数学牛吃草问题解题技巧
牛吃草问题解法公式

牛吃草问题解法公式牛吃草问题有这么几个公式哦。
一、基本公式(假设草匀速生长的情况)1. 草的生长速度 = (对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 你可以这么想哈,比如说有一群牛,多吃几天的话,那吃到的草就多。
这里面多出来的草量呢,其实就是多吃的这几天里草长出来的量。
那用多吃的草量除以多吃的天数,不就得到草每天生长的速度了嘛。
就像你种树,过了几天发现树多了一些,那多出来的树的数量除以过的天数就是树每天长的数量呀。
2. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数- 这个呢,就是说原来草地上有的草量。
你想啊,牛吃的草量是牛头数乘以吃的天数,但是这里面有一部分是草自己长出来的呀,把草长出来的那部分(草的生长速度乘以吃的天数)减掉,剩下的就是原来草地上就有的草量啦。
就好比你存钱,你存进去的钱(牛吃的草量)有一部分是利息(草生长的量),把利息减掉,就是你最开始存的本金(原有草量)。
3. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 这个公式就是说,当我们知道原来有多少草,也知道牛的数量和草生长的速度的时候,就可以算出这些牛能吃多少天。
你可以想象成有一堆食物(原有草量),有一些人(牛)在吃,同时食物还在慢慢增加(草生长),那用食物总量除以每天实际减少的量(牛头数减去草生长速度,因为草在长就相当于吃的量减少了),就得到能吃的天数啦。
4. 牛头数 = 原有草量÷吃的天数+草的生长速度- 这个就好比你知道有一堆活(原有草量)要干多少天(吃的天数),而且这个活还在慢慢增加(草生长速度),那你就能算出需要多少人(牛头数)来干这个活啦。
行测数学运算牛吃草问题的两大方法化繁为简

公务员考试行测牛吃草问题的两大方法化繁为简“牛吃草问题”可以说公务员考试《行政职业能力测验》数量关系模块数学运算的一个“老”话题,也是考生普遍反映得较为困难的一类题型。
究其原因,主要是部分考生并没有注意到牛吃草问题其实草的量是变化的,把它当作一个简单的消耗问题来解答,必然会出现错误。
针对这一问题,华图总结了一些两种较易理解的解题方法:方法一:将“牛吃草问题”想象成一个非常理想化的数学模型例1:一个牧场,可供10头牛吃20天、15头牛吃10天,可供多少头牛吃4天?解析:将“牛吃草问题”想象成一个非常理想化的数学模型:假设总的牛当中有X头是“剪草工”,这X头牛只负责吃“每天新长出的草,并且把它们吃完”,这样草场相当于不长草,永远维持原来的草量,也就成为了一个简单的消耗性问题了,而剩下的(27-X)头牛是真正的“顾客”,它们负责把草场原来的草吃完。
便可以根据几次“顾客”牛的数量*时间这个量相等,也就是牧场原本的一地草量相等来列方程。
设每天新增加草量恰可供X头牛吃一天,N头牛可吃4天(后面所有X均为此意)可供10头牛吃20天,列式:(10-X)*20 即:(10-X)头牛20天把草场吃完可供15头牛吃10天,列式:(15-X)*10 即:(15-X)头牛9天把草场吃完可供几头牛吃4天? 列式:(N-X)*4 即:(N-X)头牛4天把草场吃完因为草场草量新长出的草已被“剪草工”修理掉,而牧场中原有草量相同,所以,联立上面三个式子(10-X)*20 =(15-X)*10=(N-X)*4 左右两边各为一个方程,即:(10-X)*20 =(15-X)*10 【1】(15-X)*10=(N-X)*4 【2】解这个方程组,得 X=5(头) Y=30(头)方法二:将“牛吃草问题”与工程问题当中的干扰问题相结合例2:一个浴缸放满水需要30分钟,排光一浴缸水需要50分钟,假如忘记关上出水口,将这个浴缸放满水需要多少分钟( )[2003年国家公务员考试行政职业能力测验真题B类-11]A.65B.75C.85D.95题当中叙述了一缸水有一个进水管和一个出水管同时打开,而进行把一个浴缸放满水的效果,进水管的效率大于出水管的效率,也就是两个水管同时工作的总效率为:进水管工作效率-出水管工作效率。
牛吃草类型应用题解题方法完整版

