小学奥数专题-小学 奥数
小学奥数具体专题大全

一、行程问题
多人行程、二次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题、发车问题、电梯行程等形成问题
二、几何问题
几何的五大模型、勾股定理与弦图、圆与扇形、立体图形的表面积和体积、立体图形染色计数、其他直线型几何问题、格点与面积等
三、应用题
分数百分数应用题、工程问题、鸡兔同笼问题、盈亏问题、年龄问题、植树问题、牛吃草问题、经济利润问题、浓度问题、比例问题、还原问题等
四、数论问题
约数倍数问题、余数问题、质数合数、分解质因数、唯一分解定理、奇偶分析、中国剩余定理、位值原理、完全平方数、整数拆分、进位制等数论问题
五、计数问题
加法原理、乘法原理、排列组合、枚举法、标数法、捆绑法、对应法、树形图法、归纳法、整体法、递推法、容斥原理等计数问题
六、计算问题
数学计算公式、繁分数的计算、分数列项与整数列项、换元法、凑整、找规律、比较与估算、循环小数化分数、拆分、通项归纳、定义新运算等。
小学奥数题20道

小学奥数题20道小学奥数题20道1、鸡兔共有腿50条,若将鸡数与兔数互换,则腿数变为54条,鸡有( )只,兔有( )只。
2、学校派一些学生去搬树苗,如果每人搬6棵,则差4棵,如果每人搬8棵,则差18棵,这批树苗有( )棵。
3、有人问孩子年龄,回答:"比爸爸的岁数的一半少9岁。
"又问爸爸的'年龄,回答说:"比孩子的4倍多2岁。
"孩子年龄( )岁。
4、每3个空瓶可以换一瓶汽水,有人买了27瓶汽水,喝完后又用空瓶换汽水,那么,他最式喝多少瓶汽水?(写出过程)5、哥弟俩共有邮票70张,如果哥哥给弟弟4张邮票后还比弟弟多面手多2张,哥哥原来有邮票多少张?(写出过程)6、口算。
2×3×7=63÷(3×3)=54÷6=16+4-15= 72-12-30=5×4+4=6×6-6=60+7+30=2×5+49=91-14-36=7、最大的两位数和最小的三位数相差( )。
8、甲数比乙数少15,乙数是28,甲乙两数的和是( )。
9、量长短不同的物体,可以用( )或( )作单位。
10、2米比120厘米长( )厘米。
11、16+16+16+8=( )×( )。
12、已知:○+□=15,○-□=1。
那么○=( ),□=( )。
13、一些笔平均分给8个同学刚好分完,最少有( )支笔。
14、63减去7,减( )次结果是0,算式( )。
15、确定一个顶点,可以画( )个角。
一个角的两条边延长,这个角的大小( )。
16、判断(对的打√,错的打×,共10分)(1.在乘法算式里,积不一定比每个因数大。
( )(2.一个方桌的一个角被截去后,这个方桌就剩下三个角。
( )(3. 9乘一个数,这个数每增加1,积就增加9。
( )。
(4. 13名同学做纸花,每4人用一张纸,最少要用3张纸。
( )(5. 36是4的9倍,就是36里面有4个9。
小学一年级奥数16个专题

第一讲速算与巧算(一)一、凑十法:同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=102+8=103+7=104+6=105+5=10巧用这些结果,可以使计算又快又准。
例1 计算1+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:1+2=3 3+3=66+4=10 10+5=1515+6=21 21+7=2828+8=36 36+9=4545+10=55这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
二、凑整法同学们还知道,有些数相加之和是整十、整百的数,如:1+19=20 11+9=302+18=20 12+28=403+17=20 13+37=504+16=20 14+46=605+15=20 15+55=706+14=20 16+64=807+13=20 17+73=908+12=20 18+82=1009+11=20又如:15+85=100 14+86=10025+75=100 24+76=10035+65=100 34+66=10045+55=100 44+56=100等等巧用这些结果,可以使那些较大的数相加又快又准。
像10、20、 30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
例2 计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:例3 计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:例4 计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
小学奥数题及答案

小学奥数题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
(完整版)小学数学奥数题100题(附答案)

小学数学奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999 =19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
小学奥数思维训练17个专题

一高斯算法总和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项) ÷公差+1练习题:1、1+2+3-4+5+6+7-8+9+10+…+25+26+27-282、67+65+63+…+5+3+13、1000-3-6-9-…-51-544、1-2+3-4+5-6+…+97-98+995、103+99+103+96+105+102+98+98+101+1026、0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+…+0.997、在所有的两位数中,十位上的数字比个位上的数字大的共有多少个?8、有8个小朋友聚会,每两个人握一次手,一共要握多少次手?9、一把钥匙只能打开一把锁。
现在有关10把锁和可以打开它们的确10把钥匙,但全部放乱了。
最多试多少次可以打开所有的锁?10、从“19”开始每隔4个数写出一个数,得到:19、24、29、34、……一直写到1999。
一共写了多少个数?这些数的总和是多少?11、试求200到300之间7的倍数之和。
12、在自然数中,有多少个三位数,求它们的和。
13、用1、2、3、5、7、8、10、13、17和19这十个数能组成多少个最简真分数?14、在三位数中,有多少个是7的倍数,求它们的和。
15、求偶数中前100个偶数的和。
16、一个剧场设置了20排座位,第一排有38个座位,以后每一排都比前一排多2个座位,这个剧场一共有多少个座位?17、一堆钢管,最底层是10根,倒数第二层是9根,以后每上一层,钢管减少1根,问10层共有多少根钢管?18、计算1~100每个数各数位上的数字之和是多少?19、有一列数;19、22、25、28……请问,这列数的前99个数(从19开始算起)的总和是多少?二整除问题1、能被2整除的数的特征:个位数上是0、2、4、6、8的整数,都能被2整除。
2、能被5整除的数的特征:个位数上是0或5的整数,都能被5整除。
小学奥数35个专题汇总

