应用数理统计练习试题及答案
应用数理统计复习题及答案()

应用数理统计复习题(2010)一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 1/3 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X F(1,n) ,~12XF(n,1) 。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。
5.设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 2.1 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n Sn S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。
8.某试验的极差分析结果如下表(设指标越大越好):表1 因素水平表表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。
(2)方差分析中总离差平方和的自由度为 7 。
(3)上表中的第三列表示 A B ⨯交互作用 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
应用数理统计作业题及参考答案(第一章)

应⽤数理统计作业题及参考答案(第⼀章)第⼀章数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的⼦样,求最⼤顺序统计量()n X 与最⼩顺序统计量()1X 的分布函数与密度函数。
解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤= ,,,.()()()()1n n n f x F x n F x f x -'=??=.(){}{}1121i n F x P X x P X x X x X x =≤=->>> ,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-?-≤??-≤??-≤()11nF x =-?-()()()()1111n f x F x n F x f x -'=??=?-.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的⼦样1X ,2X ,…,5X ,试问:(i )⼦样的平均值X ⼤于13的概率为多少?(ii )⼦样的极⼩值(最⼩顺序统计量)⼩于10的概率为多少?(iii )⼦样的极⼤值(最⼤顺序统计量)⼤于15的概率为多少?解:()~124X N ,,5n =,4~125X N ??∴ ??,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>> ,,,{}{}{}5551111011101110i i i i P X P X P X ===->=-?-()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---∴<=<=<-=<-{}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-? {}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成⽴。
清华大学应用数理统计课后习题及答案

清华大学应用数理统计课后习题及答案习题三1 正常情况下,某炼铁炉的铁水含碳量2(4.55,0.108)X N :.现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)?解 由题意知 2~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立统计原假设 0010:,:H H μμμμ=≠ 拒绝域为{}00K x c μ=->,临界值1/21.960.108/0.0947c u α-==⋅=,由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性变化.设立统计原假设 22220010:,:H H σσσσ=≠ 由于0μμ=,所以当0.05α=时22220.0250.97511()0.03694,(5)0.83,(5)12.83,n i i S X n μχχ==-===∑% 2210.02520.975(5)/50.166,(5)/5 2.567c c χχ====拒绝域为 {}222200201//K s c s c σσ=><%%或由于22/ 3.167 2.567S σ=>%,所以拒绝0H ,总体的方差有显著性变化. 2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为x =950h .已知该种元件寿命2(100,)X N σ:,问这批元件是否合格(0.05α=)?解 由题意知 2(100,)X N σ:,设立统计原假设0010:,:,100.0.05.H H μμμμσα≥<==拒绝域为 {}00K x c μ=->临界值为 0.050.0532.9c u u =⋅=⋅=-由于 050x c μ-=-<,所以拒绝0H ,元件不合格.3 某食品厂用自动装罐机装罐头食品,每罐标准重量为500g ,现从某天生产的罐头中随机抽测9罐,其重量分别为510,505,498,503,492,502,497,506,495(g ),假定罐头重量服从正态分布. 问 (1)机器工作是否正常(0.05α=)? 2)能否认为这批罐头重量的方差为5.52(0.05α=)?解 (1)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ:,μ已知 设立统计原假设 0010:500,:H H μμμμ==≠,拒绝域 {}00K x c μ=-> 当0.05α=时,2500.89,34.5, 5.8737x s s ===临界值 12(1) 4.5149c t n α-=-⋅=,由于00.8889x c μ-=<,所以接受0H ,机器工作正常.(2)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ:,σ已知设立统计原假设 222220010: 5.5,:H H σσσσ==≠拒绝域为 {}{}222200102K s c s c σ=<>%%U 当α=0.05时,可得2220.0250.97512500.89,34.5,(5) 2.7,(5)19.02,0.3, 2.11x s c c χχ======%由于22001.0138sK σ=∈%,所以接受0H ,可以认为方差为25.5. 4 某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为3.399(元/500克),标准差为0.269(元/500克).已知往年的平均售价一直稳定在 3.25(元/500克)左右, 问该市当前的鸡蛋售价是否明显高于往年?(0.05α=)解 设X 表示市场鸡蛋的价格(单位:元/克),由题意知2(,)X N μσ: 设立统计原假设 0010: 3.25,:H H μμμμ==>, 拒绝域为 {}00K x c μ=->当α=0.05时,13.399,0.269,20,0.0992x n c ασμ-====⋅=临界值由于0 3.399 3.250.149.x c μ-=-=>所以拒绝0H ,当前的鸡蛋售价明显高于往年.5 已知某厂生产的维尼纶纤度2(,0.048)X N μ:,某日抽测8根纤维,其纤度分别为 1.32,1.41,1.55,1.36,1.40,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了(0.05α=)?