齿轮动力学国内外研究现状

合集下载

机械齿轮传动系统的动力学分析与优化

机械齿轮传动系统的动力学分析与优化

机械齿轮传动系统的动力学分析与优化齿轮传动是一种常见的动力传递机构,具有传递力矩大、传动效率高等优点,在工业生产中得到广泛应用。

但是,由于齿轮传动系统存在着一些固有的问题,如齿轮啮合时的振动和噪音、齿面磨损等,因此对其进行动力学分析和优化是非常重要的。

1. 动力学分析1.1 齿轮啮合的动力学模型齿轮啮合过程中,齿轮之间存在着瞬时的压力、速度和加速度变化。

可以通过建立齿轮啮合的动力学模型来分析其动态特性。

常用的方法包括等效单齿转动法和有限元法。

通过分析齿轮齿面接触应力和应力分布,可以预测系统的振动和噪音水平,为后续的优化提供依据。

1.2 动力学参数的测量和计算为了进行动力学分析,需要测量和计算一些关键参数,如齿轮的啮合刚度、传递误差、滚子轴承的刚度等。

其中,传递误差是影响齿轮传动系统性能的重要因素之一,其大小与齿轮加工质量、啮合配合、齿轮轴向和径向跳动等因素有关。

通过合理的测量方法和计算模型,可以准确地获取这些参数,并对系统进行分析。

2. 动力学优化2.1 齿轮传动系统的振动和噪音控制由于齿轮啮合时的动态特性,齿轮传动系统常常会产生振动和噪音。

为了减小振动和噪音的水平,可以从多个方面进行优化,如合理设计齿形、减小啮合间隙、提高齿轮加工精度等。

此外,也可以采用减振装置,如弹性联轴器、减震器等,来降低系统的振动能量传递。

2.2 传动效率的提高传动效率是衡量齿轮传动系统性能的重要指标之一。

为了提高传动效率,可以从减小传动误差、改善齿轮表面质量、减小传动间隙等方面入手。

此外,合理选择润滑方式和润滑油,也可以有效地降低系统的摩擦和磨损,提高传动效率。

2.3 齿轮传动系统的寿命预测齿轮传动系统的寿命是评估其使用寿命和可靠性的重要指标。

通过综合考虑齿轮的强度、疲劳寿命和磨损等影响因素,可以建立寿命预测模型,对系统进行寿命预测和优化设计。

此外,还可以通过监测齿轮的工作状态和健康状况,进行实时的故障诊断和维护。

3. 总结齿轮传动系统的动力学分析和优化是提高其性能和可靠性的重要手段。

齿轮啮合刚度及齿轮动力学

齿轮啮合刚度及齿轮动力学

THANKS
谢谢您的观看

边界元法具有较高的计算精度和效率, 适用于求解复杂几何形状和多种材料组
成的齿轮系统的动态响应问题。
有限差分法
在齿轮动力学分析中,有限差分法可以用于模拟齿轮 系统的动态响应和振动问题。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文 ,单击此处添加正文,文字是您思想的提炼,为了最 终呈现发布的良好效果单击此4*25}
03
齿轮动力学模型
一维模型
描述
一维模型假设齿轮在接触线上的变形是唯一的变形形式,忽略了 齿面摩擦和齿根弯曲变形的影响。
优点
计算简单,适用于初步设计和分析。
缺点
与实际情况存在较大误差,不能准确反映齿轮动态性能。
二维模型
描述
二维模型考虑了齿面摩擦和齿根 弯曲变形的影响,但仍忽略了齿 面接触变形和齿轮体内部振动。
优化设计的方法
1 2
数学建模
建立设计问题的数学模型,包括目标函数和约束 条件。
数值计算
利用数值计算方法求解数学模型,得到最优解。
3
计算机辅助设计
利用计算机辅助设计软件进行优化设计,提高设 计效率。
齿轮动力学优化设计实例
实例一
01
行星齿轮传动系统的优化设计,提高系统的承载能力和效率。
实例二
02
斜齿轮传动系统的优化设计,减小振动和噪音。
外部激励
如电机、传动轴等外部激 励因素,也可能引起齿轮 振动。
齿轮动力学在工程中的应用
故障诊断
通过分析齿轮振动的频率 、幅值等信息,判断齿轮 的故障类型和位置。
优化设计
利用齿轮动力学理论,优 化齿轮设计,提高齿轮的 动态性能和承载能力。

