《高等数学》期中考试A

合集下载

中北大学高等数学A2019-2020期中考试试题与答案

中北大学高等数学A2019-2020期中考试试题与答案

2019-2020 学年 第 1 学期 第 1 次考试试题与答案课程名称 高等数学A (1)1、下列极限不存在的是( C ). (A )1lim sin x x x→∞;(B )lim arctan x x →+∞;(C )e 1lim e 1xx x →∞+-; (D )lim x →+∞.解析:(A )11lim sin lim 1x x x x xx→∞→∞=⋅= (由于10x→,因此11sin x x )(B )πlim arctan 2x x →+∞=(C )e 11e lim lim 1e 11e x x xx x x --→+∞→+∞++==--,e 1lim 1e 1x x x →-∞+=--,因此e 1lim e 1xx x →∞+-不存在.(D )lim limx x →+∞==2、()1lim 1kxx x →∞-=( A ).(A )e k -; (B )e k; (C )1ek-;(D )1e k.解析:()()11lim 1lim 1e kkxxk x x x x ---→∞→∞⎡⎤-=-=⎢⎥⎣⎦.3、当0x →时,423sin cos x x x 与nx 为等价无穷小,则n =( B ). (A )4; (B )6;(C )7;(D )9.解析:423636600sin cos cos lim lim 1x x x x x x x x x→→== (sin x x ) 4、关于函数3233()(3)(2)x x x f x x x +--=+-的间断点,下列正确的是( D ).(A )3x =-与2x =均为无穷间断点; (B )3x =-与2x =均为可去间断点;(C )3x =-为无穷间断点,2x =为可去间断点; (D )3x =-为可去间断点,2x =为无穷间断点.解析:322233333(3)(1)18limlim lim (3)(2)(3)(2)25x x x x x x x x x x x x x x →-→-→-+--+--===-+-+--,因此3x =-为可去间断点; 当2x →时,分母极限为0,分子极限为非0实数,因此2x =为无穷间断点.5、设cos 0()20e 0x a x x f x x b x >⎧⎪==⎨⎪+<⎩在0x =处连续,则,a b 的值为( C ). (A )1,1a b ==; (B )1,2a b ==; (C )2,1a b ==;(D )2,2a b ==.解析:连续点处左右极限存在并都与函数值相等;0lim ()lim cos x x f x a x a ++→→==,00lim ()lim (e )1xx x f x b b --→→=+=+, 因此,21a b ==+,可得:2a =,1b =.6、设()(1)(2)(3)(4)f x x x x x =----,则方程()0f x '=的实根的个数为( C ). (A )1;(B )2;(C )3;(D )4.解析:显然()f x 连续可导,且满足(1)(2)(3)(4)0f f f f ====,分别在[1,2],[2,3],[3,4]三个区间内使用罗尔定理,可得()0f x '=在三个区间内至少各有一根,因此()0f x '=至少有三个根;另外,由于()f x '为三次多项式,因此最多只有三个根.综上,本题选C . 7、已知(3)2f '=,则0(3)(3)lim2h f h f h→--=( A ). (A )1-; (B )1; (C )12-; (D )12. 解析:00(3)(3)1(3)(3)1limlim (3)1222h h f h f f h f f h h →→----'=-=-=--.8、函数32()32f x x x =-+在[1,3]上的最大值和最小值分别为( D ). (A )最大值为5,最小值为0; (B )最大值为2,最小值为0; (C )最大值为0,最小值为2-;(D )最大值为2,最小值为2-.解析:2()360f x x x '=-=,可得在[1,3]只有一个驻点2x =,将驻点函数值与端点比较即可,(1)0f =,(2)2f =-,(3)2f =,可得最大值为2,最小值为2-.9、函数23()(1)4f x x =-在1x =处的曲率为( B ). (A )34; (B )32; (C )54; (D )52. 解析:33222213322(1)31(1)2x y K y x =''==='+⎡⎤⎛⎫+-⎢⎥⎪⎝⎭⎢⎥⎣⎦10、墙角处立着一个长度为5m 的梯子,如图所示,梯子顶端A 点以1.5m/s 的速度正在匀速下滑,当A 点与墙角O 点之间距离为4m 时,梯子底端B 点向右滑动的速度为( B ). (A )1.5m/s ; (B )2m/s ; (C )2.5m/s ; (D )3m/s .解析:OA 的距离设为y ,OB 的距离设为x ,显然有2225x y +=,通过这个式子可求出两个速度之间的关系, 两边对t 求导数得:d d 0d d x y xy t t +=,将3x =,4y =,d 1.5d y t =-代入解得d 2d xt=m/s 11、设()f x =()f x 的定义域是 . 答案:1e ,e -⎡⎤⎣⎦解析:由21ln 0x -≥解得1ln 1x -≤≤,再由于ln x 为单调函数,因此1e e x -≤≤.12、22212lim()12n nn n n n→∞+++=+++ . 答案:12 解析:22222222212121212111n n nn n n n n n n n n n n n n +++≤+++≤++++++++++++ 由112(1)2n n n +++=+ ,得2222211(1)(1)1222121n n n n nn n n n n n n ++≤+++≤+++++ 而21(1)12lim 2n n n n n →∞+=+,21(1)12lim 12n n n n →∞+=+,由夹逼准则得原极限为12. 13、函数()y y x =由方程2e 610y xy x ++-=确定,则(0)y ''= . 