解 由题意知 2(,0.048)X N μ:,0.05α=设立统计原假设 2222220010:0.048,:0.048H H σσσσ==>=拒绝域为{}2200K s c σ=>, 当0.05α=时,2220.950.951.4213,0.0055,(7)14.07,(7)7 2.0096x s c χχ=====由于220 2.3988s c σ=>,所以拒绝0H ,认为强度的方差明显变大.6 某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25只,测得寿命均值1950h ,标准差148h s =.设元件寿命服从正态分布,试在显著水平 α=0.05下, 确定这批元件是否合格.解 设X 表示电子元件的平均寿命(单位:h ),由题意知2(,)X N μσ: 设立统计原假设 0010:=2000H <H μμμμ≥,: 拒绝域为 {}00K x c μ=-<当0.05α=时,1950,148,(1)50.64x s c t n α===-=-临界值由于 050x c μ-=->,所以接受0H ,即这批电子元件的寿命是合格的. 7 设n X X X ,...,,21为来自总体(,4)X N μ:的样本,已知对统计假01:1;: 2.5H H μμ== 的拒绝域为0K {}2>=X .1)当9=n 时,求犯两类错的概率α与β;2)证明:当n →∞时,α→0,β→0.解 (1)由题意知 {}010~(,4),:1;: 2.5,2,9.X N H H K X n μμμ===>= 犯第一类错误的概率为()21 1.51(1.5)0.0668.X P X P αμ⎫=>==>==-Φ=⎪⎭犯第二类错误的概率为()2 2.50.75(0.75)1(0.75)0.2266.X P X P βμ⎫=≤==≤=-⎪⎭=Φ-=-Φ=(2)若0:1H μ=成立,则(1,4)X N :}{}{00000()=11)n P H H P X c P X c nc αμμσ=≥+=-<+=-Φ否定成立 当n →∞时,0)1ncσΦ→,所以0()n n α→→∞同理 }{0010=<+=+c )/)()=0()n P X c n βμμμσΦ-→Φ-∞→∞ 8 设需要对某一正态总体,4()N μ的均值进行假设检验H 0:μ= 15,H 1:μ<15取检验水平α=0.05,试写出检验H 0的统计量和拒绝域.若要求当H 1中的μ=13时犯第二类错误的概率不超过β=0.05,估计所需的样本容量n .解 由题意知 (,4)X N μ:,σ已知, 设立统计原假设 01:15,:15H H μμ=< 则拒绝域为}{015K X c =-<,其中临界值0.05c μ=⋅=-犯第二类错误的概率1513130.05P X P X β⎛⎫⎛⎫=->==->≤ ⎪ ⎭⎝⎝即1.65)0.95Φ≥, 化简得 23.311n ≥≈.9 设n X X X ,...,,21为来自总体X ~20(,)N μσ的样本,20σ为已知, 对假设:0011:;:H H μμμμ==其中01μμ≠,试证明:2211212()()n αβσμμμμ--=+⋅- 解 (1)10>μμ当时,由题意知 00110:;:;H H μμμμμ==>犯第一,二类错误分别为,αβ,则有001(|)P X c c u ααμμμ-=>+=⇒=01110(|))X P X c P u αβμμμμμ-=≤+==≤=⇒()()22011111120010u u u u n u u ββααβαβσμμμ------=-=⇒+=⇒=+- (2)10μμ≤当时由题意知 00110:,:H H μμμμμ==≤,犯第一,二类错误分别为,αβ,则有00(|)P X c c u ααμμμ=<+=⇒=()()01102201111120010(|))X P X c P u u u u u n u u αβααβαββμμμμμσμμ-----=≥+==≥+=⇒=⇒+==+-10 设171,...,X X 为总体2(0,)X N σ:样本,对假设:2201:9,: 2.905H H σσ==的拒绝域为 }{20 4.93K s =<. 求犯第Ⅰ类错误的概率α和犯第Ⅱ类错的概率β. 解 由题意知 2(0,)X N σ:,222~().nsn χσ%统计假设为 2201:9,: 2.905H H σσ==. 拒绝域为 }{20 4.93K s=<% 则犯第一,二类错误的概率,αβ分别是()()22222221717417174497.3040.0259999171744 3.319120.48810.750.253.319 3.319s s P s P P s P s P ασβσ⎛⎫⎛⎫⨯⨯=<==<=<== ⎪ ⎪⎝⎭⎝⎭⎛⎫⨯=<==-<==-= ⎪⎝⎭%%%%%11 设总体是密度函数是1,01(;)0,x x f x θθθ-<<=⎧⎨⎩其他统计假设 01:1,:2H H θθ==.现从总体中抽取样本21,X X ,拒绝域2134ΚX X =≤⎧⎫⎨⎬⎩⎭,求:两类错误的概率,αβ 解 由题意知010213:1;:2,, 2.4H H K X n X θθ⎧⎫===≤=⎨⎬⎩⎭当12121,0,11(;1) 1.~(0,1),(,)0,x x f x X U f x x θ<<⎧===⎨⎩时,其他此时 212121231431(,)0.250.75ln 0.75.4x x P X f x x dx dx X αθ≤⎛⎫=≤===+⎪⎝⎭⎰⎰当1212122,014,0,12(;2).(,)0,0,x x x x x x f x f x x θ<<<<⎧⎧===⎨⎨⎩⎩时,其他其他 此时 21212123143992(,)ln 0.75.4168x x P X f x x dx dx X βθ>⎛⎫=>===+ ⎪⎝⎭⎰⎰12 设总体2(,)X N μσ:,根据假设检验的基本原理,对统计假设:00110:,:()()H H μμμμμσ==>已知;0010:,:H H μμμμσ≥<(未知),试分析其拒绝域.解 由题意知 2(,)X N μσ:,当00110:,:()H H μμμμμ==>成立时()01X P X c P αμμμ=->==>=-Φ{}1100,u c u K X c ααμ--===->所以拒绝域为 }{00K X c μ=-> 当0010:,:H H μμμμ≥<成立时00()()X P X c P X c P αμμμμ⎛⎛⎫⎫=-<≥≥-<=<=Φ}{00,c K X c ααμμμ===-<所以拒绝域为}{00K X c μ=-<13 设总体2(,)X N μσ:根据假设检验的基本原理,对统计假设: (1)22220010:,:()H H σσσσμ=>已知;(2)22220010:,:()H H σσσσμ≤>未知试分析其拒绝域.解 由题意知 2~(,)X N μσ(1)假设统计假设为 22220010:=,:>H H σσσσ 其中μ已知当0H 成立时,拒绝域形式为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩由222220=(n)ns ns χσσ:,可得220=>nsP nc ασ⎧⎫⎪⎨⎬⎪⎭⎩所以 21-=()nc n αχ,由此可得拒绝域形式为2201-201=>()sK n nαχσ⎧⎫⎪⎨⎬⎪⎭⎩(2)假设统计假设为 22220010:<,:>H H σσσσ 其中μ未知当0H 成立时,选择拒绝域为 2020=>sK c σ⎧⎫⎪⎨⎬⎪⎭⎩,由222(-1)(1)n s n χσ-: 得 ()()()()222201111n s n s P n c P n c ασσ⎧⎫⎧⎫--⎪⎪⎪⎪=>-≤>-⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭所以21(1)(1)n c n αχ--=-,由此可得拒绝域形式为2201-201=>(1)1s K n n αχσ⎧⎫⎪-⎨⎬-⎪⎭⎩14 从甲、乙两煤矿各取若干样品,得其含灰率(%)为,甲:24.3, 20.8, 23.7, 21.3,17.4, 乙:18.2, 16.9, 20.2, 16.7 .