国内齿轮研究现状及问题研究

国内齿轮研究现状及问题研究

国内齿轮研究现状及问题研究一、本文概述齿轮作为机械传动系统中的核心元件,其性能与精度直接影响到整机的运行效率和使用寿命。

随着国内制造业的飞速发展,齿轮研究在技术创新、材料研发、加工工艺和质量控制等方面取得了显著成果。

然而,与国际先进水平相比,国内齿轮研究仍面临一些亟待解决的问题和挑战。

本文旨在全面梳理国内齿轮研究的现状,深入剖析存在的问题,以期为相关领域的科技人员和企业决策者提供有益的参考和借鉴。

通过系统分析国内齿轮研究的发展历程、技术特点、优势与不足,以及未来发展趋势,本文将为推动国内齿轮研究的进步和创新提供理论支持和实践指导。

二、国内齿轮研究现状分析近年来,随着制造业的快速发展和高端装备需求的日益增长,国内齿轮研究取得了显著进展。

齿轮作为机械传动系统中的关键部件,其性能和质量直接影响着整机的运行效率和可靠性。

因此,国内学者和企业在齿轮设计、制造、材料、热处理以及检测等方面进行了大量研究和探索。

在设计方面,国内研究团队已经能够利用先进的计算机辅助设计(CAD)和仿真分析技术,对齿轮的几何形状、齿面接触、载荷分布等进行精确计算和模拟。

这不仅提高了齿轮的设计精度,也缩短了新产品的开发周期。

在制造工艺方面,国内齿轮加工设备不断更新换代,高精度、高效率的加工技术得到广泛应用。

数控机床、激光切割、精密磨削等先进加工技术的使用,显著提升了齿轮的加工精度和表面质量。

在材料研究领域,国内已经开发出多种高性能齿轮材料,如高强度钢、渗碳钢、粉末冶金材料等。

这些新型材料的应用,极大地提高了齿轮的承载能力和耐磨性。

在热处理技术和检测手段方面,国内也取得了显著进步。

通过优化热处理工艺,可以显著改善齿轮的力学性能和抗疲劳性能。

先进的无损检测技术和精密测量设备的应用,使得齿轮的质量控制更加严格和准确。

尽管国内齿轮研究取得了诸多成果,但仍存在一些亟待解决的问题。

例如,与国际先进水平相比,国内齿轮在高端应用领域仍存在一定的差距,齿轮的可靠性和寿命有待进一步提高。

齿轮机械传动动力学研究文献综述完整版

齿轮机械传动动力学研究文献综述完整版

基于齿轮传动的机械动力学研究文献综述摘要:本文结合相关文献对机械动力学中齿轮传动动力学部分的研究进行了综述。

综合文献对齿轮传动动力学研究现状和发展趋势有了整体把握。

关键词:动力学;齿轮传动;综述;The Literature Review of Mechanical Dynamics based on gear transmissionAbstract:In this paper, the studies of mechanical dynamics of gear transmission were reviewed. On the whole, we grasp the studies status anddevelopment trend of gear transmission.Keywords: Dynamics;Gear transmission;Review1.前言随着机械向高效、高速、精密、多功能方向发展,对传动机械的功能和性能的要求也越来越高,机械的工作性能、使用寿命、能源消耗、振动噪声等在很大程度上取决于传动系统的性能。

因此必须重视对传动系统的研究。

机械系统中的传动主要分为机械传动、流体传动(液压传动、液力传动、气压传动、液体粘性传动和高等优点机械传动的形式也有多种,如各种齿轮传动、带(链)传动、摩擦传动等。

齿轮传动是机械传动中的主要形式之一。

在机械传动中占有主导地位。

由于它具有速比范围大、功率范围广、结构紧凑可靠等优点,已广泛应用于各种机械设备和仪器仪表中。

成为现有机械产品中所占比重最大的一种传动。

齿轮从发明到现在经历了无数次更新换代,主要向高速、重载、平稳性、体积小、低噪等方向发展。

2. 齿轮动力学的发展概述齿轮的发展要追溯到公元前,迄今已有3000年的历史。

虽然自古代人们就使用了齿轮传动,但由于动力限制了机器的速度。

因此齿轮传动的研究迟迟未发展到动力学研究的阶段。

第一次工业革命推动了机器速度的提高,Euler提出的渐开线齿廓被广泛运用,这属于从齿轮机构的几何设计角度来适应速度的提高。

机械类-毕业设计-开题报告-齿轮

机械类-毕业设计-开题报告-齿轮

1、研究的意义,同类研究工作国内外现状、存在问题(列出主要参考文献)研究意义:齿轮传动是机械中最常用的传动形式之一,广泛应用于机械、电子、纺织、冶金、采矿、汽车、航空、航天及船舶等领域。

