选修2-1空间向量知识点归纳总结
新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图31①,AB ,CD 是二面角αl β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图31(ⅱ)如图31②③,n 1,n 2分别是二面角αl β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图32,在四棱锥S ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图32①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图33,已知ABCD A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图33【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图34,长方体ABCDA1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图34(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图35,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′BCDE ,其中A ′O = 3.(1) (2)图35(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′CD B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′CD B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′CD B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图36,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图36[跟踪训练]4.在如图37所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图37(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F BC A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F BC A 的余弦值为77.。
选修2-1第三章空间向量与立体几何归纳整合

→ →
→ →
网络构建
专题归纳
高考真题
【例3】 在棱长为1的正方体ABCD-A1B1C1D1中,E为棱BC的 中点,点F是棱CD上的动点,试确定点F的位置,使得
D1E⊥平面AB1F.
解 如图建立空间直角坐标系: 则 A(1,0,0), B1(1, 1, 1), 1 D1(0, 0, 1), E( , 1, 0). 2 设 F(0,y,0),则AB1=(0, 1, 1), 1 AF= (-1,y,0),D1E= ( ,1,-1), 2
→
→
→
网络构建
专题归纳
高考真题
要使 D1E⊥平面 AB1F,
→ → 1- 1= 0, D1E·AB1=0, 1 只需 即 即 y= . 1 2 → → - +y=0, D1E·AF= 0, 2
∴当 F 为 CD 中点时,有 D1E⊥平面 AB1F.
网络构建
专题归纳
→
→
→
解
如图所示, 用 a, b, c 分别代表棱OA、
→
OB、OC上的三个单位向量, 则f1=a,f2=2b,f3=3c,
→
→
则f=f1+f2+f3=a+2b+3c,
∴|f|2=(a+2b+3c)(a+2b+3c)
=|a|2+4|b|2+9|c|2+4a· b+6a· c+12b· c =14+4cos 60°+6cos 60°+12cos 60° =14+2+3+6=25, ∴|f|=5,即所求合力的大小为5.
算类似,是平面向量的拓展,主要考查空间向量的共线与
共面以及数量积运算,是用向量法求解立体几何问题的基
础.
网络构建
专题归纳
高考真题
【例1】沿着正四面体 O-ABC 的三条棱OA、OB、OC的方向有大
高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。
高二数学选修2-1知识点

第二章 空间向量与立体几何 1. 空间向量及其运算
1 2 3
a a a x12 y12 z12 d , 共线向量定理: a / /b a b (b 0)
2 AB 1 k 2 x1 x2 (1 k 2 ) ( x1 x2 ) 4 x1 x2 1
离心率
1 y1 y2 k2
e=1
p 2
② 直线斜率不存在,则 AB y1 y 2 . (3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。 考查三个方面:A 存在性(相交) ;B 中点;C 垂直( k1k2 1 ) 注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握 方程组理论,又关注图形的几何性质,以简化运算。 2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法. 3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数, 用求值域的方法求范围; 二是建 立不等式,通过解不等式求范围。 4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等) (4)求曲线轨迹常见做法:定义法、直接法(步骤:建—设—现(限)—代—化) 、代入法(利用动 点与已知轨迹上动点之间的关系) 、点差法(适用求弦中点轨迹) 、参数2、充分条件与必要条件 p 是 q 的充要条件: p q p 是 q 的充分不必要条件: p q, q ¿ p p 是 q 的必要不充分条件: q p, p ¿ q p 是 q 的既充分不必要条件: p 靠 q, q p 3.逻辑联结词 (1)命题中的“且”“或”“非”叫做逻辑联结词. (2)简单复合命题的真值表: p 真 假 真 假 q 真 真 假 假 p∧q 真 p∨q ¬p 假 真 假 真
数学选修2-1苏教版:第3章 空间向量与立体几何 3.1.1

§3.1 空间向量及其运算 3.1.1 空间向量及其线性运算学习目标 1.了解空间向量的概念,掌握空间向量的几何表示与字母表示.2.掌握空间向量的线性运算(加法、减法和数乘)及其运算律.知识点一 空间向量的概念思考 类比平面向量的概念,给出空间向量的概念. 答案 在空间,把具有大小和方向的量叫做空间向量.梳理 (1)在空间,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a 的起点是A ,终点是B ,则向量a 也可记作AB →,其模记为|a |或|AB →|. (2)几类特殊的空间向量知识点二 空间向量及其线性运算 1.空间向量的线性运算已知空间向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,AB →=c ,与平面向量的运算一样,空间向量的加法、减法与数乘运算的意义为:OB →=OA →+AB →=a +c ; BA →=OA →-OB →=a -b =-c .若P 在直线OA 上,则OP →=λa (λ∈R ).2.空间向量的加法和数乘运算满足如下运算律: (1)a +b =b +a ;(2)(a +b )+c =a +(b +c ); (3)λ(a +b )=λa +λb (λ∈R ). 知识点三 共线向量(或平行向量)1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.若向量a 与b 平行,记作a ∥b ,规定零向量与任意向量共线. 2.共线向量定理:对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是存在实数λ,使b =λa .1.在空间中,单位向量唯一.(×)2.在空间中,任意一个向量都可以进行平移.(√) 3.在空间中,互为相反向量的两个向量必共线.(√)4.空间两非零向量相加时,一定可用平行四边形法则运算.(×)类型一 空间向量的概念及应用例1 如图所示,以长方体ABCD -A 1B 1C 1D 1的八个顶点的两点为始点和终点的向量中:(1)试写出与AB →相等的所有向量; (2)试写出AA 1—→的相反向量;(3)若AB =AD =2,AA 1=1,求向量AC 1—→的模.解 (1)与向量AB →相等的所有向量(除它自身之外)有A 1B 1—→,DC →及D 1C 1—→,共3个. (2)向量AA 1—→的相反向量有A 1A —→,B 1B —→,C 1C —→,D 1D —→,共4个. (3)|AC 1—→|=|AB →|2+|AD →|2+|AA 1—→|2=22+22+12=9=3. 