假定含灰率均服从正态分布且2212=σσ,问甲、乙两煤矿的含灰率有无显著差异 (=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠ 其中12=5,=4n n 当=0.05α时1/2122.3238,(2) 2.3646w s t n n α-==+-=临界值1-212=(+2) 3.6861w c t n n s α-⋅= 拒绝域为}{0 3.6861K x y c =->= 而 03.5,,.x y c H -=<接受认为没有差别15 设甲、乙两种零件彼此可以代替,但乙零件比甲零件制造简单,造价也低.经过试验获得它们的抗拉强度分别为(单位:kg/cm 2):甲:88,87,92,90,91 乙:89,89,90,84,88假定两种零件的抗拉强度都服从正态分布,且21σ =22σ.问甲种零件的抗拉强度是否比乙种的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠,其中12=5,=5n n 当=0.05α时122.2136,(2) 1.86,w s t n n α==+-=-临界值1-12=(+2) 2.2136w c t n n s α-⋅= 拒绝域为}{0 2.2136K x y c =->=而 1.6x y c -=<,所以接受0H ,认为甲的抗拉强度比乙的要高.16 甲、乙两车床生产同一种零件.现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm )为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 2222012112:;:H H σσσσ≥<,其中12=8,=9n n当=0.05α时 220.0955,0.0261x y s s ==,临界值 12(1,1)0.2684c F n n α=--=拒绝域为202x y s K c s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩,而22 3.6588x y s F c s ==>,接受0H ,认为乙的精度高.17 要比较甲、乙两种轮胎的耐磨性,现从甲、乙两种轮胎中各取8个,各取一个组成一对,再随机选取8架飞机,将8对轮胎磨损量(单位:mg )数据列表如下:试问这两种轮胎的耐磨性有无显著差异?(=0.05α). 假定甲、乙两种轮胎的磨损量分别满足2212(,),Y (,)X N N μσμσ::且两个样本相互独立.解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠,其中12===8n n n 当=0.05α时,令()221/211,320,102200,319.69,(1) 2.36461n ZZ i Z X Y z s z z s t n n α-==-==-==-=-∑ 拒绝域为}{0K z c =>,临界值1-2=(1)2138Z c t n s α-⋅= 而320z c =<,所以接受0H ,认为两种轮胎耐磨性无显著差异. 18 设总体2212(,),Y (,)X N N μσμσ::, 由两总体分别抽取样本 X :4.4,4.0,2.0,4.8 Y :6.0,1.0,3.2,0.41)能否认为12μμ= (=0.05α)? 2)能否认为2212σσ= (=0.05α)?解 (1) 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠,其中12==4=n n n令Z X Y =-,则有22111.15,()9.02331n z i z s z z n ===-=-∑,当=0.05α时,1-2=(1) 3.1824c t n α-=,1-2=(1)/ 4.78Z c t n s α-⋅= 拒绝域为}{0K z c =>,而 1.15z c =<,所以012,.H μμ=接受认为(2) 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 2222220111:=;:H H σσσσ≠,其中12==4=n n n 其中221.5467, 6.4367x y s s ==,拒绝域为2201222>x x yy s s K c c s s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩或临界值 1/21221212(1,1)0.0648,(1,1)15.4392c F n n c F n n αα-=--==--=而22201220.2403,,.X Ys F H s σσ===接受认为19 从过去几年收集的大量记录发现,某种癌症用外科方法治疗只有2%的治愈率.一个主张化学疗法的医生认为他的非外科方法比外科方法更有效.为了用实验数据证 实他的看法,他用他的方法治疗200个癌症病人,其中有6个治好了.这个医生断 言这种样本中的3%治愈率足够证实他的看法.(1)试用假设检验方法检验这个医生的看法;(2)如果该医生实际得到了4.5%治愈率,问检验将证实化学疗法比外科方法更有效的概率是多少?解 (1) 记每个病人的治愈情况为X ,则有(1,) X B p :设统计假设为 0010:=0.02;:0.02H p p H p p >≤=,其中200,0.05n α==拒绝域为}{00K x p c =-<,临界值10.0163c αμ-== 而 000.01,,0.02.x p c H p -=<>拒绝不能认为 (2) 不犯第二类错误的概率101 4.5%P X u p p β-⎧⎫⎪⎪-=>=⎨⎬⎪⎪⎭⎩由(1,) X B p :,可得 (1),p p EX p DX n-== 由中心极限定理得1 4.5%10.72X P p β⎧⎫⎪-=>=⎬⎪⎭=-Φ=20 在某公路上,50min 之间,观察每15s 内通过的汽车数,得下表通过的汽车数量0 1 2 3 4 ≥5 次数f92 68 28 11 1 0问能否认为通过的汽车辆数服从泊松分布(=0.10α)?解 设统计假设为 0010:()(),()(),200.0.10H F x F x H F x F x n α====4001ˆ,0.805.j j H X j n λν====∑若成立 记 ˆ1,2,3,4ˆ(),!j j j p P x j ej λλ-==-=则有ˆ0.8050102143243500.8050.4471,0.805*0.3599,*0.144920.8050.805*0.0389,*0.0078,10.0014,34j j p e e p p p p p p p p p p λ--=============-=∑检验统计量的值为()2522210.9500 2.1596(1)(4)9.848,~(),0.805.jj n j jnp m r np H X P ανχχχλλ-=-==<--===∑不拒绝认为且21 对某厂生产的汽缸螺栓口径进行100次抽样检验,测得100数据分组列表如下:组限 10.93~10.95 10.95~10.97 10.97~10.99 10.99~11.01 频数582034 组限 11.01~11.0311.03~11.0511.05~11.0711.07~11.09 频数17664试对螺栓的口径X 的分布做假设检验(=0.05α).