随着科学技术的飞速发展,机械工业也发生着日新月异的变化,特别是近几十年来机电一体化产品的广泛应用,使得人们对齿轮的动态性能提出了更高的要求。

非线性动力学、振动、噪声及其控制己成为当前国际利技界研究得非常活跃的前沿课题之一。

在此同时,传统的静态设计方法也逐渐不能适应设计和运行的要求,而新兴的动态设计方法越来越被认同和采用。

在日常生活及工程应用中,人们广泛使用着各种各样的机器设备。

机械在工作过程中产生的振动,恶化了设备的动态性能,影响了设备的原有精度、生产效率和使用寿命,同时,机械振动所产生的噪声,又使环境受到了严重污染。

因此,齿轮系统的动力学行为和工作性能对各种机器和机械设备有着重要影响。

机械的振动和噪声,大部分来源于齿轮传动工作时产生的振动。

所以,机械产品对齿轮系统动态性能方面的要求就更为突出。

研究齿轮系统在传递动力和运动过程中的动力学行为的齿轮系统动力学一直受到人们的广泛关注。

齿轮传动系统的T作状态极为复杂,不仅载荷T况和动力装置会对系统引入外部激励,而且齿轮副本身的时变啮合刚度和误差也会对系统产生内部激励。

同刚出于润滑的需要也一般会提供必要的齿侧间隙;加之,由于齿轮传动过程中的磨损,也不可避免得在齿轮副中造成间隙。

在低速、重载的情况下,间隙对齿轮系统的动态性能不会产生严重的影响,用传统的线性动力学模型可以较好地反映齿轮传动的振动特性;在高速、轻载的情况下,由于齿侧问隙的存在,齿轮间的接触状态将会发生变化,从而导致齿轮间接触、脱齿、再接触的啮入啮出冲击,这种由间隙引发的冲击带来的强烈振动、噪声和较大的动载荷,影响齿轮的寿命和可靠性,从而促使人们对齿轮系统的非线动力学引起了足够的重视和关注。

现状:齿轮机构因为具有传动效高、结构紧凑、传动平稳等优点,被广泛地应用于各类机器设备上,尤其是重载传动方而,齿轮传动机构更是占据着举足轻重的地位。

ROMAX齿轮动力学分析和优化资料

ROMAX齿轮动力学分析和优化资料

万方数据
学校代号:10731 学 号:122080201078 密 级:公开
兰州理工大学硕士学位论文
基于 ROMAX 的齿轮箱动力学分析及 优化
学位申请人姓名: 导师姓名及职称: 培 养 单 位: 专 业 名 称: 论文提交日期 : 论文答辩日期 : 答辩委员会主席:
王彬 郭润兰 教授 黄华 副教授 机电工程学院 机械制造及其自动化 2015 年 4 月 15 日 2015 年 6 月 9 日 余生福 正高级工程师
万方数据
Dynamic Analysis and Optimization of the Gearbox Based on ROMAX by WANG Bin
B.E. (Lanzhou University of Technology) 2011
A thesis submitted in partial satisfaction of the Requirements for the degree of Master of Engineering in
学校代号 10731 分 类 号 TH131
学 号 122080201078
密级
公开
硕士学位论文
基于 ROMAX 的齿轮箱动力学分 析及优化设计
学位申请人姓名 培养单位 导师姓名及职称 学科专业 研究方向 论文提交日期
王彬 机电工程学院 郭润兰 教授 黄华 副教授 机械制造及其自动 先进制造技术 2015 年 4 月 15 日
Mechanical Manufacture and Automation in the
School of Mechanical and Electronical Engineering of
Lanzhou University of Technology

