 2. 解 得 x=2 因为 ×1 0=a x, 0. (D ) 可列方程为 增加 2 设长方形的长为 x c m, c m 就可成为一个正方形 , , 所以水不会溢出 2 0<2 2 .
七年级数学 第五章 一元一次方程 5.3 应用一元一次方程水箱变高了练习

12/7/2021
3 角应用一元一次方程——水箱变高了
3.用 1 米长的直径为 50 毫米的圆钢可以拉成直径为 1 毫米的 钢丝__2_5_00____米.
12/7/2021
3 角应用一元一次方程——水箱变高了
C 拓广探究创新练
15.如图 5-3-2 是由六块正方形拼成的一个长方形.已 知最小的正方形面积为 1,则此长方形的面积是__1_4_3____.
图 5-3-2
12/7/2021
3 角应用一元一次方程——水箱变高了
[解析] 因为最小的正方形面积为 1,所以其边长为 1.设最大的正方 形的边长为 x,那么其他正方形按从大到小的顺序,边长依次是 x-1,x -2,x-3,x-3,
12/7/2021
3 角应用一元一次方程——水箱变高了
4.某种钢锭的截面是正方形,其边长是 20 厘米,要锻造成长、 宽、高分别为 40 厘米、30 厘米、10 厘米的长方体,则应截取这种 钢锭多长?
解:设应截取这种钢锭 x 厘米. 由题意,得 202x=40×30×10, 解得 x=30. 答:应截取这种钢锭 30 厘米长.
为 4 厘米、高为 x 厘米的圆柱体的体积的 5 倍,则下列方程正确
的是( D ) A.5π×42×x=π×102×7
B.π×42×x=5π×102×7
C.5π×(42)2×x=π×(52)2×7 D.5π×(42)2×x=π×52×7
12/7/2021
3 角应用一元一次方程——水箱变高了
2.有一个底面半径为 10 cm,高为 30 cm 的圆柱形大杯中存满了水, 把水倒入一个底面直径为 10 cm 的圆柱形小杯中,刚好倒满 12 杯,则小杯的高为( C ) A.6 cm B.8 cm C.10 cm D.12 cm
5.3 应用一元一次方程-水箱变高了(分层练习)(解析版)

第五章 一元一次方程5.3 应用一元一次方程--水箱变高了精选练习一、单选题1.(2021·黑龙江·绥棱县教师进修学校期末)三角形三边比是3:4:5,周长是72,那么,最长边是( )A .30B .24C .18D .122.(2023·福建·泉州五中三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B.7x +4 = 9x -8C .4879x x +-=D .4879x x -+=【答案】B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.3.(2022·全国·七年级课时练习)在一个底面直径为6cm ,高为9cm 的圆柱形瓶内注水,使水柱的高为5cm ,向瓶中放入一块长、宽、高分别为2cm ,2cm ,4cm 的长方体铁块,则此时水柱的高为( )(p 取3)A .559cmB .14527cmC .539cmD .15127cm4.(2022·四川·三台博强蜀东外国语学校七年级阶段练习)一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为210cm ,请你根据图中标明的数据,计算瓶子的容积是( )3cm .A .80B .70C .60D .50【答案】C 【分析】据“空余容积+水的体积=瓶子的容积”和圆柱的体积公式作答.【详解】解:由左图知,水体积为40 cm 3,在左图中用v 表示瓶子的体积,空余容积为(v-40)cm 3;由右图知空余容积为()751020-´= cm 3,由左右两图得到的空余容积应相等得方程:v-40=20.v=40+20=60故选择:C .【点睛】本题考查列一元一次方程解应用题,掌握列一元一次方程解应用题的方法,关键是分析图形信息找等量关系.5.(2021·湖南·宁远县启慧学校七年级阶段练习)甲乙两桶共有48千克水,如果甲桶给乙桶加乙桶水的一倍,然后乙桶又给甲桶加甲桶剩余水的一倍,那么两桶水的质量相等,问原来甲、乙两桶内各有多少千克水?若设原来乙桶内水的质量为x 千克,则可列方程为( )A .()()()24848x x x x x x --=+---B .()()()2[48248[]48]x x x x x --=----C .()()()2484848x x x x x x --=+----D .()()()()484848x x x x x x x x --++=+----【答案】A【分析】利用列表法,逐渐分析计算判断即可.【详解】根据题意,列表得:根据题意,得()()()24848x x x x x x --=+---,故选A.【点睛】本题考查了一元一次方程的应用,熟练运用列表法分析变化规律,寻找等量关系是解题的关键.6.(2021·陕西·无七年级期末)为了保护生态环境,某山区县将该县某地一部分耕地改为林地,改变后林地和耕地面积共有180平方千米,其中耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则根据题意,列出方程正确的是( )A .18025%x x-=B .