解 设X 表示螺栓的口径,2(,)X N μσ:,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中100,0.05,2n r α===在0H 成立的情况下,计算得88221111ˆˆ11.0024,()0.00101888j j j j i i X x v x v μσμ====⋅==-⋅=∑∑ 由ˆ11.0024(0,1)ˆ0.00319X X N μσ--=: 得0810.9311.002411.0911.00242.2689,, 2.74520.003190.00319x x --==-==L所以110887()()0.0386,,()()0.0140p x x p x x =Φ-Φ==Φ-Φ=L检验统计量的值为2822210.951()13.825(1)(5)11.07j j nj jv np m r np αχχχ-=-==>--==∑由此应该20,~(,).H X N μσ拒绝不能认为22 检查产品质量时,每次抽取10个产品检验,共抽取100次,得下表:次品数 0 1 2 3 4 5 6 7 8 9 10 频数35 40 18 5 1 1 0 0 0 0 0问次品数是否服从二项分布(=0.05α)?解 设X 表示抽取的次品数,2(,)X N μσ:,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中10,0.05n α==在0H 成立的情况下,01ˆNjj X pjvN N===∑计算得001011922801011021033710100103101010(1),0,1,,10;ˆˆˆ(1)0.3487,(1)0.3874,(1)0.1937ˆˆ(1)0.0574,(1)10,jj N j j N p C p p j p C p p p C p p p C p p p C p p p C p p--=-==-==-==-==-==-=L L 检验统计量的值为0020()21022210.950 5.1295(1)(9)16.92j j n j jnp m r np ανχχχ-=-==<--==∑因此0,~(10,0.1).H X B 不拒绝认为23 请71人比较A 、B 两种型号电视机的画面好坏,认为A 好的有23人,认为B 好的有45人,拿不定主意的有3人,是否可以认为B 的画面比A 的好(=0.10α)?解 设X 表示A 种型号电视机的画面要好些,Y 表示B 中型号电视机画面要好些分布函数分别为()X F x ,()Y F x ,统计假设为01:()(),:()(),10,100.0.05X Y X Y H F x F x H F x F x N n α=≠===由题意知++=23=45,=+n n n n n --, 检验统计量 ,min()s n n +-=而23(68)25s s α=<=,所以0,.H B 拒绝认为的画面好24 为比较两车间(生产同一种产品)的产品某项指标的波动情况,各依次抽取12个产品进行测量,得下表 甲 1.13 1.26 1.16 1.41 0.86 1.39 1.21 1.22 1.20 0.62 1.18 1.34 乙 1.211.310.991.591.411.481.311.121.601.381.601.84问这两车间所生产的产品的该项指标分布是否相同(=0.05α)?解 设,X Y 分别表示甲乙两车间所生产产品的指标分布,分布函数分别()X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,12,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为112T =且(150,300)T N :拒绝域为012K u u α-⎧⎫⎪=>⎨⎬⎪⎭⎩而0.9752.194 1.96u u =>=,所以0,.H 拒绝认为指标分布不相同 25 观察两班组的劳动生产率(件/h),得下表:问两班组的劳动生产率是否相同(α=0.05)?解 设,X Y 分别表示两个组的劳动生产率,分布函数分别为(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,9,9X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为73T = 拒绝域形式为}{01212,<K T t T t t t =<>U 其中而12(9,9)=66,(9,9)105t t =,因此T K ∈, 所以0,.H 接受认为劳动生产率相同26 观观察得两样本值如下:Ⅰ 2.36 3.14 7.52 3.48 2.76 5.43 6.54 7.41 Ⅱ 4.38 4.25 6.54 3.28 7.21 6.54 问这两样本是否来自同一总体(α=0.05)?解 设,X Y 分别表示Ⅰ,Ⅱ两个样本,分布函数分别是(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,6,8,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为49T = 拒绝域形式为}{01212,<K T t T t t t =<>U 其中而12(6,8)=32,(6,8)58t t =,因此0T K ∈, 所以0,.H 接受认为来自同一总体 27 某种动物配偶的后代按体格的属性分为三类,各类的数目是:10,53,46,按照某种遗传模型其比率之比应为:22)1(:)1(2:p p p p --,问数据与模型是否相符(05.0=α)?解 设体格的属性为样本X ,由题意知(2,1)X B p -: 其密度函数为()f x ,其中22(,)(1)0,1,2xxx f x p C p p x -=-=统计假设为0010:()(),:()()H F x F x H F x F x =≠似然函数为222211(1)(1)i iii nnx x x x n nxnxi i L C pp pp C --===-=-∏∏ 解得最大似然统计量为 ˆ12xp=- 则 220ˆˆ 1.330.1121pp === 1ˆˆˆ2(1)0.4454p p p =-= 22ˆˆ(1)0.4424p p =-= 拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ0.9134(1)(9) 3.8414ˆj j n j j npm r npανχχχ-=-==<--==∑所以0,.H 不拒绝认为与模型相符28 在某地区的人口调查中发现:15729245个男人中有3497个是聋哑人.16799031个女人中有3072个是聋哑人.试检验“聋哑人与性别无关”的假设(05.0=α).解 设X 表示男人中聋哑人的个数,Y 表示女人中聋哑人的个数,其分布函数分别表示为()X F x ,()Y F x . 统计假设为01:(,)()(),:(,)()()X Y X Y H F x y F x F x H F x y F x F x =≠拒绝域为}{2201(1)K m r αχχ-=>--而21022210.950ˆ()62.64(1)(1) 3.84ˆj j nj j v np m r np αχχχ-=-==>--==∑ 所以0,.H 拒绝认为聋哑与性别相关 29 下表为某药治疗感冒效果的联列表:试问该药疗效是否与年龄有关(α=0.05)?解 设X 表示该药的疗效与年龄有关,Y 表示该药的疗效与年龄无关,其分布函数分别表示为(),X F x ()Y F x . 统计假设为01:(,)()(),:(,)()(),3,3,0.05,X Y X Y H F x y F x F x H F x y F x F x r s α=≠===拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ13.59(1)(4)9.488ˆj j n j j npm r npανχχχ-=-==>--==∑所以0,.H 拒绝认为疗效与年龄相关30 某电子仪器厂与协作的电容器厂商定,当电容器厂提供的产品批的不合格率不超过3%时以高于95%的概率接受,当不合格率超过12%时,将以低于10%的概率接受.