答案:2-解析:将0x =代入方程解得0y =,方程两边对x 求导得e 6620yy y xy x ''⋅+++=,将0x =,0y =代入解得(0)0y '=;方程两边对x 再求导得2e ()e 66620yyy y y y xy '''''''⋅+⋅++++= 将0x =,0y =,0y '=代入得:(0)2y ''=-.14、已知(sin )xy x =,则y '= . 答案:(sin )(ln sin cot )xx x x x + 或 1(sin )ln sin (sin )cos xx x x x x x -+⋅解法一:换底()lnsin lnsin (sin )e e ln sin (sin )(ln sin cot )x x x x x x y x x x x x x x ''''⎡⎤⎡⎤====+⎣⎦⎣⎦解法二:取对数ln ln sin y x x =,两边对x 求导,ln sin cot y x x x y'=+ 因此:(sin )(ln sin cot )xy x x x x '=+解法三:公式法(指数函数求导公式+幂函数求导公式)1(sin )ln sin (sin )cos x x y x x x x x -'=+⋅15、设arctan y =1d x y == .x解析:()2211d d 21y x x ==++,则1d x y x == 16、函数32535y x x x =-++的凹区间为 . 答案:5,3⎡⎫+∞⎪⎢⎣⎭,写成开区间也正确.解析:23103y x x '=-+,6100y x ''=->,得53x >. 17、计算极限 011lim ln(1)x x x →⎡⎤-⎢⎥+⎣⎦.解:0011ln(1)lim lim ln(1)ln(1)x x x x x x x x →→⎡⎤-+-=⎢⎥++⎣⎦20ln(1)lim x x x x →-+=0111lim 2x x x→-+=01lim 2(1)2x x x x →==+18、设xy =,求0x y ='. 解:取对数11ln ln(8)2ln(2)ln(1)32y x x x x =++-+-+ 两边对x 求导,12113(8)22(1)y y x x x '=+--+++得:12113(8)22(1)x y x x x ⎤'=+--⎥+++⎦,因此20211111112124248x y =⋅⎡⎤'=+--=-⎢⎥⋅⎣⎦19、设22ln(1),(1)2arctan ,x t y t t ⎧=+⎨=+-⎩求221d d t y x =. 解:2d 22(1)d 1y t t t =+-+3222221t t t t ++=+,2d 2d 1x tt t =+ 322d d 222d 1d d 2d y y t t t t t t x x t t ++===++,2222d 21(21)(1)2d 21y t t t t x t t +++==+,因此221d 3d t y x == 20、设ln(1)y x x =-+,求函数的极值,并判断是极大值还是极小值. 解:111y x '=-+01x x==+,解得驻点:0x = 21(1)y x ''=+,(0)0y ''>,因此0x =处为极小值,函数有极小值(0)0y = 21、设1x >,证明不等式(1)ln 2(1)x x x +>-. 证明:设()(1)ln 2(1)f x x x x =+--,其中(1)0f =,11()ln 2ln 1x f x x x x x+'=+-=+-,且(1)0f '=,又由于22111()(1)0f x x x x x ''=-=->因此()f x '单增,则当1x >时有()(1)0f x f ''>=,则()f x 单增,因此当1x >时有()(1)0f x f >=. 四、解答下列各题(本题共2小题,每小题6分,共12分)22、计算极限21arctan 0sin lim xx x x +→⎛⎫ ⎪⎝⎭. 解法一:2211arctanarctan0sin sin lim lim 1xx x x x x x x x ++→→-⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2sin arctan sin 0sin lim 1x xx x x x xx x x x +--→⎡⎤-⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦30sin limex x x x +→-=20cos 1lim3ex x x +→-=22012lim 3ex x x+→-=16e -=解法二:2211sin ln arctan arctan 00sin lim lim e x x xxx x x x ++→→⎛⎫= ⎪⎝⎭21sin ln 10lim e x x x x x +-⎛⎫+ ⎪⎝⎭→=3sin 0lim e x xx x +-→= 下同解法一解法三:2211sin ln arctan arctan 00sin lim lim e xxx xx x x x ++→→⎛⎫= ⎪⎝⎭20lnsin ln limex x xx+→-=0cos 1sin lim 2ex x x xx +→-=20cos sin lim2sin ex x x x x x+→-=3200cos sin cos sin cos limlim26eex x x x xx x x xxx++→→---==2201lim66ee x x x+→--==23、在抛物线24y x =-上的第一象限部分求一点(,)P a b ,过P 点作切线,使该切线与两坐标轴所围成的三角形面积最小.解:切线斜率为22x a x a y x a =='=-=- 切线方程2(4)2()y a a x a --=--求切线与两坐标轴交点,令0y =,解得242a x a+=,令0x =,解得24y a =+三角形面积为223(4)116()844a S a a a a a +⎛⎫==++ ⎪⎝⎭,02a <≤ 求驻点22116()3804S a a a ⎛⎫'=+-= ⎪⎝⎭,即4238160a a +-=,解得243a =,a =3132()64S a a a ⎛⎫''=+ ⎪⎝⎭,0S ''>,因此当a =时面积取到最小值, 此时切点坐标为83⎫⎪⎭.。