引申探究如图,在长方体ABCD -A ′B ′C ′D ′中,AB =3,AD =2,AA ′=1,则分别以长方体的顶点为起点和终点的向量中:(1)单位向量共有多少个? (2)试写出模为5的所有向量.解 (1)由于长方体的高为1,所以长方体的四条高所对应的向量AA ′—→,A ′A —→,BB ′—→,B ′B —→,CC ′—→,C ′C ——→,DD ′—→,D ′D ——→,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.(2)由于长方体的左右两侧面的对角线的长均为5,故模为5的向量有AD ′—→,D ′A ——→,A ′D ——→,DA ′—→,BC ′—→,C ′B ——→,B ′C ——→,CB ′—→.反思与感悟 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反. 跟踪训练1 给出以下结论:①两个空间向量相等,则它们的起点和终点分别相同; ②若空间向量a ,b 满足|a |=|b |,则a =b ; ③在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中不正确的命题的序号为________. 答案 ①②解析 两个空间向量相等,它们的起点、终点不一定相同,故①不正确;若空间向量a ,b 满足|a |=|b |,则不一定能判断出a =b ,故②不正确;在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1—→成立,故③正确;④显然正确.类型二 空间向量的线性运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′——→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AD ′—→.(2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′——→=AB ′—→+B ′C ′——→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.引申探究利用本例题图,化简AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→. 解 结合加法运算,得AA ′—→+A ′B ′——→=AB ′—→,AB ′—→+B ′C ′——→=AC ′—→,AC ′—→+C ′A —→=0. 故AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→=0.反思与感悟 1.化简向量表达式时,要结合空间图形,分析各向量在图形中的表示,然后利用运算法则,把空间向量转化为平面向量解决,并化简到最简为止.2.首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量;若首尾相接的若干个向量构成一个封闭图形,则这些向量的和为0.跟踪训练2 在如图所示的平行六面体中,求证:AC →+AB ′—→+AD ′—→=2AC ′—→.证明 ∵平行六面体的六个面均为平行四边形,∴AC →=AB →+AD →,AB ′—→=AB →+AA ′—→,AD ′—→=AD →+AA ′—→, ∴AC →+AB ′—→+AD ′—→=(AB →+AD →)+(AB →+AA ′—→)+(AD →+AA ′—→) =2(AB →+AD →+AA ′—→). 又∵AA ′—→=CC ′—→,AD →=BC →,∴AB →+AD →+AA ′—→=AB →+BC →+CC ′—→=AC →+CC ′—→=AC ′—→. ∴AC →+AB ′—→+AD ′—→=2AC ′—→. 类型三 向量共线定理的理解与应用例3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E —→=2ED 1—→,F 在对角线A 1C 上,且A 1F —→=23FC —→.求证:E ,F ,B 三点共线. 证明 设AB →=a ,AD →=b ,AA 1—→=c , 因为A 1E —→=2ED 1—→,A 1F —→=23FC →,所以A 1E —→=23A 1D 1—→,A 1F —→=25A 1C —→,所以A 1E —→=23AD →=23b ,A 1F —→=25(AC →-AA 1—→)=25(AB →+AD →-AA 1—→)=25a +25b -25c . 所以EF →=A 1F —→-A 1E —→=25a +25b -25c -23b =25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1—→+A 1A —→+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,又因为EF →与EB →有公共点E ,所以E ,F ,B 三点共线.反思与感悟 1.判定共线:判定两向量a ,b (b ≠0)是否共线,即判断是否存在实数λ,使a =λb .2.求解参数:已知两非零向量共线,可求其中参数的值,即利用若a ∥b ,则a =λb (λ∈R ). 3.判定或证明三点(如P ,A ,B )是否共线 (1)是否存在实数λ,使P A →=λPB →.(2)对空间任意一点O ,是否有OP →=OA →+tAB →.(3)对空间任意一点O ,是否有OP →=xOA →+yOB →(x +y =1).跟踪训练3 如图,在四面体ABCD 中,点E ,F 分别是棱AD ,BC 的中点,用AB →,CD →表示向量EF →.解 EF →=AF →-AE → =12(AB →+AC →)-12AD → =12AB →-12(AD →-AC →)=12AB →-12CD →.1.下列说法中正确的是________.(填序号)①若|a |=|b |,则a ,b 的长度相等,方向相同或相反; ②若向量a 是向量b 的相反向量,则|a |=|b |; ③空间向量的减法满足结合律;④在四边形ABCD 中,一定是AB →+AD →=AC →. 答案 ②解析 若|a |=|b |,则a ,b 的长度相等,方向不确定,故①不正确;相反向量是指长度相同,方向相反的向量,故②正确;空间向量的减法不满足结合律,故③不正确;在▱ABCD 中,才有AB →+AD →=AC →,故④不正确.2.在平行六面体ABCD -A ′B ′C ′D ′的各条棱所在的向量中,与向量A ′B ′→相等的向量有________个. 答案 33.在正方体ABCDA 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→;③(AB →+BB 1—→)+B 1C 1—→;④(AA 1—→+A 1B 1—→)+B 1C 1—→.其中运算的结果为AC 1—→的有________个. 答案 4解析 根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB →+BC →)+CC 1—→=AC →+CC 1—→=AC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→=AD 1—→+D 1C 1—→=AC 1—→; ③(AB →+BB 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→; ④(AA 1—→+A 1B 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→. 所以4个式子的运算结果都是AC 1—→.4.化简2AB →+2BC →+3CD →+3DA →+AC →=________. 答案 0解析 2AB →+2BC →+3CD →+3DA →+AC →=2AB →+2BC →+2CD →+2DA →+CD →+DA →+AC →=0. 5.若非零空间向量e 1,e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k =________. 考点 空间向量的数乘运算 题点 空间共线向量定理及应用 答案 ±1解析 由k e 1+e 2与e 1+k e 2共线, 得k e 1+e 2=λ(e 1+k e 2),即⎩⎪⎨⎪⎧k =λ,1=λk ,故k =±1.空间向量加法、减法运算的两个技巧:(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.一、填空题1.下列命题中,假命题是________.(填序号) ①任意两个向量都是共面向量;②空间向量的加法运算满足交换律及结合律; ③只有零向量的模等于0; ④共线的单位向量都相等. 答案 ④解析 容易判断④是假命题,共线的单位向量是相等向量或相反向量.2.已知空间四边形ABCD 中,AB →=a ,BC →=b ,AD →=c ,则CD →=________.(用a ,b ,c 表示) 答案 c -a -b 解析 如图,∵AB →+BC →+CD →+DA →=0, 即a +b +CD →-c =0, ∴CD →=c -a -b .3.在长方体ABCD -A 1B 1C 1D 1中,AB →-CD →+BC →-DA →=________. 