试为验收者制订验收抽样方案.解 由题意知,010.03,0.12,0.05,0.1p p αβ====代入式子 01()1()L p L p αβ=-⎧⎨=⎩()L p选用式子()(L P X d P U φ=≤=≤≈计算求得 66,4n d ==,于是抽查方案是:抽查66件产品,如果抽得的不合格产品4X ≤,则接受这批产品,否则拒绝这批产品.31 假设一批产品的质量指标2(,)X N μσ:(2σ已知),要求质量指标值越小越好.试给出检验抽样方案(,n c )的计算公式.若2σ未知,又如何确定检验抽样方案(,n c )?若质量高时指质量指标在一个区间时,又如何确定检验抽样方案(,n c )?解 (1) 解方程组01()1()L L μαμβ=-⎧⎨=⎩得 ()201u u n αβσμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+ (2) 若2σ未知,用*2M 估计2σ,从而得出公式()2*201u u M n αβμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+习题四1 下表数据是退火温度x (C 0)对黄铜延性η效应的试验结果,η是以延伸率计算的,且设为正态变量,求η对x 的样本线性回归方程.x (C 0)300 400 500 600 700 800 y (%)40 50 55 60 67 70解 利用回归系数的最小二估计:101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑ 代入样本数据得到:1ˆˆ0.0589,24.6286ββ== 样本线性回归方程为:ˆ24.62860.0589yx =+ 2 证明线性回归函数中(1)回归系数1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ-±-; (2)回归系数0β的置信水平为α-1的置信区间为2ˆ(2)n αβ-±-.证 (1) 由于211ˆ,xx N l σββ⎛⎫ ⎪⎝⎭:()0,1N : 222(2)ES n χσ-:又因为:,()222ˆ2(2)n n σχσ--:故所以()2t n -:易知 {}11ˆ1p c ββα-<=-,1P α<=-⎪⎭⎩其中()122n α--所以1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ-- (2) 由0ˆβ~2201(,())xxnx N l βσ+,得()0,1N :,()222ˆ2(2)n n σχσ--:,0ˆβ与2ˆσ相互独立, 所以:()2T t n ==-:根据11221(2)(2)P T t n P t n ααα--⎫⎪⎛⎫⎪-=<-=<- ⎪⎪⎝⎭⎪⎪⎭()()0001122ˆˆ22P n n ααβββ--⎛⎫ ⎪ ⎪=-<<- ⎪ ⎪ ⎪⎝⎭得到0β的置信度为1α-的置信区间()012ˆ2n αβ-±-.3 某河流溶解氧浓度(以百万分之一计)随着水向下游流动时间加长而下降.现测得8组数据如下表所示.求溶解氧浓度对流动时间的样本线性回归方程,并以α=0.05对回归显著性作检验.流动时间t (天) 0.5 1.0 1.6 1.8 2.6 3.2 3.8 4.7 溶解氧浓度(百万分之一)0.28 0.29 0.29 0.18 0.17 0.18 0.10 0.12解 利用101ˆˆˆtytt l l y tβββ⎧=⎪⎨⎪=-⎩其中2211,n nty i i tt i i i l t y nty l t nt ===-=-∑∑代入样本数据得到: 10ˆˆ0.0472,0.3145ββ=-= 所以,样本线性回归方程为:ˆ0.31450.0472yt =- 拒绝域形式为:{}21ˆc β> ()20.95ˆ1,6,0.0058ttF c c l σ==>而21ˆ0.0022β=,所以回归模型不显著. 4 假设X 是一可控制变量,Y 是一随机变量,服从正态分布.现在不同的X 值下分别对Y 进行观测,得如下数据i x0.25 0.37 0.44 0.55 0.60 0.62 0.68 0.70 0.73 i y2.57 2.31 2.12 1.92 1.75 1.71 1.60 1.51 1.50 i x 0.75 0.82 0.84 0.87 0.88 0.90 0.95 1.00 i y1.41 1.33 1.31 1.25 1.20 1.19 1.15 1.00(1)假设X 与Y 有线性相关关系,求Y 对X 样本回归直线方程,并求2σ=DY 的无偏估计;(2)求回归系数210σββ、、的置信度为95%的置信区间; (3)检验Y 和X 之间的线性关系是否显著(=0.05α); (4)求Y 置信度为95%的预测区间;(5)为了把Y 的观测值限制在)68.1,08.1(,需把x 的值限制在什么范围?(=0.05α)解 (1) 利用101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑计算得10ˆˆ2.0698, 3.0332ββ=-= 所以,样本线性回归方程为:ˆ 3.03322.0698yx =-,22ˆ0.002015ES σ== (2) 根据第二题,1β的置信区间为()112ˆ2n αβ--,代入值计算得到:()1 2.1825, 1.9571β∈--,0β的置信区间为()02ˆ2n αβσ-±-,代入数值计算得到:()0 2.95069,3.1160β∈.(3) 根据F 检验法,其拒绝域形式为 }{201ˆK c β=> 而 12ˆ(2),xxc tn l ασ-=- 显然10K β∈,所以Y 和X 之间具有显著的线性关系.(4)()221(0,(1))xxx x y N l nσ-++:,()2ˆ1()1(0,1)xxx x s x N l n -=++:令222ˆ(2)((2)n n t n σχσ---:: 则有1122ˆˆˆ((2),(2))y yt n yt n αα--∈-+-(5) 根据(4)的结论,令22ˆˆ1.68 1.08yyαα--+=-=,解得 (0.7802,0.8172)x ∈5 证明对一元线性回归系数0ˆβ,1ˆβ相互独立的充分必要条件是0=x . 证 ""⇒()()()()()010011111ˆˆˆˆˆˆcov ,E y x ββββββββββ=--=---2110111101ˆˆˆˆ()E y x y x βββββββββ=---++2211011101ˆy xE y x ββββββββ=---++ ()2211ˆx E ββ=-- 222221111ˆˆˆ()xx E D E l σββββ=+=+ 若要()01ˆˆcov ,0ββ=,那么0x =.反之显然也成立,命题的证.6 设n 组观测值),...,2,1)(,(n i y x i i =之间有关系式:i i i i x x y εεββ,+-+=)(10~),...,2,1)(,0(2n i N =σ(其中∑==ni i x nx 11),且n εεε,...,,21相互独立.(1) 求系数10,ββ的最小二乘估计量10ˆ,ˆββ; (2) 证明∑∑∑===-+-=-ni i n i i i n i i y y y y y y 121212)ˆ()ˆ()(,其中∑==n i i y n y 11(3) 求10ˆ,ˆββ的分布. 