()25%180x x =-C .180225%x +=D .180225%x -=【答案】B【分析】首先理解题意找出题中存在的等量关系:林地面积+耕地面积=180km 2,耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则林地面积为(180-x)平方千米,再由耕地面积是林地面积的25%,列方程即可.【详解】解:设耕地面积为xkm 2,则林地面积应该表示为()180x -平方千米,依题意得,()25%180x x =-故选:B【点睛】此类题目的解决需仔细分析题意,找准关键描述语:林地面积和耕地面积共有180km 2,耕地面积是林地面积的25%.进而利用方程即可解决问题.二、填空题7.(2022·江苏·南京民办求真中学七年级阶段练习)比例的两个内项分别为2和5,两个外项分别为x 和2.5,则x 的值为_______.【答案】4【分析】根据比例的基本性质:内项之积等于外项之积,列方程求解即可.【详解】解:由题意得:25 2.5x ´=,解得:4x =,故答案为:4.【点睛】本题考查比例的基本性质:内项之积等于外项之积.8.(2022·湖北襄阳·七年级期末)根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )的销售瓶数的比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装_______大瓶.【答案】20000【分析】设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据大小消毒液的总重量为22.5吨=22500000克建立方程求出其解即可.【详解】解:设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据题意得:2x ×500+5x ×250=22500000,解得x =10000,所以大瓶销售了:2×10000=20000瓶,故答案是:20000.【点睛】本题考查了运用比例问题的设每份为未知数的方法建立方程求解的运用,一元一次方程的解法的运用,解答时运用设间接未知数降低解题难度是关键.9.(2022·全国·七年级课时练习)将一根底面积为28.26平方厘米,高为10厘米的圆柱形铁块锻压成底面积为78.5平方厘米的“胖”铁块,此时的高为____________.【答案】3.6厘米.【分析】设“胖”铁块的高为x 厘米,根据锻造前的体积=锻造后的体积列方程求解即可.【详解】设“胖”铁块的高为x 厘米,由题意得78.5x=28.26×10,解之得x=3.6.故答案为3.6厘米.【点睛】本题考查了几何图形中一元一次方程的应用,根据“锻造前的体积=锻造后的体积”得到等量关系是解决本题的关键.10.(2022·全国·七年级课时练习)如图,一个尺寸为3604(´´单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34´为底面)时,箱中液体的高度是________dm .【答案】45.【分析】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm ,根据等积法列方程求解即得.【详解】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm由题意得:3603=43x´´´´解得:45x =答:当此铁箱竖起来(以34´为底面)时,箱中液体的高度是45dm故答案为:45.【点睛】本题考查了一元一次方程实际问题,解题关键是熟知前后液体体积不变.三、解答题11.(2021·全国·七年级课时练习)第一块试验田的面积比第二块试验田的3倍还多2100m ,这两块试验田共22900m ,两块试验田的面积分别是多少?【答案】第一块试验田面积为22200m ,第二块试验田面积为2700m .【分析】首先设第二块实验田面积是2m x ,则第一块实验田的面积23100m x +,再根据两块实验田面积总和是22900m ,列出方程即可.【详解】解:设第二块实验田面积是2m x ,由题意得:31002900x x ++=,解得:2700m x =,第一块实验田的面积:237001002200m ´+=.答:两块试验田的面积分别是2700m ,22200m .【点睛】本题主要考查了一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,再列出方程.12.(2022·全国·七年级专题练习)墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?【答案】长为16cm ,宽为10cm .【分析】设长方形的长为cm x ,由梯形与长方形的周长相等列方程可得2(10)10462x +=´+´,再解方程可得答案.