面齿轮传动技术在航空领域的应用分析

面齿轮传动技术在航空领域的应用分析

面齿轮传动技术在航空领域的应用分析摘要:本文论述了国内外面齿轮传动技术在航空领域的发展情况,分析了不同面齿轮传动的结构特点,为后续面齿轮的结构研究提供参考。

关键词:面齿轮航空领域传动构型1 概述面齿轮传动是一种圆柱齿轮和面齿轮相啮合的传动,其最大优点为与其啮合的主动圆柱齿轮轴向位置精度要求低,不需要对主动齿轮进行精确的定位,同时面齿轮传动具有单级传动比大、结构紧凑等优点。

面齿轮传动应用在航空领域,可以简化系统结构,提高可靠性。

2 国内外研究发展现状2.1 国外面齿轮研究发展现状大多数国外研究者把面齿轮的应用价值集中在航空业上。

Handschuh和他的科研小组做了两个实验,分别是传动力矩在分流方面和动力学方面的,Handschuh提出小齿轮即使在自己的固有频率下工作同样能运行平稳,无共振发生,这是因为圆柱齿轮夹在两面齿轮中间,使其两侧轴向力相互抵消避免了共振情况出现。

这种面齿轮可以应用于高速度、大功率的啮合传动装置,这使面齿轮应用在航天器上成为可能。

在2005年美国军方应用航空技术董事会AATD主办的一个研究成果中,把面齿轮啮合传动结构用在直升飞机的动力装置中(AH-64DApache武装直升机),在这个实验中已试运行60小时,面齿轮传动系统未出现异常。

试验结果显示,面齿轮啮合传动可以提供大功率动力,从而达到重载荷的承受力。

另外由芝加哥北星航宇公司和波音公司联合研究同样把面齿轮技术应用于直升机上,也已经平稳地运行了400多个小时,这些研究为面齿轮应用于实际奠定了基础。

面齿轮最新研究集中在高速重载齿轮啮合传动上,军用直升机减速器设计采用两面齿轮夹一个小圆柱齿轮的结构。

如果用两对锥齿轮传递动力,与联轴器相连的轴上必须安装两个圆锥齿轮,对轴抗扭转性和支撑结构要求较高,因而重量增加很大,但如果把两个大锥齿改为两个面齿轮,把两个小锥齿设计成一个小圆柱齿轮轴,它的重量比原来结构降低了40%,且圆柱齿轮轴径向力正好平衡,振动小、噪声低,研究效果显著。

面齿轮国内外发展状况分析

面齿轮国内外发展状况分析

面齿轮国内外发展状况分析作者:杨春苹王承辉来源:《工业设计》2016年第01期摘要:本文论述了面齿轮传动机构具有重量轻、占有空间小、传动平稳、噪声小的特点,随着航空业发展,国外研究者在面齿轮应用于航空传动系统方面做了大量贡献,本文对我国面齿轮发展状况分析,提出了我国面齿轮研究的发展方向。

关键词:面齿轮;发展状况;仿真技术;啮合传动1 概述机器的功能需要多种机构配合才能完成,它包括原动机部分、传动机构和动力输出部分,传动机构处于原动机和动力输出端之间,是机器设备必不可少的部分,通过它可以完成机器的增速、减速和运动的转换,来满足输出端的各种运动要求。

传动机构在各种机器中占有重要地位,对机器的结构和外形都有重大影响。

传动机构通常包括啮合传动和摩擦传动,摩擦传动虽然结构简单,使用维修方便,传动时噪声小,但是传动时会由于皮带用的时间过长或安装不合理使两个皮带轮轴间距太大而出现打滑的现象,这时传动机构的效率大大降低,不能用在重载荷或大功率的转动设备上。

啮合传动包括齿轮传动、蜗杆传动和链条传动,蜗杆传动主要用在机床设备中,链条传动磨损较快,噪声大,传动比变化小,常用于矿山机械设备中,这种传动常常用在开放的环境。

齿轮传动在日常的生活、生产中用得最多,与蜗杆和链条传动相比,它具有占用空间小,传动平稳,传动比精确的优点。

小到家庭生活中的玩具汽车,大到长江三峡的发电机组都可以找到齿轮传动机构,适用范围非常广。

即使在一个减速机里有多对齿轮同时工作,结构也可以设计相当紧凑,传动效率可高达90%以上,在大的机器设备中采用油浴润滑,密闭的工作环境使其噪声很小,使用寿命也比啮合传动中的其它方式更长久。