解 (1) 最小化残差平方和:2201[()]Ei i S y x x ββ=---∑01ββ求,的偏导数[][]220101012()02()()0E Ei i i i i S S y x x y x x x x ββββββ∂∂=----==-----=∂∂∑∑, 01ˆˆ,xy xxl y l ββ==得到:(2) 易知()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑ 其中01ˆˆˆ()()xy i ii xxl y x x y x x l ββ=+-=+-,将其代入上式可得1ˆˆ()()0niiii y yy y =--=∑ 所以,∑∑∑===-+-=-ni i n i i i ni iy y yy y y121212)ˆ()ˆ()( (3) 20ˆ~(0,),iN y εσβ=Q ,200ˆ~(,)N nσββ∴同理,易得211ˆ~(,)xxN l σββ∴7 某矿脉中13个相邻样本点处某种金属的含量Y 与样本点对原点的距离X 有如下观测值ix 2 3 4 5 7 8 10 i y 106.42 108.20 109.58 109.50 110.00 109.93 110.49ix11 14 15 16 18 19i y110.59 110.60 110.90 110.76 111.00 111.20分别按(1)x b a y +=;(2)x b a y ln +=;(3)xb a y +=. 建立Y 对X 的回归方程,并用相关系数221TES S R -=指出其中哪一种相关最大.解 (1)令v y a bv ==+,根据最小二乘法得到,正规方程:101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,最后得到10ˆˆ1.1947,106.3013ββ==所以:样本线性回归方程为:ˆ106.3013y=+10.8861R = (2) 令ln ,v x y a bv ==+101ˆˆˆvyvv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ1.714,106.3147ββ== 所以:样本线性回归方程为:ˆ106.3147 1.714ln yx =+,20.9367R = (3) 令1,v y a bv x==+ 101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ111.4875,9.833ββ==- 所以:样本线性回归方程为:ˆ111.48759.833yx =-,30.987R = 综上,123R R R <<,所以第三种模型所表示的X Y 与的相关性最大. 8 设线性模型⎪⎩⎪⎨⎧++=+-=+=3213221211122εββεββεβy y y其中i ε~),0(2σN (1,2,3.i =)且相互独立,试求1β、2β的LS 估计.解 令()()1231212310,,,21,(,),,,12T TT Y y y y X βββεεεε⎡⎤⎢⎥==-==⎢⎥⎢⎥⎣⎦则线性模型可转化为 Y X βε=+ 根据 222TTTTES Y X Y Y Y X X X ββββ=-=-+, 令 20ES β∂=∂ 可得 ()1ˆTT X X X Y β-=即 112322311ˆˆ(23),(2)66Y Y Y Y Y ββ=++=--+ 9 养猪场为估算猪的毛重,随机抽测了14头猪的身长1x (cm),肚围2x (cm)与体重y (kg),得数据如下表所示,试求一个22110x b x b b y ++=型的经验公式.解由多元线性模型得:()2140,Y X I βεεσ=+⎧⎪⎨=⎪⎩()()()0121212,,,,,,T T Tn n Y y y y ββββεεεε===L L()114149145581516215271159621627416971ˆ172741787918084190851929419891110395T T X X X X Y β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦代入数值得到:12ˆ15.93840.52230.4738yx x =-++ 同样得到:12ˆ15.93840.52230.4738yx x =-++ 10 某种商品的需求量y ,消费者的平均收入1x 和商品价格2x 的统计数据如下表所示.试求y 对1x 、2x 的线性回归方程. 1i x1000 600 1200 500 300 400 1300 1100 1300 300 2i x 5 7 6 6 8 7 5 4 3 9 y100 75 80 70 50 65 90 100 110 60解 建立回归模型201122=+++(0,)Y x x N βββεεσ:其中根据2()=0E S ββ∂∂,可求得β的LS 估计为 -1ˆ=(X X)T T X Y β代入x ,得0=111.6918,β 1=0.0143,β 2=7.1882,β-则回归方程为:12ˆ111.69180.01437.1882yx x =+- 11 设n 组观测值),...,2,1)(,(n i y x i i =之间有如下关系:i i i i i x x y εεβββ,+++=2210~),...,2,1)(,0(2n i N =σ,且n εεε,...,,21相互独立.(1)求系数210,,βββ的最小二乘估计量210ˆ,ˆ,ˆβββ; (2)设n i x x y i i i ,...,2,1,ˆˆˆˆ2210=++=βββ,∑==n i i y n y 11,证明:∑∑∑===-+-=-ni i ni i i ni i y y y y y y 121212)ˆ()ˆ()(解 (1) ()()()0121212,,,,,,T T Tn n Y y y y ββββεεεε===L L1222211111Tn n X x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭L L L()1ˆT T X X X Y β-=(2)()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑()()11ˆˆˆˆ()0nTTi i i i x x x x y y yy β-==--=∑其中:y=x ,将其代入,得到 ()22211ˆˆ()()nni i i i i i y y y yy y ==∴-=-+-∑∑ 12(1)求形如2210x b x b b y ++=的回归方程;(2)对上述回归方程的显著性作检验; (3)求当x =5.5时Y 的估计值.解 (1) 令212,xx x x ==,求得回归方程为:2ˆ 3.4167 2.72620.3905yx x =+- (2) 拒绝域形式为:{}21ˆc β> ()20.9521ˆ1,6ˆxxF c l σβ=>而,所以回归方程具有显著性 (3) 将 5.5x =代入回归方程,得到ˆ 6.5982y= 13 设y 和变量12,x x 有形为ε++=2211x b x b y ,2(0,)N εσ:的回归方程模型,试用最小二乘法求出12b b 和的估计.解 令 ()()()121212,,,,,TTTn Y y y y βββεεε===L1112121222Tn n x x x X x x x ⎛⎫= ⎪⎝⎭L L残差平方和为 222T T T T E S Y X Y Y Y X X X ββββ=-=-+令 20E S β∂=∂,得到 112ˆ(,)()T T T X X X Y βββ-==.。
应用数理统计期末试卷 (2)

应用数理统计期末试卷题目一一位医生想要调查 COVID-19 病例在抵达医院时的体温情况,他随机抽查了50 名确诊患者,记录了他们入院时的体温(单位:摄氏度),得到以下数据:37.1 37.2 38.5 37.8 38.138.2 38.4 37.9 38.3 37.638.0 38.2 37.4 38.5 38.637.3 37.9 38.9 37.8 37.538.6 37.7 38.4 37.1 38.137.4 38.3 37.9 37.7 37.638.0 38.2 38.8 37.5 38.338.1 38.5 37.8 37.9 38.737.6 37.7 37.9 38.3 38.0请根据这份数据回答以下问题:1.请计算这 50 名患者的平均体温并进行解释。