牛吃草类型应用题解题方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]例1牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草.200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草(10-5)×20=100(份)或(15-5)×10=100(份).现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).所以,这片草地可供25头牛吃5天.在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.例2一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题.设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是水管排原有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份.每分钟进水量答:出水管比进水管晚开40分钟.例3由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天..例4自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题.上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级).解:自动扶梯每分钟走(20×5-15×6)÷(6-5)=10(级),自动扶梯共有(20+10)×5=150(级).答:扶梯共有150级.例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).例6有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?分析与解:例1是在同一块草地上,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.[5,6,8]=120.因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天”这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264-180)×10=840(份).可供285头牛吃840÷(285-180)=8(天).所以,第三块草地可供19头牛吃8天我将“牛吃草”归纳为两大类,用下面两个例题来说明例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。
数学运算--牛吃草问题

牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随 吃的天数不断地变化。
解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度=(相应的牛头数×吃草速度)×吃的较多天数-(相应的牛头数×吃草速度)×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=(相应的牛头数×吃草速度)×吃的天数草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(相应的牛头数×吃草速度-草的生长速度);(4)牛头数=(原有草量÷吃的天数+草的生长速度)÷吃草速度。
这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的数量关系(基本变形)是:1.(相应的牛头数×吃草速度×吃草较多的天数-相应的牛头数×吃草速度×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.相应的牛头数×吃草速度×吃草天数-每天新长量×吃草天数=草地原有的草。
牛吃草问题解法

牛吃草问题解法牛吃草问题又称为消长问题或牛顿问题,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
基本解法解决牛吃草问题常用到4个基本的公式,分别是︰(1)求草的生长速度=(对应的牛头数×吃的较多天数-对应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)求原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)假设有一些牛专吃刚生长的草,剩下的牛吃原有的草。
(4)原有草量/剩下的牛数量=天数这4个公式是解决牛吃草问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
例如;一片草地,每周都匀速生长.这片草地可以供12头牛吃9周,或者共15头牛吃6周.那么,这片草地可供9头牛吃几周?12头×9周=原有草+9周新生草15头×6周=原有草+6周新生草草原有草:15×6-6×6=54六头牛吃新生草,其余3头牛吃原有草,9-6=3(头)54÷3=18(周)解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:1.吃的天数=原有草量÷(牛头数-草的生长速度)2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
数量关系牛吃草问题秒杀绝技

牛吃草问题秒杀绝技牛吃草,是一类趣味数学问题,也是公务员考试数量关系中的常考题型。
今天,老周给大家分享牛吃草问题的三种解法。
及对牛吃草问题的本质进行剖析,帮助大家更彻底、更轻松地破解牛吃草问题。
牛吃草问题的三种解法:第一种,牛吃草问题周氏比例法-神算老周原创方法。
如果用第二三种方法计算量大,用此法很有效。
第二种,方程法。
第三种,公式法。
所谓的列表法,老周就不介绍了,实质是公式法或方程法的模式化。
基本牛吃草例1:有一块匀速生长的草场,27头牛6周可以吃完,或者23头牛9周可以吃完.若是21头牛,要几周才可以吃完?A.10B.11C.12D.15第一种方法、周氏比例法解牛吃草问题:步骤看起来很多,掌握了,实际上很容易 :)第一步:把前二次的牛头数,时间的数字分两列写出来。
27 623 9第二步:每两列数字相减,把结果写出来。
4 与 3第三步:二个差相除。
4/3第四步:求X.三点一线,把三数联起来进行运算,图中红线。
按A-B*C=27-9*4/3=15 算出结果X。
第五步:求Y.根据基本公式(牛-X)天=Y,代入其中一排数据,比如第一排(27-15)*6=72第六步:求结果。
把X,Y,代入提问中,求出答案。
(21-15)T=72 T=12老周心语:老周看到有些牛吃草题目,用列方程或公式,计算较繁,所以在今年6月份,为大家发明了这么一个解法,可避开一些计算,更快的算出答案。
实质是用比例法的思想解题,神算老周把这个牛吃草的解法,归在周氏比例法的系统中。
此解法,后来被人盗用,并说成是他原创。
老周表示,老周的原创解法欢迎大家转载,传播,但希望能尊重原创者,引用时注明出处。
神算老周精剖牛吃草问题:我们看此题,典型的牛吃草问题。
草,是在不断生长的,它有生长的效率;牛,在努力吃草,它有吃草的效率。
牛吃草问题可以理解成为工程问题。
牛有吃草的效率,草有生长的效率,而这个草场原有草量,就相当于工程总量。
每天的实际效率=牛吃草的效率-草生长的效率。
小升初数学牛吃草问题解题思路和技巧