【详解】解:设长方形的长为cm x ,根据题意,得2(10)10462x +=´+´.25220,x \=-解得:16,x =所以长方形的长为16cm ,宽为10cm .一、填空题1.(2022·全国·七年级专题练习)根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,则这些消毒液分装成的这两种产品中有______瓶大瓶产品.【答案】20000【分析】设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程求出x,则可知大瓶的数量【详解】换算单位:22.5t=22.5×1000×1000g设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程,得500·2x+250·5x=22.5×1000×1000,解得x=100002x=20000∴大瓶有20000瓶.故答案为:20000【点睛】本题考查了列一元一次方程解应用题,一般情况下题目中出现比值问题,通常设每份为x,掌握以上方法是解题的关键.2.(2022·全国·七年级课时练习)一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.3.(2021·湖北·武汉外国语学校(武汉实验外国语学校)七年级期末)如图,将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形.若灰色长方形的长与宽之比为7:3,试求AD:AB的值.【答案】9:4【分析】可设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,因为将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形,可表示出灰色长方形的长和宽,进而求出大长方形的长和宽,从而可求解.【详解】解:设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,根据“长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形”可知:2(7x+3x)=204-4,解得:x=10,则灰色长方形的长上摆了70个小正方形,宽上摆了30个小正方形,∴AD=72个小正方形的边长,AB=32个小正方形的边长,∴AD:AB=72:32=9:4.【点睛】此题考查理解题意能力及一元一次方程的应用,关键是看到灰色长方形的周长和204个小正方形的关系从而求解.4.(2022·全国·七年级专题练习)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.【答案】()103530x x +-=【分析】设清酒x 斗,则醐洒酒为(5-x )斗,一斗清酒价值10斗谷子,x 斗清酒价值10x 斗谷子;一斗醐洒酒价值3斗谷子,(5-x )斗醐洒酒价值3(5-x )斗谷子.存在“换x 斗清酒和(5-x )斗醐洒酒共用30斗谷子”的等量关系,根据等量关系可列方程.【详解】解:设清酒x 斗,则醐洒酒为(5-x )斗.()103530x x +-=.故答案为:()103530x x +-=.【点睛】本题主要考查了一元一次方程的实际应用,准确分析出数量关系和等量关系是解决本题的关键.5.(2022·重庆·黔江区育才初级中学校七年级期中)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植A 、B 、C 三种经济作物增加收入,经过一段时间,该村已种植的A 、B 、C 三种经济作物的面积之比为3:2:4,单位面积产值之比为1:2:2,为了进一步提高该村的经济收入,将在该村余下土地上继续种植这三种经济作物,经测算需将余下土地面积的16种植C 经济作物,则C 的种植总面积将达到这三种经济作物种植总面积的38,且A 、B 、C 三种经济作物的总产值提高了13,则该村还需种植A 、B 两种经济作物的面积之比是__________.二、解答题6.(2022·全国·七年级)一圆柱形桶内装满了水,已知桶的底面直径为a,高为b.又知另一长方体形容器的长为b,宽为a,若把圆柱形桶中的水倒入长方体形容器中(水不溢出),水面的高度是多少?7.(2022·全国·七年级课时练习)用一根长为10m的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?8.(2022·全国·七年级专题练习)有一个盛水的圆柱体玻璃容器,它的底面直径为12cm(容器厚度忽略不计),容器内水的高度为10cm.(1)如图1,容器内水的体积为______3cm(结果保留p).(2)如图2,把一根底面直径为6cm,高为12cm的实心玻璃棒插入水中(玻璃棒完全淹没于水中),求水面上升的高度是多少?(3)如图3,若把一根底面直径为6cm,足够长的实心玻璃棒插入水中,求水面上升的高度是多少?。
北师大版七年级数学上册第五章5.3 应用一元一次方程——水箱变高了
3. 利用体积不变、周长不变列方程.