高等数学期中A考卷及答案海大

高等数学期中A考卷及答案海大

专业课原理概述部分一、选择题(每题1分,共5分)1. 微分学的中心概念是()A. 极限B. 导数C. 微分D. 积分2. 函数f(x)在x=a处可导,那么f'(a)等于()A. f(a)的值B. f(x)在x=a处的斜率C. f(a)的极限D. f(a)的平均变化率3.下列函数中,奇函数是()A. f(x) = x²B. f(x) = x³C. f(x) = cos(x)D. f(x) = e^x4. 不定积分∫(1/x)dx的结果是()A. ln|x| + CB. x + CC. 1/x + CD. e^x + C5. 多元函数f(x, y)的偏导数f_x表示()A. 仅对x求导B. 对x和y同时求导C. x和y的乘积求导D. f对x的积分二、判断题(每题1分,共5分)1. 极限存在的充分必要条件是左极限和右极限相等。

()2. 一切初等函数在其定义域内都可导。

()3. 若函数f(x)在区间[a, b]上单调增加,则f'(x)≥0。

()4. 二重积分可以转化为累次积分。

()5. 泰勒公式是麦克劳林公式的推广。

()三、填空题(每题1分,共5分)1. 函数f(x)在点x=a处的极限为______,记作______。

2. 若f(x) = 3x² 5x + 2,则f'(x) =______。

3. 不定积分∫sin(x)dx的结果是______。

4. 二重积分∬D dA表示______的面积。

5. 泰勒公式中,f(n)(a)表示______。

四、简答题(每题2分,共10分)1. 简述导数的定义。

2. 解释什么是函数的极值。

3. 简述定积分的基本思想。

4. 举例说明如何应用微分方程解决实际问题。

5. 简述多元函数求导的基本法则。

五、应用题(每题2分,共10分)1. 求函数f(x) = x²e^x的导数。

2. 计算定积分∫(从0到π) sin(x)dx。

高等数学(上)期中考试试卷

高等数学(上)期中考试试卷

(A ) 可去间断点 (B ) 跳跃间断点 (C ) 无穷间断点 (D ) 振荡间断点装订线内不要答题自觉遵 守考 试规 则,诚 信 考 试,绝 不 作弊(3)设函数)(x f 二阶可导,且0)(>'x f ,0)(>''x f ,则当0>∆x 时,有( )(A )0>>∆dy y (B )0<<∆dy y (C )0>∆>y dy (D )0<∆<y dy(4)函数q x x x f ++=2)(3的零点的个数为 ( )(A ) 1 (B ) 2 (C ) 3 (D ) 与q 取值有关(5)若函数)(x f 满足)( )()(+∞<<-∞=-x x f x f ,且在)0,(-∞内,0)(>'x f ,0)(<''x f ,则在),0(+∞内 ( )(A ) )(x f 单调增加且其图象是凸的; (B ) )(x f 单调增加且其图象是凹的;(C ) )(x f 单调减少且其图象是凸的; (D ) )(x f 单调减少且其图象是凹的。