2019小升初数学牛吃草问题解题思路和技巧牛吃草问题是小学五年级的内容,学过的同学都知道这是一类比较复杂的应用题,下面为大家分享小升初数学牛吃草问题解题思路和技巧,供大家参考!一、解决此类问题,孩子必须弄个清楚几个不变量:1、草的增长速度不变2、草场原有草的量不变。
草的总量由两部分组成,分别为:牧场原有草和新长出来的草。
新长出来草的数量随着天数在变而变。
因此孩子要弄清楚三个量的关系:第一:草的均匀变化速度(是均匀生长还是均匀减少)第二:求出原有草量第三:题意让我们求什么(时间、牛头数)。
注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机二、解题基本思路1、先求出草的均匀变化速度,再求原有草量。
2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。
4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数三、解题基本公式解决牛吃草问题常用到的四个基本公式分别为:1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数3、吃的天数=原有草量÷(牛头数-草的生长速度)4、牛头数=原有草量÷吃的天数+草的生长速度四、下面举个例子例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
牛吃草的解题思路

牛吃草的解题思路一、牛吃草问题基础概念与公式。
1. 概念。
- 牛吃草问题又称为消长问题或牛顿问题,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题例题与解析。
1. 有一片牧场,草每天都在匀速生长。
如果放养24头牛,那么6天就可以把草吃完;如果放养21头牛,那么8天可以把草吃完。
- 要使得草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 首先求草的生长速度,设每头牛每天吃草量为1份。
- 草的生长速度=(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量最多等于草的生长速度,所以最多放养12头牛。
- 先求原有草量,原有草量 = 24×6 - 12×6 = 72(份)。
- 当放养36头牛时,吃的天数 = 72÷(36 - 12)=72÷24 = 3(天)。
2. 一片草地,可供5头牛吃30天,也可供4头牛吃40天。
如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?- 解析:- 设每头牛每天吃草量为1份。
- 草的生长速度=(4×40 - 5×30)÷(40 - 30)=(160 - 150)÷10 = 1(份/天)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学牛吃草问题解题技巧
关于数学牛吃草问题解题技巧
一、牛吃草问题
牛吃草问题是一个很有趣的问题,关键在于牧场每天都长新草,通过两组条件的比较,先求出每天(周)长牧草的新草量,然后把
牛分成两部分,一部分吃新草,一部分吃旧草,从而求出吃草的天数。
显然牛实际上是不能这样分成两部分去吃草的,但在解数学问
题中,这种分成几部分去解决问题的方法,可以使复杂的问题变成
简单的问题,化繁为简是常常应用的技巧之一。
例1牧场上一片青草,每天牧草都匀速生长。
如果27头牛6周
吃完,23头牛9周吃完,那么21头牛几周吃完?
解:设1头牛1周吃的草为1份,27头牛6周吃27×6=162(份),23头牛9周吃23×9=207(份),这说明牧场每周长新草(207-162)÷(9-6)=15(份)。
原来(牛吃前)牧场有草162
-15×6=72(份)
吃新草的牛需要15÷1=15(头)吃旧草的牛有21-15=6(头)
吃完草的时间72÷6=12(周)
例2由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
如果某块草地上的草可供20头牛吃5天,或可供
15头牛吃6天,那么可供多少头牛吃10天?
解:20头牛5天吃草20×5=100(份)15头牛6天吃草
15×6=90(份)
青草每天减少(100-90)÷(6-5)=10(份)牛吃草前牧场有草100+10×5=150(份)150份草吃10天本可供150÷10=15(头)因每天减少10份草,相当于10头牛吃掉,所以只能供牛15-10=5(头)
二、牛吃草问题概念及公式
假设定一头牛一天吃草量为“1”
1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛
头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
3)吃的天数=原有草量÷(牛头数-草的生长速度);
4)牛头数=原有草量÷吃的.天数+草的生长速度。
这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,
新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量
应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本
公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干
头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:
1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷
(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草量。