2.请建立适当的直方图并解释。
3.请计算这批数据的标准差并解释。
题目二一项关于发动机寿命的研究显示,在正常使用情况下,某型号航空发动机寿命服从均值为 1200 小时、标准差为 100 小时的正态分布。
为了确保安全,该型号发动机的安全寿命必须在 1000 小时以上。
在一架飞机上,该型号的 5 台发动机已经工作了 895、1020、1140、1260 和1375 小时。
请回答以下问题:1.五台发动机的寿命各是多少,哪台发动机应该先更换?2.如果该型号发动机的标准差为 80 小时,五台发动机的寿命各是多少,哪台发动机应该先更换?题目三在某公司的管理培训课程中,有 120 名学员参加了一次考试,总分为 100 分。
以下是这 120 名学员的成绩:49 59 63 86 71 62 75 71 82 7259 51 58 64 57 27 68 76 80 4671 67 48 64 65 45 57 69 90 5261 51 29 41 77 57 65 58 72 4150 63 73 51 55 61 83 84 92 6491 69 60 72 70 88 89 86 77 5980 80 34 52 59 73 60 69 37 4634 66 67 86 56 41 65 93 73 8958 62 54 47 83 64 44 53 40 8571 67 35 45 73 73 59 81 56 7368 55 49 65 79 69 96 47 60 34请回答以下问题:1.请计算这批成绩的平均分、中位数、众数、极差、四分位数并进行解释。
数理统计试题及答案

数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
《应用数理统计》考试试题与参考答案

《应用数理统计》试卷 第 1 页 共 4 页《应用数理统计》期末考试试卷一、单项选择题:(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )A.P(A)=1-P (B )B.P(AB)=P(A)P(B)C.P(A ∪B)=1D.P(AB )=1 2、设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2422B .C C 2142 C .242!A D.24!!4、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.41)43(2C. 43)41(2D.C 4221434()5、已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )A.2f X (-2y)B.f X ()-y2C.--122f y X () D.122f y X ()- 6、如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( )A.〔0,1〕B.〔0,2〕C.〔0,2〕D.〔1,2〕7、下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B..0,1;0,0)(2x x x x x F ≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8 则P{X=0}=A.112B.212 C. 412 D. 5129、已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10、设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。
应用数理统计参考题

应用数理统计(2000年)一、填空1 、设X1,X2,…X10 来自总体N(0,1) 的样本,若2 2 2y=k i(x i+2x2+3x3)+k2(x4+x5+…+X10) ~x (2),贝U k i= _________ k2= __________2、设x i,X2,…X2m来自总体N(4,9)的样本,若y=W(x2i-4)2,且Z= c(xi 二4),服z J y从t 分布,贝U c= ___ ,z~t( __ )3、设X i,X2,…X2m 来自总体N( p, 2)的样本,已知y=(X2-X i)2+(X4-X3)2+…+(X2m-X2m-i)2,且Z=cy为2的无偏估计,则c= ____4、上题中,Dz= __5、由总体F(x)与G(x)中依次抽得容量为i2和ii的样本,已计算的游程总个数U=i2,试在水平a =0.05下检验假设H。
:F(x)= G(x),其结论为 ___________ (U°.05(12, 11)=8)61 °X2 1二、设X i,X2,…X61 来自总体N(0,1)的样本,令y=^ x2,试求P{互兰丄}y y 15(t0.975(60)=2)三、设总体X的密度函数为(1+a)x: 0<x<1Lf(x)= F0, 其它而(X i,X2,…X n )为来自X的样本,试求〉的极大似然估计量。
2 2四、设x~N( p, 2),y~ N( p, 2)今抽取X的样本X i,X2,…X8;y的样本y i,y2, (8)计算得x =54.03,y =57.11,s;=3.25, £=2.751 .试在水平a =0.0下检验假设H0:p i=p,H i: p i> p22. 试求a =0.0时,p- p 的估计区间(t0.99(14)=2.6245)五、欲考察因子A,B,C,D及交互作用AXC,且知B也可能与其它因子存在交互作用,试在L8(27)上完成下列表头设计。
(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用数理统计复习题
1.设总体~(20,3)X N ,有容量分别为10,15的两个独立样本,求它们的样本均值之差的绝对值小于0.3的概率.
解:设两样本均值分别为,X Y ,则1
~(0,)2X Y N -
(||0.3)(0.424)(0.424)0.328
P X Y -<=Φ-Φ-= 2.
其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,求θ的矩估计和最大似然估计.
解:(1)矩估计:2222(1)3(1)23EX θθθθθ=+⨯-+-=-+
14(121)3
3
X =
++=
令EX X =,得5ˆ6
θ=.
(2)最大似然估计:
2256()2(1)22L θθθθθθθ=⋅⋅-=-
4
5
ln()10120d d θθθ
θ
=-=
得5ˆ6
θ=
3. 设某厂产品的重量服从正态分布,但它的数学期望μ和方差2
σ均未知,抽查10件,测得重量为i X 斤10,,2,1 =i 。
算出
101
1 5.410
i i X X ==
=∑
10
2
1
() 3.6i i X X =-=∑
给定检验水平0.05
α=,若该厂产品的平均重量为5.0斤,是否合格?
附:t 1-0.025(9)=2.2622 t 1-0.025(10)=2.2281 t 1-0.05(9)=1.8331 t 1-0.05(10)=1.8125 解: 检验统计量为0|
|/
X T S m -=
将已知数据代入,得2t =
=
1/2
0.975
(1)(9)
2.26222
t n t
a -
-==> 所以接受0H 。
4. 在单因素方差分析中,因素A 有3个水平,每个水平各做4次重复实验,完成下列方差
分析表,在显著水平0.05α=下对因素A 是否显著做检验。
解:
0.95(2,9) 4.26F =,7.5 4.26F =>,认为因素A 是显著的.