2. 能利用一元一次方程解决简单的图形问题.
1. 借助立体及平面图形学会分析复杂问题中的数量关 系和等量关系.
探究新知
5.3 应用一元一次方程——水箱变高了
知识点 图形问题
某居民楼顶有一个底面直径和高均为4 m的圆柱形储水 箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地 面积,需要将它的底面直径由4 m减少为3.2 m.那么在容 积不变的前提下,水箱的高度将由原先的4 m变为多少?
探究新知
5.3 应用一元一次方程——水箱变高了
做一做
张师傅要将一个底面直径为20厘米,高为9厘米的“矮 胖”形圆柱,锻压成底面直径为10厘米 的“瘦长”形圆柱. 假设在张师傅锻压过程中,圆柱体积保持不变,那么圆柱 的高变成了多少?
想一想 什么发生了变化?
什么没有发生变化?
探究新知
5.3 应用一元一次方程——水箱变高了
(3)使得该长方形的长和宽相等,即围成一个正方形,此 时正方形的边长是多少米?围成的面积与(2)所围成的面 积相比,又有什么变化?
解:设正方形的边长为x米. 由题意得 4x = 10. 解,得 x=2.5. 边长为:2.5米; 面积为:2.5×2.5=6.25(平方米). 面积增加:6.25-6.09=0.16(平方米).
探究新知
5.3 应用一元一次方程——水箱变高了
归纳小结 1.列方程的关键是正确找出等量关系. 2.变形前体积 = 变形后体积.
3.线段长度一定时,不管围成怎样 的图形,周长不变.
4.长方形周长不变时,当且仅当长与宽相等 时,面积最大.
巩固练习
5.3 应用一元一次方程——水箱变高了
墙上钉着用一根彩绳围成的梯形形状的装饰物,
北师版七年级数学上册作业课件(BS) 第五章 一元一次方程 应用一元一次方程——水箱变高了 (2)
第五章 一元一次方程
5.3 应用一元一次方程——水箱变高了
等积变形问题
1.(3分)要锻造一个半径为5 cm,高为8 cm的圆柱毛坯,应截取半径为4 cm的 圆钢的高度为( A)
A.12.5 cm B.13 cm C.13.5 cm D.14 cm 2.(3分)有一个底面半径长为10 cm,高为30 cm的圆柱形大杯中存满了水,把 它里边的水倒入一个底面直径长为10 cm的圆柱形小杯中,刚好倒满12杯,则小杯 的高为_1_0__cm.
3.(6分)把一个长、宽、高分别为8 cm,7 cm,5 cm的长方体铁块和一个棱长 为5cm的正方体铁块熔炼成一个直径为10 cm的圆柱体,则熔炼成的圆柱体的高是 多少?(结果保留两位小数)
解:设熔炼成的圆柱体的高是 x cm,根据题意,得 8×7×5+53=(120 )2πx,解得 x=58π1 ≈5.16,所以熔炼成的圆柱体的高约是 5.16 cm
7.(4分)如图所示的是用铁丝围成的一个梯形,将其改成一个长和宽的比为 2∶1的长方形,那么该长方形的长为__1_1_,宽为_5_._5_.