答案 2AC →解析 AB →-CD →+BC →-DA →=(AB →+BC →)-(CD →+DA →) =AC →-CA →=2AC →.4.对于空间中的非零向量AB →,BC →,AC →,有下列各式:①AB +BC →=AC →;②AB →-AC →=BC →;③|A B →|+|B C →|=|A C →|;④|A B →|-|A C →|=|B C →|.其中一定不成立的是____________.(填序号) 答案 ②解析 根据空间向量的加减法运算,对于①:A B →+B C →=A C →恒成立;对于③:当A B →,B C →,A C →方向相同时,有|A B →|+|B C →|=|A C →|;对于④:当B C →,A B →,A C →在一条直线上且B C →与A B →,A C →方向相反时,有|A B →|-|A C →|=|B C →|. 只有②一定不成立.5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________. 答案 0解析 延长DE 交边BC 于点F ,则AB →+12BC →=AF →,32DE →+AD →=DF →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=AF →-AF →=0.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB →+AD →+AA 1→=________,DD 1→-AB →+BC →=________.答案 AC 1—→ BD 1—→解析 AB →+AD →+AA 1—→=AB →+BC →+CC 1—→=AC 1—→, DD 1—→-AB →+BC →=DD 1—→-(AB →-AD →) =DD 1—→-DB →=BD 1—→.7.在直三棱柱ABCA 1B 1C 1中,若C A →=a ,C B →=b ,C C →1=c ,则A 1B —→=________.答案 -a +b -c 解析 如图,A 1B —→=A 1A —→+AB →=C 1C —→+(CB →-CA →) =-CC 1—→+CB →-CA →=-c +b -a .8.在正方体ABCD -A 1B 1C 1D 1中,A 1E —→=14A 1C 1—→,AE →=x AA 1—→+y (AB →+AD →),则x =________,y =________. 答案 1 14解析 ∵AE →=AA 1—→+A 1E —→=AA 1—→+14A 1C 1—→=AA 1—→+14AC →=AA 1—→+14(AB →+AD →),∴x =1,y =14.9.已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-n AA 1—→,则m ,n 的值分别是________. 答案 12,-12解析 由于AF →=AD →+DF →=AD →+12(DC →+DD 1—→)=AD →+12AB →+12AA 1—→,所以m =12,n =-12.10.在空间四边形ABCD 中,若E ,F ,G ,H 分别为AB ,BC ,CD ,DA 边上的中点,则下列各式中成立的是________.(填序号) ①EB →+BF →+EH →+GH →=0; ②EB →+FC →+EH →+GE →=0; ③EF →+FG →+EH →+GH →=0; ④EF →-FB →+CG →+GH →=0. 答案 ②解析 易知四边形EFGH 为平行四边形, 所以EB →+FC →+EH →+GE →=EB →+BF →+GE →+EH → =EF →+GH →=0.11.如图,已知在空间四边形ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC ,BD 的中点分别为E ,F ,则EF →=________.(用向量a ,b ,c 表示)答案 3a +3b -5c解析 设G 为BC 的中点,连结EG ,FG ,则EF →=EG →+GF →=12AB →+12CD → =12(a -2c )+12(5a +6b -8c ) =3a +3b -5c二、解答题12.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,化简下列表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′—→;(3)AB →+CB →+AA ′—→;(4)AC ′—→+D ′B —→-DC →.解 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′—→=AC →+AA ′—→=AC ′—→.(3)AB →+CB →+AA ′—→=AB →+DA →+BB ′—→=DA →+AB →+BB ′—→=DB ′—→.(4)AC ′—→+D ′B —→-DC →=(AB →+BC →+CC ′—→)+(DA →+DC →+C ′C —→)-DC →=DC →.13.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.解 ∵AE →=AB →+BC →+CE →=OB →-OA →+OC →-OB →-12OC → =-OA →+12OC →=-OA →+12(OD →+DC →) =-OA →+12(OD →+AB →) =-OA →+12OD →+12(OB →-OA →) =-32OA →+12OD →+12OB →, ∴x =12,y =-32. 三、探究与拓展14.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,且A ,B ,D 三点共线,则k =________.答案 -8解析 ∵BD →=BC →+CD →=(-e 1-3e 2)+(2e 1-e 2)=e 1-4e 2,又∵A ,B ,D 三点共线,∴AB →=λBD →,即2e 1+k e 2=λ(e 1-4e 2),∴⎩⎪⎨⎪⎧2=λ,k =-4λ,∴k =-8.15.如图,设点A 是△BCD 所在平面外的一点,点G 是△BCD 的重心.求证:AG →=13(AB →+AC →+AD →).证明 连结BG ,延长后交CD 于点E ,由点G 为△BCD 的重心,知BG →=23BE →. ∵E 为CD 的中点,∴BE →=12BC →+12BD →. ∴AG →=AB →+BG →=AB →+23BE → =AB →+13(BC →+BD →) =AB →+13[(AC →-AB →)+(AD →-AB →)] =13(AB →+AC →+AD →).。
(word完整版)选修2-1-第三章-空间向量及其运算知识点,文档.docx

3.1 空间向量及其运算知识点1. 空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)单位向量:模为 1 的向量称为单位向量 (3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (5)共面向量:平行于同一个平面的向量. 2.空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuur uuur uuuur uuuur uuuuur OA n =OA 1+A 1 A 2+ A 2 A 3+ +A n -1 A .n运算律:①加法交换律: a + b = b + a ②加法结合律: (a + b)+ c = a + (b +c) ③数乘分配律: λ(a + b)= λa+ λb.3.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量 a , b(b ≠ 0), a ∥b 的充要条件是存在实数 λ,使得 a = λb .推论: 点 P 在直线 AB 上的充要条件 是:uuuruuur存在实数 λ,使得 APAB ①uuuruuur uur或对空间任意一点O,有 OP OAAB ②uuur uur uuur或对空间任意一点O ,有 OPxOA yOB 其中 x + y = 1 ③uuur uur uuur uur uuur uuur uuruuur 【推论③推导过程:OP OA AB OA (AO OB) (1)OAOB 】(2)共面向量定理如果两个向量 a ,b 不共线,那么 p 与 a ,b 共面的充要条件是存在唯一有序实数对 (x,y )使 p = xa + yb推论: 空间一点 P 位于平面 ABC 内的充要条件 是uuur uuur uuur存在唯一有序实数对 (x,y )使 AP xAB yAC ,uuur uur uuur uuur或对空间任意一点 O ,有 OP OA xAB yACuuur uur uuur uuur或对空间任意一点 O ,有 OP xOA yOB zOC ,其中 x + y + z = 1【推论③推导过程:(3)空间向量基本定理uuur uur uuur uuur uur uuuruuur OP OA xAByAC (1 x y)OA xOByOC 】如果三个向量 a , b , c 不共面,那么对空间任一向量 p ,存在有序实数组 { x , y ,z} ,使得 p = xa + yb + zc 基底:把 { a , b , c} 叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4. 