5. 现收集了16组合金钢中的碳含量x 及强度y 的数据,求得
0.125,45.7886,0.3024,25.5218xx xy x y L L ====,2432.4566yy L =.
(1)建立y 关于x 的一元线性回归方程01
ˆˆˆy x ββ=+; (2)y 对x 回归系数1β做显著性检验(0.05α=).
解:(1)1
25.5218ˆ84.39750.3024
xy xx
l l β==
=
01
ˆˆ35.2389y x ββ=-= 所以,ˆ
35.238984.3975y
x =+ (2)1ˆ2432.456684.397525.5218278.4805e yy xy
Q l l β=-=-⨯= 2
278.4805
ˆ19.8915
2
14
e Q n σ
==
=- ˆ54.46
σ
==
10.4060t =
=
=
0.025(14) 2.1604t = 10.4060 2.1604t =>
拒绝原假设,故回归效果显著. 6.
(2) 找出“算一算”的较优生产条件;(指标越大越好) (3) 写出第4号实验的数据结构模型。
解:
(2) “算一算”的较优生产条件为221A B C (3) 4号实验的数据结构模型为
2214y a b c με=++++,2
4~(0,)N εσ
7.设总体1122~(,),~(,)p p G N G N μμ∑∑,样品为X .已知 11.02.25.4μ⎛⎫ ⎪= ⎪
⎪
⎝⎭
, 2 4.25.56.8μ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1
2.30
0.250.470.250.600.040.470.04
0.60-⎛⎫ ⎪∑= ⎪ ⎪⎝⎭,123 1.83.67.0x X x x ⎛⎫⎛⎫
⎪ ⎪
== ⎪ ⎪
⎪ ⎪⎝⎭
⎝⎭ (1) 求线性判别函数()X μ;
(2) 对样品X 的归属做判别.
解:(1)1
12 2.300.250.47 3.28.8()0.25
0.600.04 3.3 2.80.470.04
0.60 1.4 2.5αμμ---⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪=∑-=-=-
⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭
2.6
3.96.1μ⎛⎫ ⎪= ⎪ ⎪⎝⎭
123()()8.8( 2.6) 2.8( 3.9) 2.5( 6.1)T
X X x x x μαμ=-=------;
(2)()8.8(0.8) 2.8(0.3) 2.50.9 5.630X μ=-⨯--⨯--⨯=> 所以,1X G ∈.
8.掷一枚硬币100次,观察到正面出现58次,能否认为该枚硬币是均匀的?(0.05)α= 解:设正面出现的概率为p ,则
0:0.5
H p = 2
2
2
(5850)
(4250)
2.5650
50
χ--=
+
=
2
0.05
(1)(1) 3.841r αχχ
-==
20.05
2.56(1)χ
<,故接受0H ,可以认为该枚硬币是均匀的.
9.设总体的密度函数(1)
(;),,0p x c x x c c θ
θθθ-+=>>,c 为已知参数,0θ>为未知参数.
当样本容量为n 时,求θ的C R -下界. 解:ln (;)ln ln (1)ln p x c x θθθθ=+-+
l n (;
)
1
l n l n p x c x θθ
θ
∂=
+-∂
2
2
2
ln (;)
1
p x θθ
θ
∂=-
∂
222
ln (;)1
()p x I E θθθθ
⎛⎫∂=-= ⎪∂⎝⎭. 所以,θ的C R -下界为
2
1()
nI n
θ
θ=
.
10.假设回归直线过原点,即一元线性回归模型为,1,2,,i i i y x i n βε=+= ,
2
~(0,)i N εσ且相互独立,求β的最小二乘估计.
解:令 2
1
()n
i
i i Q y
x β==
-∑
1
2()0n
i i i i Q y x x ββ
=∂=---∂∑
解得 1
21
ˆn
i
i
i n
i
i x y
x
β
===∑∑.
11.设121,,,,n n X X X X + 是来自2
(,)N μσ的样本,1
1n
n i
i X X
n
==
∑,
22
1
1
()1
n
n
i n i S X X n ==
--∑,试求常数C ,使得1n c n
X X t c
S +-=服从t 分布,并指出分布的
自由度.
解:2
2
1~(0,)n n X X N n
σ
σ+-+
,
2
2
2
(1)~(1)n
n S n χσ
--
故~(1)n
t t n S =
-
,c =
12.总体~(,2)X U θθ,其中0θ>是未知参数,1,,n X X 是取自该总体的样本,X 为样本均值,证明:2ˆ3
X θ=是参数θ的无偏估计和相合估计.
证明:2
ˆ3E E X θ⎛⎫
=
⎪⎝⎭
=222332E X θθθ+=
= 所以ˆθ是θ的无偏估计. 2
44
4
ˆ099912
D D X D X n
n θθ===
→⨯
所以ˆθ是θ的相合估计.
13.总体2~(,)X N μσ,2σ已知,问样本容量n 取多大时才能保证μ的置信水平为95%的置信区间的长度不大于k .
解:μ的置信水平为1α-
的置信区间为1/2
1/2
[x u x u αα---+
1/2
2L u k α-=≤2
2
22
1/22 3.92n u k k ασσ-⎛⎫⎛⎫⇒≥= ⎪ ⎪⎝⎭⎝⎭
14.设1,,n X X 是来自(,4)N μ的样本,考虑如下假设检验问题 01:2,
:5H H μμ==
若拒绝域为{3}W X =≥,样本容量16n =时,求该检验犯两类错误的概率. 解:(3|2)P X αμ=≥=
11(2)⎛=-Φ=-Φ
⎝;
(3|5
)P X βμ=<=
1(4)⎛=Φ=-Φ
⎝
15.为了检验事件A 发生的概率是否为p ,对A 进行了n 次观察,结果A 发生了A n 次,若检验水平为α,试写出检验统计量和拒绝域.
解:设1,0A X A ⎧=⎨⎩发生
,不发生
即要检验X 的分辨率是否为
2
2
2
2
()
()
()A A A n np n n nq n np np
nq
npq
χ----=
+
=
拒绝域:22
(1)n αχχ≥-。