(6)设)(x f 在),0(δU 内具有连续的二阶导数,0)0(='f ,)0( 1)(lim 0<=-''→a a e x f x x 则 ( )(A ) 0=x 是函数)(x f 的极小值点; (B ) 0=x 是函数)(x f 的极大值点;(C ) ))0(,0(f 是曲线)(x f y =的拐点; (D ) ))0(,0(f 不是曲线)(x f y =的拐点。

(7)曲线1)3)(2(2)(2-+-=x x x x f ( ) (A ) 没有渐近线; (B ) 仅有水平渐近线;(C ) 仅有铅直渐近线; (D ) 既有水平渐近线又有铅直渐近线。

三、计算下列极限 (每题5分,共20分)(1))||sin 12(lim 410x x e e x x x +++→(2))1ln()cos 1(1cos11lim 230x x x x x x -++-+→(3))tan 11(lim 20xx x x -→(4) x x x )arctan 2(lim π+∞→四、计算下列各题(每题6分,共24分)(1)设x e x x y -=1sin sin x x +,求y '.( 2 )设函数)(x y 由方程组⎪⎩⎪⎨⎧=+-++=01sin 3232y t e t t x y 确定,试求0t 22=dx y d( 3 ) 21)(2-+=x x x f , 试求)()(x f n( 4 ) 已知方程)ln()(2y x y x x y --=-确定y 是x 的函数,求dy .五.(6分)证明:当1<x 时,xe x ≥-11六.(5分)设)(),(x g x f 在],[b a 上二阶可导,且0)(≠''x g ,)()(b f a f ==,0)()(==b g a g 证明:(1)在),(b a 内,0)(≠x g ;(2)至少存在一点),(b a ∈ξ,使得)()()()(ξξξξg f g f ''''=成立.。