空间向量的数量积及运算律(1)数量积及相关概念→ →①两向量的夹角: 已知两个非零向量 a ,b ,在空间任取一点O ,作 OA = a ,OB = b ,则∠ AOB 叫做向量 a 与 b 的夹π角,记作〈 a ,b 〉,其范围是 0≤〈 a , b 〉≤ π,若〈 a , b 〉= 2,则称 a 与 b 互相垂直,记作 a ⊥b. ②两向量的数量积: 已知空间两个非零向量 a ,b ,向量 a , b 的数量积记作 a ·b ,且 a ·b = |a||b|cos 〈 a , b 〉.(2)空间向量数量积的运算律:①结合律: (λa) ·b = λ(a ·b); ②交换律: a ·b = b ·a ; ③分配律: a ·(b + c)= a ·b + a ·c.5. 空间向量的坐标表示及应用设 a = (a 1,a 2,a 3) ,b = (b 1, b 2, b 3)(1)数量积的坐标运算: a ·b =a 1 b 1+ a 2b 2+ a 3 b 3. (2)共线与垂直的坐标表示:(3)模、夹角和距离公式:|a|= a ·a = 222a 1+ a 2+ a 3,a ·b = a 1b 1+ a 2b 2 +a 3b 3 cos 〈 a ,b 〉= |a||b| 2 2 22 2 2 .1 2 3 1 2 3→设 A(a 1, b 1, c 1), B(a 2, b 2, c 2),则 d AB = |AB|=6. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底 { a , b , c} ;(2) 用 a , b , c 表示相关向量;(3) 通过运算完成证明或计算问题.).a 2- a 1 2+b 2 -b 1 2+c 2- c 1 2 .题型一 空间向量的线性运算用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量的和与差的形式,进而寻找这些向量与基向量的关系.例 1:三棱锥 O — ABC 中, M , N 分别是 OA , BC 的中点, G 是△ ABC 的重心,用基向量 → → →→OA , OB , OC 表示 MG ,→ .OG1 →2 → 1 → 2 → →1 →2 1 → →→1 → 1 → 1 → →→ →解析: MG =MA + AG =OA +AN = OA + (ON - OA)= OA +3 [ (OB + OC)- OA] =-6OA +OB + OC.23 2 322 33→→→→→ →→→→ →OG =OM + MG =1OA -1OA +1OB + 1OC =1OA +1OB +1OC.2633 333 uuur uuur uuur uuur→ 1 → →→, 例 2:如图所示, ABCD - A 1B 1C 1D 1 中,ABCD 是平行四边形. 若 AE = EC ,A 1F = 2FD ,且 EF =x AB+y AD+z AA2 1 试求 x 、 y 、 z 的值..解→ → →→ 1 → 1→ →连接 AF ,EF =EA +AF .∵ EA =-3 AC =-( AB + AD )3→→ → → → → 1 →→ 1 →→2 uuur 1uuur→ → → 1 uuur 1 uuur 1 uuurAF = AD + DF = AD -FD = AD -1 = AD - ( A 1+ AD )=3 AD3A 1A∴ EF = EA + AF =3 AD3AA13 AB3A D3A题型二共线定理应用向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与 b ,化简得出 a =b ,从而得出 a ∥ b ,即a 与b 共线.→ →点共线问题 :证明点共线问题可转化为证明向量共线问题,如证明A 、B 、C 三点共线,即证明AB 与 AC 共线.a ⊥b? a ·b =0? a 1b 1+ a 2b 2+ a 3b 3= 0(a , b 均为非零向量a ∥b? a = λb? a 1= λb 1,a 2 =λb 2, a 3= λb 3(λ∈ R),→→例 3:如图所示,四边形 ABCD , ABEF 都是平行四边形且不共面,M ,N 分别是 AC , BF 的中点,判断 CE 与 MN是否共线?uur uur uur CE CB BE∵uuur uuur uuruuur1 uuur uur 1 uur uur1 uuur uur uur 1 uur1 uur1 uurMNMCCBBNAC CB2( BA BE)2( AC BA) CBBECBBE2222→ → → → → →∴ CE = 2MN ,∴ CE ∥MN ,即 CE 与MN 共线.→→→例 4:如图所示,在正方体ABCD - A 1 B 1C 1D 1 中, E 在 A 1D 1 上,且 A 1E = 2ED 1, F 在对角线 A 1C 上,且 A 1F = 2F C .3求证: E , F , B 三点共线.→→→证明: 设 AB = a , AD = b , AA 1= c.→→ → = 2 →→→→ → → → →∴ A 1 = 2ED 1=2 1 =2 FC = 212 (AC -AA 1 2 (AB + AD - AA 1 2 2 2 c35 3 3 5 55 5 5 → → → 2 4 2 2 2 → → → → 2 2 = A 1 - A 1 = =EA 1+ A 1 + AB =-∴ E F 5a - 15b -5c = 5a - b - c3b -c + a = a -3b - c , F E 3 , EBA →→2∴ EF = 5EB.所以 E , F , B 三点共线.题型三共面定理应用→→点共面问题 :证明点共面问题可转化为证明向量共面问题,如要证明→ → → → → → →P 、A 、B 、 C 四点共面,只要能证明 → → PA = xPB+ yPC ,或对空间任一点 O ,有 OP =OA + xPB + yPC 或 OP = xOA + yOB + zOC(x +y + z = 1)即可→2→→→例 5:已知 A 、 B 、C 三点不共线,对于平面 ABC 外一点 O ,若 OP =125OA + OB + OC ,则点 P 是否与 A 、 B 、C55一定共面?试说明理由.1 uur2 uuuruuur uur 1uuur 2 uur1 uur2 uuuruuur 2 uur2 uuur uur 2 uuur uuur 解析: ∵ OPOAOBOC5 (OP+PA)(OP+PB)3(OP+ PC)=OP+ PA+PB+PC5 5 3 55 5 3→→→12∴ AP = 5AB + 5AC ,故 A 、 B 、C 、 P 四点共面 .例 6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点,连结PA 、PB 、PC 、PD ,点 E 、F 、 G 、H 分别为△ PAB 、△ PBC 、△ PCD 、△ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长 PE 、 PF 、 PG 、 PH 交对边于 M 、 N 、 Q 、 R.∵ E 、 F 、 G 、H 分别是所在三角形的重心,∴ M 、 N 、 Q 、 R 为所在边的中点→ → →→ →→ →→顺次连结 M 、 N 、 Q 、 R ,所得四边形为平行四边形,且有222 2PE = PM, PF = PN,PG = PQ , PH = PR.333 3→ → → 2 →2 → 2 →2 → → 2 → → 2 → → 23 → 3 → 2 3 → 3 → ∴ EG =PG - PE = PQ -PM = MQ = ( MN + MR)= (PN - PM)+ (PR - PM)=( PF - PE)+ ( PH - 2 PE)3333333 223 2→ →= EF + EH . ∴由共面向量定理得E 、F 、G 、H 四点共面 .→ → →例 7:正方体 ABCD - A 1 B 1C 1 D 1 中, E , F 分别是 BB 1 和 A 1D 1 的中点,求证向量 A 1B , B 1C , EF 是共面向量.→→→→ → → → →→→ → →=1 - A + 1 = 1 +BC = 1- A 证明: 如图所示, EF = EB + BA + A(B 1B )-A 1B 1B.2 222→ → →由向量共面的充要条件知A 1B ,B 1C , EF 是共面向量.题型四 空间向量数量积的应用例 8:①如图所示,平行六面体ABCD — A 1B 1C 1D 1 中,以顶点 A 为端点的三条棱长都为1,且两两夹角为 60°.(1) 求 AC 1 的长;(2) 求 BD 1 与 AC 夹角的余弦值.