8.(7分)某农场拟建两间长方形饲养室,一面靠现有墙(墙足够长),中间用一道 墙隔开,已知计划中的材料可建墙பைடு நூலகம்的总长为26 m,且AB∶BF=3∶2,求建成 的每间饲养室的面积.
平面图形的变化问题
4.( 3分)某小区在规划设计时,准备在两幢楼房之间设置一块周长为120 m的长 方形绿地,并且长比宽多10 m.设绿地的宽为x m,根据题意,下面列出的方程 正确的是(D )
A.2(x-10)=120 B.2[x+(x-10)]=120 C.2(x+10)=120 D.2[x+(x+10)]=120
北师大版数学七年级上册第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习
第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.内径为300 mm,内高为32 mm的圆柱形玻璃杯内盛满水,倒入内径为120 mm的圆柱形玻璃杯,刚好倒满,则内径为120 mm玻璃杯的内高为().A.150 mm B.200 mm C.250 mm D.300 mm 2.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣23.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x人,则可列方程()A.23﹣x=2(17+20﹣x)B.23﹣x=2(17+20+x)C.23+x=2(17+20﹣x)D.23+x=2(17+20+x)4.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350650x x+-=+D.120350506x x+-=+5.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;①60m+10=62m+8;①1086062n n-+=;①1086062n n+-=中,其中正确的有()A.① ①B.① ①C.① ①D.① ①6.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内有多僧?三百六十四只碗,恰好用尽不用争,三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x ,则得到的方程是( ) A .34364x x +=B .1136434x x +=C .143643x x +=D .133644x x +=7.我国明朝珠算发明家程大位,他完成的古代数学名著《直指算法统宗》,详述了传统的珠算规则,确立了算盘用法.书中记载如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚有x 人,则可列方程为( )A .13(100)1003x x +-=B .33(100)100x x +-=C .13(100)1003x x +-=D .1(100)1003x x +-=8.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x ,可列方程( )A .54+x=2(48﹣x )B .48+x=2(54﹣x )C .54﹣x=2×48D .48+x=2×549.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.用一根铁丝围成一个长24cm ,宽12cm 的长方形,现将它拉成正方形,则这个正方形的边长是( ) A .9cm B .10cmC .18cmD .20cm评卷人 得分二、填空题 11.钢锭的截面是正方形,其边长是20厘米,要锻造成长、宽、高分别为40厘米,30厘米,10厘米的长方体,应截取这种钢锭的长度为________厘米.12.班级筹备运动会,要做直角边分别为0.4米和0.3米的三角形小旗,共做64面,要用长1.6米、宽1.2米的长方形红纸________张.13.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程______.14.某部队开展植树活动,甲队35 人,乙队27 人,现另调28 人去支援,使两队的人数相等,设应调往甲队x 人,依题意列方程为___________15.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.众所周知,中华诗词博大精深,集大量的情景、情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数反而少了20个字.根据题意可知七言绝句有____首.17.某车间原计划用13小时生产一批零件,后来每小时多生产10个,用了12小时,不但完成了任务,而且还多生产零件60个,设原计划每小时生产零件x个,则可列方程为_______.18.将一个底画积为232cm,高为24cm的长方体金属熔铸成一个底面长6cm,宽4cm 的长方体零件毛坯,则这个长方体零件毛坯的高是______cm.19.甲、乙两个图形的面积之和是2150cm,面积之比为7:3,则较大图形的面积是____2cm.评卷人得分三、解答题20.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?21.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”22.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.23.