大一高等数学a期中试题及答案

大一高等数学a期中试题及答案

大一高等数学a期中试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2在x=0处的导数是()。

A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是不定积分∫x^2 dx的解()。

A. x^3B. x^3 + CC. 3x^2 + CD. 3x^2答案:C4. 以下哪个选项是定积分∫(0 to 1) x dx的值()。

A. 0C. 1D. 2答案:B5. 函数y=e^x的原函数是()。

A. e^xB. e^x + CC. ln(x)D. ln(x) + C答案:B6. 以下哪个选项是微分方程dy/dx + y = 0的通解()。

A. y = e^(-x)B. y = e^xC. y = sin(x)D. y = cos(x)答案:A7. 以下哪个选项是函数y=x^3的二阶导数()。

A. 3x^2B. 6xC. 18xD. 6答案:B8. 以下哪个选项是函数y=ln(x)的一阶导数()。

B. xC. ln(x)D. e^x答案:A9. 以下哪个选项是函数y=x^2 - 4x + 4的最小值()。

A. 0B. 1C. 4D. -4答案:A10. 以下哪个选项是函数y=x^3 - 3x的拐点()。

A. x = 0B. x = 1C. x = -1D. x = 2答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^3的一阶导数是____。

答案:3x^22. 函数f(x)=x^2+2x+1的极值点是____。

答案:x = -13. 函数f(x)=sin(x)的不定积分是____。

答案:-cos(x) + C4. 函数y=e^x的二阶导数是____。

答案:e^x5. 函数y=ln(x)的二阶导数是____。

答案:1/x^2三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x+8在x=2处的切线方程。

高等数学期中A考卷及答案海大

高等数学期中A考卷及答案海大

专业课原理概述部分一、选择题(每题1分,共5分)1. 微分学的中心概念是()。

A. 极限B. 导数C. 微分D. 积分A. f(x) = |x|B. f(x) = x^2 + 1C. f(x) = 1/xD. f(x) =√x3. 不定积分∫(1/x)dx的结果是()。

A. ln|x| + CB. x + CC. x^2/2 + CD. e^x + C4. 多元函数f(x, y) = x^2 + y^2在点(1, 1)处的偏导数f_x'是()。

A. 0B. 1C. 2D. 35. 线性方程组Ax=b有唯一解的条件是()。

A. A为满秩矩阵B. A为方阵C. A为可逆矩阵D. A为零矩阵二、判断题(每题1分,共5分)1. 极限存在的充分必要条件是左极限等于右极限。

()2. 任何连续函数都一定可导。

()3. 二重积分可以转换为累次积分。

()4. 拉格朗日中值定理是罗尔定理的推广。

()5. 两个矩阵的乘积一定是方阵。

()三、填空题(每题1分,共5分)1. 函数f(x) = e^x在x=0处的导数f'(0)等于______。

2. 若函数f(x)在区间[a, b]上连续,则该函数在该区间上______。

3. 微分方程y'' y = 0的通解是______。

4. 矩阵A的行列式记作______。

5. 向量组线性相关的充分必要条件是______。

四、简答题(每题2分,共10分)1. 请简要说明罗尔定理的内容。

2. 什么是函数的极值?如何求函数的极值?3. 简述泰勒公式的意义。

4. 什么是特征值和特征向量?5. 简述空间解析几何中直线的方程。

五、应用题(每题2分,共10分)1. 计算极限lim(x→0) (sin x)/x。

2. 求函数f(x) = x^3 3x的导数。

3. 计算不定积分∫(cos x)dx。

4. 求解微分方程y' = 2x。

5. 计算二重积分∬D (x^2 + y^2) dxdy,其中D是由x轴,y轴和直线x+y=1围成的区域。

(完整版)高等数学(A)06-07下期中试卷参考答案及评分标准

(完整版)高等数学(A)06-07下期中试卷参考答案及评分标准
高等数学( A)06-07-3 期中试卷参考答案及评分标准
一.填空题(本题共 5 小题,每小题 4 分,满分 20 分)
xyz 1 1.曲线 x y 2 在点 (1,1,1) 处的切线方程为
x1 2
y1
z 1; 3
2. 方程 xyz x2 y 2 z2
2 所确定的函数 z z(x, y) 在点 (1,0, 1) 处的全微分
为 dz dx 2dy ;
3.交换二次积分的积分次序
0
2
2
0
dy f (x, y)dx = dx f ( x, y)dy ;
1
1y
1
1x
4. 设曲线 C : x cost , y sin t, z
3,0 t
,则
x2 y2 z2ds 2 ;
C
ò 5. 设曲面
:x
y z 1 ,则
(x
y )dS
4 3.
3
0
0
1
y y2
( A ) dy
f(x, y)dx
0
0
1
1 y2
( B) dy
f(x, y)dx
0
0
1
1
( C) dx f(x, y)dy
0
0
1
x x2
( D) dx
f(x, y)dy
0
0
8. 设 由 3 x2 y 2 z, z 1 x 2 所围成,则
f ( x, y, z)dv
[
[D] C]
1
1 4x2
f (i) 2 e 1 i ( 1 分) 13. 计算 zdv ,其中
( x, y, z) R 3 z x2 y2 z2 2z .

大学高等数学-(A)期中试卷(含答案)

大学高等数学-(A)期中试卷(含答案)

20XX年复习资料大学复习资料专业:班级:科目老师:日期:一、填空题 (每小题4分,共20XX 分)1、22lim sin 1x xx x →∞=+ 。

2、1lim(ln )n n n n →∞= 。

3、设321)(+=x x f ,则()(0)n f = 。

4、已知232,()arctan 32x y f f x x x -⎛⎫'== ⎪+⎝⎭,求0|x dy dx == 。

5、设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,0,2arcsin 1)(2tan 3x ae x xe xf xx在0=x 处连续,则=a 。

二、单项选择题 (每小题4分,共20XX 分)1、设ln ||()sin |1|x f x x x =-,则)(x f 有( )。

A. 一个可去间断点,一个跳跃间断点 B. 两个无穷间断点 C. 一个跳跃间断点,一个无穷间断点 D. 两个跳跃间断点 2、 若0→x 时,2)(kx x f =与x x x x g cos arcsin 1)(-+=是等价无穷小,则k 等于( )。

A. 1B. 32C. 43D. 23、 设)(x y y =是由方程1+=+x e xy y所确定的隐函数,则022|=x dxyd 等于( )。

A. 3-B. 2-C. 1-D. 0 4、设)(x f 处处可导,则( )。

A. 当lim ()x f x →-∞=-∞,必有lim ()x f x →-∞'=-∞B. 当lim ()x f x →-∞'=-∞,必有lim ()x f x →-∞=-∞厦门大学《高等数学(A )》期中试卷____学院____系____年级____专业C. 当lim ()x f x →+∞=+∞,必有lim ()x f x →+∞'=+∞D. 当lim ()x f x →+∞'=+∞,必有lim ()x f x →+∞=+∞5、设函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆ 的线性主部为1.0,则)1('f 等于( )。