小学奥数35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学经典奥数题50道

小学经典奥数题50道1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克,一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米相遇,甲比乙速度快,甲每小时比乙快多少千米?4、李军的张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强元钱。
每支铅笔多少钱?5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需要交换乘客,然后按原路返回各自出发的车站,到站时已是下午两点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时走3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7、有甲乙两个仓库,每个仓库平均储存粮食吨。
甲仓库的储存吨数比乙仓库的4倍少5吨。
甲、乙两仓各储存粮食多少吨?8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10、一列火车和一列慢车,同时分别从甲乙两地相对开出,快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
问:托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游,第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题基础一、关于s、v、t 三者的基本关系速度×时间=路程可简记为:s = vt路程÷速度=时间可简记为:t = s÷v路程÷时间=速度可简记为:v = s÷t二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【巩固】甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【巩固】两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?【巩固】甲、乙两辆汽车分别从A、B 两地出发相向而行,甲车先行三小时后乙车从B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B 两地间相距多少千米?【巩固】一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【巩固】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【巩固】小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?1.一列火车长400米,整列火车完全通过一条长800米的隧道需要20秒,如果以相同的速度整列火车完全通过一座大桥需要30秒,那么这座大桥长多少米?2、火车通过1000米的大桥用了50秒,以同样的速度通过1500米的隧道用了70秒。
如果火车的速度每秒减少5米,那么火车通过长1950米的大桥需要用多少秒?3、一列火车从1000米的桥上开过,火车完全在桥上的时间是40秒,从上桥到完全下桥所用的时间是60秒。
求火车长多少米?4、一列快车长380米,每秒行22米,一列慢车长260米,每秒行17米。
若两列火车齐头并进,快车超过慢车需要多少秒?若齐尾并进,快车超过慢车多少秒?5、一列快车长170米,每秒行驶23米,一列慢车长130米,每秒行驶18米。
快车从后面追上慢车到超过慢车,一共需要多少秒钟?【例 2】邮递员早晨7时出发送一份到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【例 3】一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)【例 4】龟兔赛跑,同时出发,全程6990米,龟每分钟爬30米,兔每分钟跑330米,兔跑了10分钟就停下来睡了215分钟,醒来后立即以原速往前跑,问龟和兔谁先到达终点?先到的比后到的快多少米?【例 5】甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?【巩固】甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?【例 6】四年级一班在划船比赛前讨论了两个比赛方案.第一个方案是在比赛中分别以2米/秒和3米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2米/秒和3米/秒的速度各划行比赛时间的一半.你认为这两个方案哪个好?模块二、平均速度问题【例 7】如图,从A到B是12千米下坡路,从B到C是8千米平路,从C到D是4千米上坡路.小步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小从A到D的平均速度是多少?ADCB【巩固】如图,从A到B是6千米下坡路,从B到C是4千米平路,从C到D是4千米上坡路.小步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问从A到D的平均速度是多少?DACB【巩固】摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.【巩固】甲乙两地相距200千米,小强去时的速度是10千米/小时,回来的速度是40千米/小时,求小强往返的平均速度.【巩固】一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?【巩固】一个运动员进行爬山训练.从A地出发,上山路长30千米,每小时行3千米.爬到山顶后,沿原路下山,下山每小时行6千米.求这位运动员上山、下山的平均速度.【例 8】一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?【巩固】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?【巩固】飞机以720千米/时的速度从甲地到乙地,到达后立即以480千米/时的速度返回甲地.求该车的平均速度.【巩固】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。
求该车的平均速度。
【巩固】从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.【巩固】某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?【巩固】老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?【例 9】小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。
小明往返一趟共行了多少千米?【巩固】小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?【例 10】小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同【例 11】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
【巩固】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.【巩固】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?【例 12】(2007年4月“希望杯”四年级2试)伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?【例 13】师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,师傅开车从A到D共需要多少时间?【巩固】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D 全程为72千米,老王开车从A到D共需要多少时间?【例 14】小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?模块三、假设法解行程题【例 15】王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?【例 16】解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?【巩固】某人要到60千米外的农场去,开始他以6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?【巩固】(第六届《小数报》数学竞赛初赛题第1题)小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?模块四、综合题目【例 17】明和军分别从甲、乙两地同时相向而行。
明平均每小时行5千米;而军第一小时行1千米,第二小时行3千米,第三小时行5千米,……(连续奇数)。
两人恰好在甲、乙两地的中点相遇。
甲、乙两地相距多少千米?【例 18】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【例 19】(华杯赛试题)某人由甲地去乙地,如果他从甲地先骑摩托车行12小时,再换骑自行车行9小时,恰好到达乙地,如果他从甲地先骑自行车21小时,再换骑摩托车行8小时,也恰好到达乙地,问:全程骑摩托车需要几小时到达乙地?【例 20】一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E 两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?。