随着机器制造业迅猛发展,对齿轮传动的工作性能和质量的要求也在不断提高,因此齿轮的结构形式也在变化。

社会经济在飞速发展,航空运输已经成为了比较常用的运输方式,各国展示军事实力也把军用飞机放在重要位置,以上这些究其根本原因是因为齿轮占用空间小,传动平稳的优势,使其在飞机制造业得到广泛使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 齿轮系统动力学研究从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。

其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。

[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。

[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。

他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。

[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。

[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。

[5]同年,M. Amabili和A. Rivola 研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。

[6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。

[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。

对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。

[8] 2010年,T. Osman和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。

[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。

[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。

通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。

[11]国内研究齿轮系统动力学也进行了大量的研究。

2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。

[12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。

[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。

[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。

采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。

[15]图三自由度直齿轮传动系统动力学模型[15]1.2.2 齿轮故障诊断学研究齿轮的故障诊断是故障诊断学的一个应用范例,现如今已经有大量学者对其进行研究。

这些研究者使用各种各样的研究手段,其主要目的都是为了在失效发生之前就能够检测到故障,防患于未然。

对齿轮箱的故障诊断,油液分析、温度分析、噪声分析等都可以作为判断其是否故障的方法,但目前还是以振动信号的分析为主。

齿轮箱振动的故障诊断方法主要有两种:时域分析、频域分析和时频域分析。

在时域分析中,有均方根值(RMS)、峰值因子(CF)、能量比(ER)、峭度(Kurtosis)、FM0、NA4、FM4、M6A、M8A等统计量作为衡量标准。

在频域分析中,主要有幅值谱和功率谱分析、倒谱分析、高阶谱分析以及循环统计处理等方法。

在时频域分析中,主要有短时傅里叶变换(STFT)、Winger-Ville分布、小波变换(WT)、NP4等方法。

[16-17]英国牛津大学的MCFADDEN早在1991年就提出了针对行星齿轮传动的时域平均方法,并指出了该方法应用的具体条件。

[18]1994年MCFADDEN又考虑了不同窗函数对时域平均效果的影响,改进以上方法,利用直升机齿轮箱数据验证了该方法。

[19]2000年,Polyshchuk等人提出了NP4方法,用来来分析齿轮损伤水平,其优点是不用比较正常齿轮信号和故障齿轮信号的差异。

[20]2005年,SAXENA等人采用Morlet小波对振动信号按频带分解,从小波时频图中提取能量、方差等特征参数以区分正常和裂纹行星架。

[21]2008年KHAWAJA等人利用最小二乘支持矢量机对正常和裂纹行星架进行分类。

[22]加拿大多伦多大学2010年由YU等人针对行星齿轮箱故障诊断研究较少的问题,提出了基于小波变换和时域平均的行星齿轮箱故障诊断方法。

[23]我国诊断技术的发展始于70年代末,而真正的起步应该从1983年南京首届设备诊断技术专题座谈会开始。

虽然起步较晚,但经过几年的努力,加上政府有关部门的支持和重视,在常用理论研究和应用方面已经与国外不相上下。

肖志松等人针对自行火炮中齿轮箱故障,搭建试验台模拟故障,在2003—2007年间分别提出了基于时域平均、时频分析、希尔伯特一黄变换和散度指标的齿轮箱故障诊断方法。

中国石油大学的樊长博等人针对风电行星齿轮箱运行环境恶劣、故障信号中调制边频带复杂的问题,在2006年采用基于倒频谱方法对故障特征进行了分析。

[24]大连理工大学的白亚红等人针对风电齿轮箱齿轮早期故障,于2010年提出了基于经验模式分解和支持矢量机的诊断方法,对行星齿轮箱齿轮磨损故障进行了诊断。

[25]国内学者虽然在基于动态信号处理技术的故障诊断方面有坚实的研究积累,但从以上文献综述可见,针对齿轮箱故障诊断的动态信号处理方法和手段却少有文献报道。

1.2.3 齿轮系统的可靠性研究可靠性是产品在规定条件下和规定时间内完成规定功能的能力。

机械可靠性是可靠性学科中的一个重要组成部分,对机械零件可靠性的研究很大程度上借鉴了结构可靠性设计理论和方法。

它的诞生可以追溯到20世纪40年代。

1947年,Feudenthal首次提出了用于构件静强度的可靠性设计理论:应力—强度干涉模型,为机械零部件的可靠性研究奠定了理论基础。

[26]1987年,AL-Shareedah将轮齿基本参数、外部载荷和许用应力视为随机变量,利用Monte Carlo方法对随机变量进行计算,根据不同应力标准计算出齿轮的设计标准,从而得出齿轮的可靠度,并研究了齿轮参数对圆锥齿轮可靠度的影响。