解析: → → →(1)记 AB = a ,AD = b ,AA 1= c ,则 |a|= |b|= |c|= 1,〈 a ,b 〉=〈 b ,c 〉=〈 c , a 〉= 60°, ∴ a ·b = b ·c = c ·a = 1.2→2(a ·b + b ·c + c ·a)= 1+ 1+ 1+ 2×1 1 1→|= 6,|AC 1|2= ( a + b + c)2= a 2+ b 2+ c 2+2 + +2= 6, ∴ |AC 12即 AC 1 的长为 6. → → → (2)BD 1= b + c - a , AC = a + b ,∴ |BD 1|=→ → → → 6 BD ·AC∴ cos 〈BD 1,AC 〉= 1= 6 .∴ AC → → |BD 1||AC|→ → →2, |AC|= 3, BD 1·AC = (b + c - a) ·(a + b)= b 2- a 2+ a ·+cb ·=c 1. 6 与 BD 1 夹角的余弦值为6 .→ →②已知空间四边形ABCD的每条边和对角线的长都等于a ,点E 、F分别是BC 、AD的中点,则AE ·AF 的值为()2A .a B.1a 22C.1a 24D.3a 24→→ →解析: 设 AB = a , AC = b ,AD = c ,则 |a|= |b|= |c|= a ,且 a , b , c 三向量两两夹角为 60°.→→ → →1 1 1 1 1 1 1AE =(a + b), AF = c ,∴ AE ·AF =(a + b) ·c = (a ·c + b ·c)= (a 2cos60°+ a 2cos60 °)= a 2.22 2 2 4 4 4题型五 空间向量坐标运算例 9:如图所示, PD 垂直于正方形→ →3 ABCD 所在平面, AB = 2, E 为 PB 的中点, cos 〈 DP , AE 〉=,若以 DA ,3DC , DP 所在直线分别为 x , y , z 轴建立空间直角坐标系,则点 E 的坐标为 ()A . (1,1,1) B. 1, 1, 1 C. 1, 1, 3D . (1,1,2)2 2设 PD = a (a>0) ,则 A(2,0,0) , B(2,2,0) ,P(0,0, a), E 1, 1,a2 ,→ → a → →3, ∴ a 2 2+ a 2 3, ∴ a = 2.∴ E 的坐标为 (1,1,1) .∴ DP = (0,0, a), AE = - 1, 1,2 , cos 〈DP , AE 〉=3= a 4 ·23例 10:已知 a = (2,- 1,3), b =(- 1,4,- 2),c = (7,5, λ).若 a , b , c 三向量共面,则实数 λ=________________33 t = 7,7= 2t - μ,17,解析:由题意得 c = ta + μb =(2t - μ,- t + 4μ, 3t - 2μ),∴ 5=- t +4μ,∴ μ=7λ=3t -2μ. 65λ= 7.例 11:已知△ ABC 的顶点 A(1,1,1) , B(2,2,2) , C(3,2,4) ,试求△ ABC 的面积→→→→→ →AB =(1,1,1) , AC = (2,1,3) , |AB|= 3, |AC|= 14, AB ·AC = 2+1+ 3= 6,→ → 6 6 36= 1∴ cosA = cos 〈 AB , AC 〉= = .∴ sinA = 1- .3· 14 42 427→ → 1 1 61 = × 3× 14× =∴ S △ABC = |AB| |AC ·| sinA · 27.2 2例 12:已知 a = (λ+ 1,0,2), b =(6,2μ- 1,2λ),若 a ∥ b ,则 λ与 μ的值可以是 ()A . 2,1B .- 1,1C .- 3,2D . 2,223 2λ+ 1= 2 ,λ= 2,λ=- 3,解析 由题意知:62λ解得1或 12μ- 1= 0,μ=2μ=2.例 13:已知空间中三点→ →A(- 2,0,2) , B(- 1,1,2) , C(-3,0,4) ,设 a = AB , b = AC.,若 ka + b 与 ka - 2b 互相垂直,求实数 k 的值.方法一 ∵ ka +b = (k - 1,k,2) .ka - 2b = (k +2, k ,- 4),且 ka + b 与 ka - 2b 互相垂直,∴ (k - 1, k,2) ·(k + 2, k ,- 4)= (k - 1)(k + 2)+ k 2- 8= 0, ∴ k =2 或- 5, 2方法二由 (2) 知 |a|= 2,|b|= 5,a ·b =- 1,∴( ka +b) ·(ka - 2b)= k 2a 2- ka ·b - 2b 2= 2k25 + k - 10= 0,得 k =2 或- .2例 14:已知空间三点 A (0,2,3), B (- 2,1,6),C(1,- 1,5).→ →(1)求以 AB , AC 为边的平行四边形的面积;(2)若 |a|= → →3,且 a 分别与 AB , AC 垂直,求向量 a 的坐标.→ → - 2+ 3+67 1 → →3→ →AB ·AC解 (1)cos 〈 AB , AC 〉= → →=14× 14 = 14=2.∴ sin 〈AB , AC 〉=2,|AB||AC|→ →1 → → → → 3 3.∴ 以 AB , AC 为边的平行四边形的面积为S = 2× |AB | |AC ·| ·sin 〈 AB , AC 〉= 14×= 7 22x 2+ y 2+z 2= 3x =1 x =- 1( 2)设 a = (x , y ,z),由题意得 - 2x - y + 3z =0 ,解得y = 1 或 y =- 1 ,x - 3y + 2z = 0z = 1z =- 12 1例 15:如图所示, 在正方体 ABCD —A 1B 1C 1D 1 中,E 、F 分别在 A 1D 、AC 上,且 A 1E = A 1D ,AF = AC ,则 ()3 3A . EF 至多与 A 1D 、 AC 之一垂直B . EF 与 A 1D 、 AC 都垂直 C .EF 与 BD 1 相交D . EF 与 BD 1 异面解析: 设 AB =1,以 D 为原点, DA 所在直线为 x 轴, DC 所在直线为 y 轴, DD 1 所在直线为z 轴建立空间直角坐标11 2 1 →系,则 A 1(1,0,1) ,D (0,0,0) ,A(1,0,0) ,C(0,1,0) ,E 3, 0,3 ,F3,3, 0 , B(1,1,0) ,D 1 (0,0,1) ,A 1D =(- 1,0,- 1),→ → 1 11 → →1 → → → → →AC = (- 1,1,0),EF = 3, 3,-3,BD 1=(-1,-1,1),EF=-3BD 1,A 1D ·EF =AC ·EF =0,从而EF∥BD 1,EF⊥ A 1D,EF ⊥ AC.→ →例 16:已知 O(0,0,0), A (1,2,3) , B(2,1,2) , P(1,1,2),点 Q 在直线 OP 上运动,当 QA ·QB 取最小值时,点 Q 的坐标是 __________.→ → → →解析: 设 OQ =λOP = (λ, λ, 2λ),则 QA = (1- λ,2- λ, 3- 2λ), QB = (2- λ, 1- λ,2- 2λ).→ →42∴ QA ·QB = (1- λ)(2- λ)+ (2- λ)(1 - λ)+ (3-2λ)(2- 2λ)= 6λ2- 16λ+ 10=6( λ- 3)2- 3.→ → →4 4 8 4 2∴当 λ=3时, QA ·QB 取最小值为- 3.此时, OQ = ( 3, 3,3),综合练习一、选择题1、下列命题:其中不正确 的所有命题的序号为 __________....①若 A 、 B 、 C 、D 是空间任意四点,则有 → → → → = 0; ② |a|- |b|= |a + b|是 a 、 b 共线的充要条件;AB + BC + CD + DA ③若 a 、 b 共线,则 a 与 b 所在直线平行;④对空间任意一点 → → → →O 与不共线的三点 A 、 B 、 C ,若 OP = xOA + yOB + zOC (x 、 y 、z ∈ R ),则 P 、 A 、 B 、C 四点共 面. ⑤设命题 p : a , b , c 是三个非零向量;命题q : { a , b , c} 为空间的一个基底,则命题 p 是命题 q 的充要条件解析:选②③④⑤,①中四点恰好围成一封闭图形,正确;②中当a 、b 同向时,应有 | a | + | | =| + | ;③中 a 、ba bb 所在直线可能重合;④中需满足x + y + z = 1,才有 P 、 A 、B 、 C 四点共面;⑤只有不共面的三个非零向量才能作为空间的一个基底,应改为必要不充分条件2、有下列命题:其中真命题的个数是 ( ) ①若 p = xa + yb ,则 p 与 a , b 共面; ②若 p 与 a ,b 共面,则 p = xa +yb ;→ → →→ → → ③若 MP = xMA + yMB ,则 P , M , A 、 B 共面; ④若 P , M , A , B 共面,则 MP = xMA + yMB. A . 1 B . 2 C . 3 D .4 解析 其中 ①③ 为真命题. ② 中,若 a , b 共线,则 p ≠xa + yb ;→ → → 3、已知 A(1,0,0), B(0,- 1,1),OA + λOB 与 OB 的夹角为 120°,则 λ的值为 ()6 6 6A . ±6 B. 6 C .