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?24.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地xB工地x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)25.(教材P144T3变式)如图所示,小明将一个正方形纸片剪去一个宽为8cm的长条后,再从剩下的长方形纸片上剪去一个宽为10cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?参考答案:1.B【解析】【详解】试题分析:设内径为120 mm玻璃杯的内高为x mm.由题意本题的等量关系为两个圆柱形玻璃杯容积相同,则可列方程组π×1502×32=π×602x,解得即可.解:设内径为120 mm玻璃杯的内高为x mm.由题意得π×1502×32=π×602x,解得x=200(mm).即内径为120 mm玻璃杯的内高为200 mm.故选B.2.B【解析】【详解】根据题意可得:长方形的宽为(13-x)cm,根据题意可得:x-1=(13-x)+2.故选B.考点:一元一次方程的应用3.C【解析】【分析】设应调往甲处x人,则调往乙处(20-x)人,根据使在甲处植树的人数是乙处植树人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】解:设应调往甲处植树x人,则调往乙处植树(20﹣x)人,根据题意得:23+x=2(17+20﹣x).故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.4.D【解析】根据零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:1203 50506x x+-=+,故选:D.【点睛】本题考查了一元一次方程的应用,根据时间得到相应的等量关系是解决本题的关键.5.A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:108 6062n n-+=,故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.6.B【解析】【分析】设和尚的个数为x位,根据共有三百六十四只碗,三人共餐一碗饭,四人共尝一碗羹列出方程.【详解】设和尚的个数为x位.可列方程11364 34x x+=;故答案为B.本题考查由实际问题列一元一次方程,解题的关键是理解题意找出等量关系列方程. 7.A 【解析】 【分析】根据题意, 大和尚有x 人,共分馒头3x 个,小和尚有()100x -人,3人分1个,每人分13个,共分()11003x -个,再根据大小和尚得到的馒头之和为100,列出方程. 【详解】解:设大和尚有x 人,则小和尚有()100x -人, 据题意得,13(100)1003x x +-=.故选:A. 【点睛】本题主要考查一元一次方程解决问题中的分配问题,理解题意,找到数量关系是解答关键. 8.A 【解析】 【详解】解:设从乙班调入甲班x 人,则乙班现有48﹣x 人,甲班现有54+x 人.此时,甲班人数是乙班的2倍,所以所列的方程为:54+x =2(48﹣x ),故选A . 9.A 【解析】 【分析】利用两种不同栽法的总路程都是某一段公路的一侧的长,总长度等于(棵数-1)×每两棵之间的距离,列方程即可 【详解】解:设原有树苗x 棵,每隔5米栽1棵,则树苗缺21棵; 5(x+21-1), 每隔6米栽1棵,则树苗正好用完.6(x-1), 由题意得:5(211)6(1)x x+-=-.故选A.【点睛】本题考查列一元一次方程解应用题,抓住等量关系两种不同栽法总长度一样,总长度=(棵数-1)×每两棵之间的距离列方程是解题关键.10.C【解析】【详解】设正方形的边长为xcm,依题意有24×2+12×2=4x,解得x=18,故正方形的边长为18cm.11.30【解析】【详解】试题分析:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据锻造前后体积不变列方程求解即可.解:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据题意得20×20x=40×30×10,解得x=30(厘米).故答案为30.12.2【解析】【详解】试题分析:设要用长1.6米、宽1.2米的长方形红纸x张,求出x张长方形红纸的面积,根据等量关系:长方形红纸做成三角形小旗后总面积不变,列方程求解即可.解:设要用长1.6米、宽1.2米的长方形红纸x张,则长方形红纸面积为1.6×1.2x平方米,做成的三角形小旗总面积为12×0.4×0.3×64平方米,根据题意得1.6×1.2x=12×0.4×0.3×64,解得x=2.故答案为2.13.7 4 x-【解析】【详解】设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个“中国结”,由题意得,96x+=74x-.14.35+x=27+(28-x)【解析】【分析】设应调往甲队x人,乙队(28-x)人,根据人数相等可得.【详解】设应调往甲队x人,乙队(28-x)人.由题意得:35+x=27+(28-x),故答案为:35+x=27+(28-x)【点睛】考核知识点:一元一次方程应用.理解题意是关键.15.