[27]1982年,美国Savage. M等学者将齿圈、太阳轮、行星轮以及行星架的寿命假设为服从Weibull分布,利用干涉理论得出了行星轮系的可靠度,推导了各个零部件可靠度的具体计算方法,并对整体系统进行了可靠度评估。

最后,以体积最小为目标函数,对系统进行了基于可靠性的优化设计。

[28]1994年,Nagamura等人建立了一个渗碳钢齿轮裂纹扩展和弯曲疲劳的寿命预测模型,通过Monte Carlo方法仿真发现了MAC14渗碳钢齿轮疲劳寿命服从三参数威布尔分布,仿真结果与实测结果相当接近。

[29]1999年,J. J. Coy等人利用Lundberg-Palmgren理论分别建立了低重合度和高重合度齿轮接触疲劳寿命的数学模型,通过该模型可以计算齿轮以及轮系的期望寿命,并通过实验证明了该方法的有效性。

[30]2009年,S. Z. Lv等人在考虑齿轮强度退化情况下,采用应力-强度干涉原理建立了齿轮系统的可靠性计算模型,齿轮系统的可靠性随着齿轮的腐蚀、老化以及其他原因逐渐降低。

[31]2013年,Fuqiong Zhao等人使用Bayes方法将物理模型法与状态监测数据相融合来进行齿轮寿命的可靠性评估。

物理模型法通过Paris法则获得退化模型的参数,实时监测值则作为状态监测数据,通过这两组数据得到退化模型修正后的参数估计值。

最后根据疲劳裂纹生长理论估计齿轮齿根的疲劳寿命。

[32]图基于Bayes融合的寿命评估方法流程[32]国内对于齿轮可靠性的研究起步于上世纪80年代。

1982年,陈历祥在假设齿轮应力和强度服从正态分布的基础上,从概率的角度推导了齿轮可靠度的计算公式,提出了齿轮强度可靠性问题。

[33]1996年,Q. J. Yang通过试验研究了线性疲劳累计损伤假设和其他两种修正的线性疲劳累计损伤假设在齿轮疲劳设计的准确性,修正后的线性疲劳累积损伤假设在计算寿命上有所改善,但实验值与理论值还存在一定差异。

[34]1997年,淘晋等人对40Cr钢调质齿轮进行了弯曲疲劳强度的可靠性研究,在试验基础上,拟合出P-S-N曲线及方程,获得了40Cr钢调质齿轮在不同可靠度时齿轮的弯曲疲劳强度值。

[35]1998年,Peng. X. Q利用随机有限元法,建立了轮齿疲劳可靠度的解析模型,将载荷、材料及基本参数视为随机变量,建立了轮齿疲劳破坏模型,并将计算结果和Monte Carlo方法的结果进行了比较。

[36]2007年,吴上生等人基于可靠度乘积理论,建立了两级行星齿轮传动系统的可靠性模型,研究了负载、太阳轮、行星轮个数以及传动比分配等因素对系统可靠性的影响。

[37]重庆大学秦大同课题组对某风电发电齿轮系统的可靠性进行了大量研究。

[38-39]建立了考虑时变啮合刚度与综合误差等内部激励和时变外部激励等因素的非线性动力学微分方程,求得了风电齿轮传动系统各构件的使用系数、动载系数和轴承载荷系数。

通过这些随机变量,进行了基于动力学的齿轮传动系统地可靠性评估。

2012年,陈涛针对风电齿轮传动系统的变风速特点,提出了非恒定载荷条件下齿轮应力概率计算模型,同时鉴于风电齿轮失效样本少的特点,使用熵权理论、改进的灰色理论和Bayes理论解决了小样本情况下的可靠性评估问题。

相关文档
最新文档