- 6 D . ± 6→ → λ+ λ 1 666 解析: OA + λOB = (1,- λ,λ),cos120°= ,得 λ= ±不合题意, 舍去, ∴ λ=-=- 2 6.经检验 λ=66 .1+ 22λ· 24、 如图所示,已知 PA ⊥平面 ABC ,∠ ABC = 120 °,PA = AB = BC =6,则 PC 等于( )A .6 2B . 6C .12D . 144→ 2→ → → 2→ 2 → 2 → 2→ →→解析 PC = (PA + AB + BC) =PA + AB + BC + 2AB ·BC =36+ 36 +36+ 2× 36cos 60 °= 144∴ |PC |= 12→→ →→ → → → 3 → 1 311c , 证明 设 AB = a ,AC =b , AD = c ,则 BG = BA + AG = BA + AM =- a + (a + b + c)=-4 a + b + → → → → 1 → →11 4 → 444 4→ →,即 B 、G 、N 三点共线.BN = BA + AN = BA + (AC + AD )=- a +b +c = BG.∴ BN ∥BG33335、正方体 ABCD — A 1B 1C→ 1 →→1D 1 的棱长为 a ,点 M 在 AC 1 上且 AM = MC 1, N 为 B 1B 的中点,则 |MN |为 ()2A.21 6 aB.6 6 aC.15 6 aD.15 3a解析以 D 为原点建立如图所示的空间直角坐标系Dxyz ,则 A(a,0,0),C 1a , a ,a2.(0,a ,a),N设 M(x , y , z). ∵ 点 M 在 AC 1 → 1 →1上且 AM =MC 1, ∴ (x -a , y , z)= (- x , a - y , a - z)222 a a 2a a a, ∴→2 a2+a - a 2= 21∴ x = a ,y = , z = .∴M, , 3|MN |=a - a 2+ a -3 2 3 a.3333336π→→6、如图所示,已知空间四边形OABC ,OB = OC ,且∠ AOB =∠ AOC = 3,则 cos 〈 OA , BC 〉的值为 ()1 32A . 0B. 2C. 2D. 2解析→ → →π设 OA = a ,OB = b , OC = c ,由已知条件〈a ,b 〉=〈 a ,c 〉= ,且 |b|= |c|,1 13→ →→ →OA ·BC = a ·(c - b)=a ·c - a ·b = |a||c|- |a||b|= 0,∴ cos 〈 OA , BC 〉= 0.227、如图所示,在平行六面体ABCD — A 1B 1C 1D 1 中, M 为 A 1C 1 与 B 1D 1→ → →的交点.若 AB =a , AD = b , AA 1= c ,则下列→)向量中与 BM 相等的向量是 (.1 1 1 11 1 1 1A - 2a + 2b + c B. 2a +2b + c C .- 2a - 2b +c D. 2a - 2b + c解析 →→→→ 1 → →1 (b - a)=- 1 a + 1 b +c. BM = BB 1+ B 1M = AA 1+ (AD - AB)= c +2 22 28、平行六面体 → → → 60°,且 →→ → ABCD - A 1B 1 C 1D 1 中,向量 AB ,AD ,AA 1两两的夹角均为 |AB|= 1,|AD|= 2,|AA 1|=3,则 → )[|AC 1|等于 ( A .5 B . 6 C .4 D . 8 → → → → → →设 AB = a , AD = b , AA 1= c ,则 AC 1= a + b + c , AC 12= a 2+ b 2+ c 2+ 2a ·+b 2b ·+c 2c ·=a 25, |AC 1|= 5.9、在下列条件中,使 M 与 A 、 B 、 C 一定共面的是 ( )→→→ → →→ → →→ → →→→ →→A. OM = 3OA - 2OB - OC B .OM +OA + OB + OC = 0C . MA + MB + MC = 0D .OM =1OB - OA +1OC42→ → →解析:C 中 MA =- MB - MC .故 M 、 A 、 B 、C 四点共面.二、填空题10、同时垂直于 a = (2,2,1) 和 b = (4,5,3) 的单位向量是 ____________________ .解析 设与 a =(2,2,1) 和 b =(4,5,3) 同时垂直 b 单位向量是 c = (p , q ,r ),则11p 2+ q 2+ r 2= 1,p =3,p =- 3,2,2,1,- 2, 2或 - 1, 2,- 22p + 2q + r = 0, 解得或所求向量为q =- 3q = 33 3 3 3 3 3 .4p + 5q + 3r =0,2,2,r = 3r =- 311. 若向量 a = (1,λ, 2), b = (2,- 1,2)且 a 与 b 的夹角的余弦值为 8,则 λ= ________.9解析 由已知得 8 a ·b = 2- λ+ 4 , ∴ 8 2-λ),解得 λ=- 2 或 λ= 2 .=5+ λ=3(655212. 在空间直角坐标系中,以点 A(4,1,9)、 B(10,- 1,6)、C(x,4,3)为顶点的△ ABC 是以 BC 为斜边的等腰直角三角形,则实数 x 的值为 ________.解析 由题意知 → → → →AB ·AC = 0, |AB|= |AC|,可解得 x = 2.13. 已知 a +3b 与 7a -5b 垂直,且 a - 4b 与 7a -2b 垂直,则〈 a , b 〉= ________.解析 由条件知 (a + 3b) ·(7a - 5b)= 7|a|2+ 16a ·b - 15|b|2= 0,及 (a -4b) ·(7a -2b)= 7|a|2+ 8|b|2- 30a ·b =0.1两式相减,得 46a ·b = 23|b|2,∴ a ·b = |b|2.21代入上面两个式子中的任意一个,即可得到|a|= |b|.∴ cos 〈 a , b 〉= a ·b2|b|21= 2 =.∴ 〈a , b 〉= 60°.|a||b| |b| 2π, 2, ⊥ , ⊥ , 在平面 内, 在 上, 14. 如图所示,已知二面角 α— l — β的平面角为 0AB BC BC CD AB BC l θ θ βCD 在平面 α内,若 AB = BC = CD = 1,则 AD 的长为 ________.→→ → →2=→→→→ →→ →→ →π- θ=) 3- 2cos θ.解析 :AD 2= (AB + BC +CD ) AB 2+ BC 2+ CD 2+ 2AB ·CD + 2AB ·BC + 2BC ·CD = 1+ 1+ 1+2cos(15. 已知 a =(1- t,1- t , t), b =(2, t ,t),则 |b - a|的最小值为 ________.19 1 3 5解析 b -a = (1+ t,2t - 1,0),∴ |b -a|=1+ t 2+ 2t - 1 2=5 t -5 2+ 5 ,∴当 t = 5 时,|b -a|取得最小值 5.三、解答题16、如图所示,在各个面都是平行四边形的四棱柱ABCD — A 1B 1C 1D 1 中, P 是 CA 1 的中点, M 是 CD 1 的中点, N 是→ → →C 1D 1 的中点,点 Q 在 CA 1 上,且 CQ ∶QA 1= 4∶ 1,设 AB = a , AD = b ,AA 1= c ,用基底 { a , b , c} 表示以下向量:→ → → → (1)AP ; (2) AM ; (3)AN ; (4) AQ.→ 1 → →1 → →→1(a + b + c).(1) AP = (AC + AA1)= (AB +AD + AA1)= 222→=1→→1→→→1(2) AM+ AD+ 2AD+AA222→ 1 →→1→ →→→ → 1 →→→11a+ b+ c.(3) AN=(AC1+ AD1)=[( AB+ AD +AA1)+(AD+AA1)]=(AB+2AD+2AA1)=(a+ 2b+2c)=22222→ → → → 4 →→1 → 4 → 1 → 1 → 4 → 114(4) AQ= AC+CQ= AC+(AA1-AC)= AC + AA 1=AB+AD + AA1=a+ b+ c55555555517、如图,已知M、 N 分别为四面体ABCD 的面 BCD 与面 ACD 的重心,且G 为 AM 上一点,且GM ∶GA= 1∶ 3.求证: B、 G、 N 三点共线.18. (13 分 )直三棱柱ABC—A′ B′ C′中,AC= BC= AA′,∠ ACB= 90°,D 、E 分别为 AB 、BB′的中点.(1)求证: CE⊥ A′D ;(2)求异面直线 CE 与 AC′所成角的余弦值.→→→(1)证明:设 CA= a,CB=b,CC′=c,根据题意, |a|= |b|= |c|且 a·b=b·c→1→11→→11→ →,即∴ CE= b+ c, A′ D=- c+b-a.∴CE· A′ D=-c2+b2= 0,∴ CE⊥A′D22222=c·a= 0. CE⊥A′D.→→→5→→112=12,(2) AC′=- a+ c,∴ |AC′|=2|a|, |CE|=|a |.AC′· CE= (- a+ c) ·c2 12222→→2|a|=1010∴ cos〈 AC′,CE〉=510.即异面直线 CE 与 AC′所成角的余弦值为10.2·2 |a|2。