厦门大学《高等数学》期中试卷A及答案

厦门大学《高等数学》期中试卷A及答案
(C) ;(D) 。
二、填空题:(每小题4分共24分)
7.设函数 可表示成 ,其中 为偶函数, 为奇函数,则 =; =。
8. 。
9.设 ,则当 , 时, 处处可导。
10.设 由方程 所确定,则曲线 在 处的法线方程为。
11.设 可导,函数 由 所确定,则 。
12.设 有任意阶导数且 ,则 。(n>2)
18.溶液自深18cm顶直径12cm的正圆锥形漏斗中漏入一直径为10cm的圆柱形筒中,开始时漏斗中盛满了溶液。已知当溶液在漏斗中深为12cm时,其表面下降的速度为1cm/s,问此时圆柱形筒中溶液表面上升的速度为多少?
厦门大学《高等数学》期中试卷A参考答案
一、单项选择题:
1. B,2. C, 3. C, 4. C, 5. D, 6. A.
17.证明:令 。在 上, , ,由罗尔定理,存在 ,使 。
又 , , ,再对 应用罗尔定理,存在 ,使 ,即 。
五、应用题:
18.解:设漏斗在时刻t的水深为h(cm),筒中的水深为H(cm),则漏斗中水面半径满足 ,即 。设盛满溶液时漏斗的体积为 ,则有
上式两边对 求导,得

代入 , ,得圆柱形容器中溶液表面上升的速度为
厦门大学《高等数学》期中试卷A
题号





总成绩
得分
评卷人
一、单项选择题:(每小题4分,共ห้องสมุดไป่ตู้4分)
1.设 ,则 。
(A)0;(B)1;(C) ;(D) 。
2.设
(A)在 内有界;(B)当 时为无穷大;
(C)在 内无界;(D)当 时有极限。
3.设 时, 与 是同阶无穷小,则 为。
(A)1;(B)2;(C)3;(4)4。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃石化技师学院《高等数学》课程期中考试试题A 卷
一、单项选择题(每题选一个正确答案,填在该题后括号内。

每小题4分,共16分)
1. 函数sin
cos32
x y x =+的周期为( ) A. π; B. 4π; C. 23
π; D. 6π. 2. 下列函数对中为同一个函数的是( ) A. 2
12,x y x y x
==;
B. 12,y x y ==
C. 212,y x y ==;
D. 12,y x y ==3. 设21cos ,2x x αβ=-=,则当0x →时( )
A. α与β是同阶但不等价的无穷小;
B. α与β是等价无穷小;
C. α是β的高阶无穷小;
D. β是α的高阶无穷小. 4. 1lim sin
x x
→∞=( ) A. 1; B. 0; C. ∞; D. 不存在.
二、填空题(答案填写在横线上,每小题4分,共24分)
1. 若223lim 12
x x x a x →-+=-,则a = . 2. 2f (x)=
的定义域为 . 3. sin 2lim x x x
→∞== . 4. ()x α'= , '(tanx)= .
5.y 31x =+的反函数是 .
6.1lim(1z)z
z →∞+= .
三、计算题(答案填写在空白处,每小题6分,共36分)
1. 求3113lim()11
x x x →---.
2. 求.201cos lim
x x x
→-.
3. 设(1)(12)(13)y x x x =+++,求y ''.
4. 用定义验证lim 0n n q →∞
= (1q <).
5.求0sin lim
sin x x x x x
→-
6.设x (t sint)(1cost)
a y a =-⎧⎨=-⎩,求22d y dx .
四、简答题(答案填写在空白处,每小题6分,共24分)
1. 设()f x x =,讨论()f x 在点0x =处的连续性与可导性.
2. 设曲线通过点(2,3),且其上任一点的切线斜率等于这点的横坐标,求此曲线方程.
3. 设231cos ,0,()01,1.x x f x x x x x --∞<<⎧⎪=≤<⎨⎪≤<+∞⎩
,讨论()f x 在0x =和1x =处的可导性.
4. 求椭圆曲线22
124x y +=
上点处的切线方程和法线方程.。

相关文档
最新文档