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:①糯米做成年糕的过程中重量会增加20%,①a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键. 16.35【解析】【详解】解:设七言绝句有x首,根据题意,可列方程为:28x﹣20(x+13)=20.解得x=35故答案为35.17.12(x+10)=13x+60.【解析】【详解】解:设原计划每小时生产零件x个,则实际每小时生产零件(x+10)个.根据等量关系列方程得:12(x+10)=13x+60.故答案为12(x+10)=13x+60.点睛:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,然后再列出方程.18.32【解析】【详解】设这个长方体零件毛坯的高是xcm,由题意得:32×24=6×4×x,解得x=32,故答案为32.19.105【解析】【详解】设较大图形的面积为x2cm,则较小图形的面积为(150-x)2cm,由题意得:x:(150-x)=7:3,解得x=105,即较大图形的面积是1052cm20.小赵的设计符合要求.按他的设计养鸡场的面积是143米2.【解析】【分析】根据小王的设计可以设宽为x 米,长为(x +5)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小王的设计,根据小赵的设计可以设宽为y 米,长为(y +2)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小赵的设计,从而可以作出判断.【详解】解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y 米,长为(y +2)米,根据题意得2y +(y +2)=35解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).【点睛】 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.x =60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;①有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解22.11110024x x x x++++=【解析】【详解】试题分析:根据“如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.试题解析:解:设这群羊有x只,根据题意得:x+x+12x+14x+1=100.23.飞机票价格应是1200元.【解析】【详解】试题分析:设飞机票价格应是x元,根据该旅客购买了180元的行李票,列方程求解.试题解析:解:设飞机票价格应是x元,由题意得:(30﹣20)×1.5% x=180,解之得:x=1200.答:飞机票价格应是1200元.24.(1)填表见解析;(2)﹣10x+15000;(3)﹣130x+3900=0.【解析】【详解】试题分析:(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.试题解析:解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:(2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为﹣(3)140x +150(100﹣x )+200(70﹣x )+80(x +10)=25900,整理得:﹣130x +3900=0. 点睛:此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键 25.每一个长条的面积都是2320cm .【解析】【详解】试题分析:经分析显然要设正方形的边长是xcm .根据“两次剪下的长条面积正好相等”这一关系列出方程即可.试题解析:设正方形的边长是cm x ,根据题意得()8108x x =-,解方程得40x =,()28320cm x =, 所以每一个长条的面积都是2320cm .。
53应用一元一次方程——水箱变高了
53应用一元一次方程——水箱变高了
假设有一个水箱,原来的高度为x,突然上升了h,现在的高度为
x+h。
我们知道,水箱的体积等于底面积乘以高度。
假设水箱的底面积为A,则原来的体积为V1=A*x,现在的体积为V2=A*(x+h)。
根据题意,水箱的体积变大了。
即V2-V1>0,即A*(x+h)-A*x>0,即
A*h>0。
由于A是一个正数(底面积不会为负),所以我们可以得到h>0。
这个结果告诉我们,水箱的高度变大了,即增加了一些高度。
现在,我们来解一元一次方程来计算出增加的高度h。
根据上面的推导,我们得到了方程A*h>0,我们可以通过将A*h除以
A来消去A,得到h>0。
这说明增加的高度必须大于0。
这样,我们可以得到结论,水箱的高度上升了。
例如,假设水箱原来的高度为2米,突然上升了1米。
那么现在的高
度就变成了2+1=3米。
通过解一元一次方程,我们可以计算出增加的高度为1米。
总结一下,应用一元一次方程可以帮助我们解决一些与高度变化、体
积变化相关的问题。
在这个例子中,我们解一元一次方程来计算出水箱增
加的高度。
当然,水箱变高了不仅仅可以用一元一次方程来解决,还可以用其他
方法解决,比如直接通过观察得出结论。
但是对于更复杂的问题,一元一次方程就是一种有效的解决方法。
我们可以通过列方程、化简方程、求解方程等步骤,得到问题的答案。
希望这个例子可以帮助你更好地理解应用一元一次方程的方法。