高考数学选修2,1知识点:从平面向量到空间向量

高考数学选修2,1知识点:从平面向量到空间向量1500字从平面向量到空间向量,是高中数学的一个重要知识点。
平面向量和空间向量是向量的两种不同形式,它们在数学上有着相似的性质和运算规律,但在几何上有一些区别。
首先,我们来了解一下平面向量。
平面向量是指在平面内有大小和方向的向量。
平面向量用有向线段表示,线段的方向表示向量的方向,线段的长度表示向量的大小。
设向量AB的起点为A,终点为B,记作向量AB,表示为→AB。
平面向量有两种表示方法:坐标表示和分量表示。
1. 坐标表示:假设平面向量AB的起点坐标为A(x1, y1),终点坐标为B(x2, y2),则向量AB的坐标表示为(x2 - x1, y2 - y1)。
2. 分量表示:平面向量的分量表示是通过向量的水平分量和竖直分量表示向量。
假设平面向量AB的长度为|r|,与X轴的夹角为θ,则水平分量为|r|cosθ,竖直分量为|r|sinθ。
接下来,我们来了解一下空间向量。
空间向量是指在三维空间中有大小和方向的向量。
空间向量同样用有向线段表示,线段的方向表示向量的方向,线段的长度表示向量的大小。
设向量AB的起点为A,终点为B,记作向量AB,表示为→AB。
空间向量也有两种表示方法,即坐标表示和分量表示。
1. 坐标表示:假设空间向量AB的起点坐标为A(x1, y1, z1),终点坐标为B(x2, y2, z2),则向量AB的坐标表示为(x2 - x1, y2 - y1, z2 - z1)。
2. 分量表示:空间向量的分量表示同样是通过向量在坐标轴上的投影来表示向量。
假设空间向量AB的长度为|r|,与X轴、Y轴、Z轴的夹角分别为α、β、γ,则向量的X 轴分量为|r|cosα,Y轴分量为|r|cosβ,Z轴分量为|r|cosγ。
在从平面向量到空间向量的过程中,需要注意以下几点:1. 坐标表示的差异:平面向量的坐标表示有两个分量,而空间向量的坐标表示有三个分量。
2. 分量表示的差异:平面向量的分量表示只有水平分量和竖直分量,而空间向量的分量表示有X轴、Y轴、Z轴三个分量。
高中数学新湘教版选修2-1 空间向量与立体几何 章末小结复习

1.空间向量基本定理设e1,e2,e3是空间中的三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.空间向量的坐标运算公式(1)加减法:(x1,y1,z1)±(x2,y2,z2)=(x1±x2,y1±y2,z1±z2).(2)与实数的乘法:a(x,y,z)=(ax,ay,az).(3)数量积:设v=(x,y,z),则|v|=x2+y2+z2.(4)向量的夹角:cos θ=v1·v2 |v1|·|v2|=x1x2+y1y2+z1z2x21+y21+z21·x22+y22+z22.3.空间向量在立体几何中的应用设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,ν,则[例1]M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ; (2)平面PMC ⊥平面PDC .[证明] 如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系A -xyz .设PA =AD =a ,AB =b .则有,(1)P (0,0,a ),A (0,0,0),D (0,a,0),C (b ,a,0),B (b,0,0). ∵M ,N 分别为AB ,PC 的中点, ∴M ⎝⎛⎭⎫b 2,0,0,N ⎝⎛⎭⎫b 2,a 2,a 2. ∴MN ―→=⎝⎛⎭⎫0,a 2,a 2,AP ―→=(0,0,a ),AD ―→=(0,a,0), ∴MN ―→=12AD ―→+12AP ―→.又∵MN ⊄平面PAD ,∴MN ∥平面PAD . (2)由(1)可知:PC ―→=(b ,a ,-a ),PM ―→=⎝⎛⎭⎫b2,0,-a , PD ―→=(0,a ,-a ).设平面PMC 的一个法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧n 1·PC ―→=0⇒bx 1+ay 1-az 1=0,n 1·PM ―→=0⇒b 2x 1-az 1=0,∴⎩⎪⎨⎪⎧x 1=2a b z 1,y 1=-z 1,令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2·PC ―→=0⇒bx 2+ay 2-az 2=0,n 2·PD ―→=0⇒ay 2-az 2=0,∴⎩⎪⎨⎪⎧x 2=0,y 2=z 2.令z 2=1,则n 2=(0,1,1), ∵n 1·n 2=0-b +b =0,∴n 1⊥n 2. ∴平面PMC ⊥平面PDC .(1)用向量法证明立体几何中的平行或垂直问题,主要应用直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行或垂直的定理.(2)用向量法证明平行或垂直的步骤:①建立空间图形与空间向量的关系(通过取基或建立空间直角坐标系的方法),用空间向量或以坐标形式表示问题中涉及的点、直线和平面;②通过向量或坐标,研究向量之间的关系;③根据②的结论得出立体几何问题的结论.(3)在用向量法研究线面平行或垂直时,上述判断方法不唯一,如果要证直线l ∥平面α,只需证l =λa ,l ⊄α,其中l 是直线l 的方向向量,a ⊂α;如果要证l ⊥α,只需在平面α内选取两个不共线向量m ,n ,证明⎩⎪⎨⎪⎧l ·m =0,l ·n =0,即可.1.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:法一:设A 1B 1―→=a ,A 1D 1―→=b ,A 1A ―→=c , 则a ·b =0,b ·c =0,a ·c =0, A 1O ―→=A 1A ―→+AO ―→=A 1A ―→+12(AB ―→+AD ―→)=c +12(a +b ),BD ―→=AD ―→-AB ―→=b -a ,OG ―→ =OC ―→ +CG ―→ =12(AB ―→+AD ―→ )+12CC 1―→=12(a +b )-12c ,∴A 1O ―→·BD ―→=⎝⎛⎭⎫c +12a +12b ·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2)=12(|b |2-|a |2)=0,∴A 1O ―→⊥BD ―→.∴A 1O ⊥BD . 同理可证A 1O ―→⊥OG ―→.∴A 1O ⊥OG . 又OG ∩BD =O , ∴A 1O ⊥平面GBD .法二:如图所示,以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0), DG ―→=(0,2,1),则A 1O ―→·DB ―→=(-1,1,-2)·(2,2,0)=0, A 1O ―→·DG ―→=(-1,1,-2)·(0,2,1)=0,所以A 1O ―→⊥DB ―→,A 1O ―→⊥DG ―→.即A 1O ⊥DB ,A 1O ⊥DG . 又DB ∩DG =D ,故A 1O ⊥平面GBD .法三:以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0),DG ―→=(0,2,1). 设向量n =(x ,y ,z )为平面GBD 的一个法向量, 则n ⊥DB ―→,n ⊥DG ―→. 即n ·DB ―→=0,n ·DG ―→=0.所以⎩⎪⎨⎪⎧2x +2y =0,2y +z =0.令x =1,则y =-1,z =2, 所以n =(1,-1,2). 所以A 1O ―→=-n .即A 1O ―→∥n . 所以A 1O ⊥平面GBD .2.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,B 1C 的中点. (1)用向量法证明平面A 1BD ∥平面B 1CD 1;(2)用向量法证明MN ⊥平面A 1BD . 证明:(1)在正方体ABCD -A 1B 1C 1D 1中, BD ―→=AD ―→-AB ―→,B 1D 1―→=A 1D 1―→-A 1B 1―→, 又∵AD ―→=A 1D 1―→,AB ―→=A 1B 1―→,∴BD ―→=B 1D 1―→, ∴BD ∥B 1D 1. 同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1, 所以平面A 1BD ∥平面B 1CD 1.(2)MN ―→=MB ―→+BC ―→+CN ―→=12AB ―→+AD ―→+12(CB ―→+BB 1―→)=12AB ―→+AD ―→+12(-AD ―→+AA 1―→) =12AB ―→+12AD ―→+12AA 1―→.设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=12(a +b +c ).又BD ―→=AD ―→-AB ―→=b -a , ∴MN ―→·BD ―→=12(a +b +c )·(b -a )=12(b 2-a 2+c ·b -c ·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB ,∴c ·b =0,c ·a =0. 又|b |=|a |,∴b 2=a 2.∴b 2-a 2=0. ∴MN ―→·BD ―→=0.∴MN ⊥BD . 同理可证MN ⊥A 1B . 又A 1B ∩BD =B , ∴MN ⊥平面A 1BD .[例2] 四棱锥=AD =2,点M ,N 分别在棱PD ,PC 上,且PC ⊥平面AMN .(1)求AM 与PD 所成的角; (2)求二面角P -AM -N 的余弦值;(3)求直线CD 与平面AMN 所成角的余弦值.[解] 建立如图所示的空间直角坐标系. ∵A (0,0,0),C (2,2,0),P (0,0,2),D (0,2,0), ∴PC ―→=(2,2,-2),PD ―→=(0,2,-2). 设M (x 1,y 1,z 1),PM ―→=λPD ―→, 则(x 1,y 1,z 1-2)=λ(0,2,-2). ∴x 1=0,y 1=2λ,z 1=-2λ+2. ∴M (0,2λ,2-2λ).∵PC ⊥平面AMN ,∴PC ―→⊥AM ―→, ∴PC ―→·AM ―→=0.∴(2,2,-2)·(0,2λ,2-2λ)=0⇒4λ-2(2-2λ)=0. ∴λ=12.∴M (0,1,1).设N (x 2,y 2,z 2),PN ―→=t PC ―→, 则(x 2,y 2,z 2-2)=t (2,2,-2).∴x 2=2t ,y 2=2t ,z 2=-2t +2. ∴N (2t,2t,2-2t ).∵PC ―→⊥AN ―→,∴AN ―→·PC ―→=0. ∴(2t,2t,2-2t )·(2,2,-2)=0. ∴4t +4t -2(2-2t )=0, ∴t =13.∴N ⎝⎛⎭⎫23,23,43. (1)∵cos 〈AM ―→,PD ―→〉=(0,1,1)·(0,2,-2)0+1+1×0+4+4=0,∴AM 与PD 所成角为90°.(2)∵AB ⊥平面PAD ,PC ⊥平面AMN ,∴AB ―→,PC ―→分别是平面PAD ,平面AMN 的法向量. ∵AB ―→·PC ―→=(2,0,0)·(2,2,-2)=4, |AB ―→|=2,|PC ―→|=23, ∴cos 〈AB ―→,PC ―→〉=443=33.∴二面角P -AM -N 的余弦值为33. (3)∵PC ―→是平面AMN 的法向量,∴CD 与平面AMN 所成角即为CD 与PC 所成角的余角. ∵CD ―→·PC ―→=(-2,0,0)·(2,2,-2)=-4, ∴cos 〈CD ―→,PC ―→〉=-42×23=-33.∴直线CD 与PC 所成角的正弦值为63, 即直线CD 与平面AMN 所成角的余弦值为63.(1)求异面直线所成的角:设两异面直线的方向向量分别为n 1,n 2,那么这两条异面直线所成的角为θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,∴cos θ=|cos 〈n 1,n 2〉|. (2)求二面角的大小:如图,设平面α,β的法向量分别为n 1,n 2.因为两平面的法向量所成的角就等于平面α,β所成的锐二面角θ,所以cos θ=|cos 〈n 1,n 2〉|.(3)求斜线与平面所成的角:如图,设平面α的法向量为n 1,斜线OA 的方向向量为n 2,斜线OA 与平面所成的角为θ,则sin θ=|cos 〈n 1,n 2〉|.3.如图所示,在矩形ABCD 中,AB =4,AD =3,沿对角线AC折起,使D 在平面ABC 上的射影E 恰好落在AB 上,求这时二面角B -AC -D 的余弦值.解:如图所示,作DG ⊥AC 于G ,BH ⊥AC 于H .在Rt △ADC 中, AC =AD 2+DC 2=5, cos ∠DAC =AD AC =35.在Rt △AGD 中,AG =AD ·cos ∠DAC =3×35=95,DG =AD 2-AG 2=9-8125=125. 同理,cos ∠BCA =35,CH =95,BH =125.AD ―→·BC ―→=(AE ―→+ED ―→)·BC ―→=AE ―→·BC ―→+ED ―→·BC ―→=0, GD ―→·HB ―→=(GA ―→+AD ―→)·(HC ―→+CB ―→) =GA ―→·HC ―→+GA ―→·CB ―→+AD ―→·HC ―→+AD ―→·CB ―→ =-95×95+95×3×35+3×95×35+0=8125.又|GD ―→|·|HB ―→|=14425,∴cos 〈GD ―→,HB ―→〉=916.因此所求二面角的余弦值为916.4.如图,ABCD -A 1B 1C 1D 1是正四棱柱. (1)求证:BD ⊥平面ACC 1A 1;(2)二面角C 1-BD -C 的大小为60°,求异面直线BC 1与AC 所成角的余弦值.解:(1)证明:建立空间直角坐标系D -xyz ,如图.设AD =a ,DD 1=b ,则有D (0,0,0),A (a ,0,0),B (a ,a,0),C (0,a,0),C 1(0,a ,b ),∴BD ―→=(-a ,-a,0),AC ―→=(-a ,a,0),CC 1―→=(0,0,b ), ∴BD ―→·AC ―→=0,BD ―→·CC 1―→=0. ∴BD ⊥AC ,BD ⊥CC 1.又∵AC ,CC 1⊂平面ACC 1A 1,且AC ∩CC 1=C , ∴BD ⊥平面ACC 1A 1.(2)设BD 与AC 相交于点O ,连接C 1O , 则点O 的坐标为⎝⎛⎭⎫a 2,a 2,0,OC 1―→=⎝⎛⎭⎫-a 2,a 2,b . ∵BD ―→·OC 1―→=0,∴BD ⊥C 1O . 又BD ⊥CO ,∴∠C 1OC 是二面角C 1-BD -C 的平面角, ∴∠C 1OC =60°, ∵tan ∠C 1OC =CC 1OC =b22a =3, ∴b =62a . ∵AC ―→=(-a ,a,0),BC 1―→=(-a,0,b ), ∴cos 〈AC ―→,BC 1―→〉=AC ―→·BC 1―→|AC ―→|·|BC 1―→|=55. ∴异面直线BC 1与AC 所成角的余弦值为55.(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝⎛⎭⎫1,12,2,则m =( ) A .-8 B .-5 C .5D .8解析:∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直. ∴2+m2+2=0,m =-8.答案:A2.在空间四边形ABCD 中,连接AC ,BD ,若△BCD 是正三角形,且E 为其中心,则AB ―→+12BC ―→-32DE ―→-AD ―→的化简结果为( )A .AB ―→B .2BD ―→C .0D .2DE ―→解析:如图,F 是BC 的中点,E 是DF 的三等分点,∴32DE ―→=DF ―→. ∵12BC ―→=BF ―→,则AB ―→+12BC ―→-32DE ―→-AD ―→=AB ―→+BF ―→-DF ―→-AD ―→=AF ―→+FD ―→-AD ―→=AD ―→-AD ―→=0.答案:C3.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=2OA ―→-2OB ―→-OC ―→,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基,则{a +b ,b +c ,c +a }构成空间的另一组基; ⑤ |(a ·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4D .5解析:①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基的定义知正确;⑤由向量的数量积的性质知,不正确.答案:C4.直三棱柱ABC -A 1B 1C 1中,若CA ―→=a ,CB ―→=b ,CC 1―→=c ,则A 1B ―→=( ) A .a +b -c B .a -b +c C .-a +b +cD .-a +b -c解析:A 1B ―→=CB ―→-CA 1―→=CB ―→-(CA ―→+CC 1―→)=b -a -c . 答案:D5.已知四面体ABCD 的各边长都是a ,点E ,F 分别为BC ,AD 的中点,则AE ―→·AF ―→的值是( )A .a 2 B.12a 2 C.14a 2 D.34a 2 解析:由已知得ABCD 为正四面体,因为AE ―→=12(AB ―→+AC ―→),AF ―→=12AD ―→,所以AE ―→·AF―→=12(AB ―→+AC ―→)·12AD ―→=14(AB ―→·AD ―→+AC ―→·AD ―→) =14(a 2cos 60°+a 2cos 60°)=14a 2. 答案:C6.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为( )A.13B.23C.33D.23解析:建立如图所示的空间直角坐标系,设A (1,0,0),则B (0,1,0),D (0,-1,0),AB =2,SD =2,∴SO =1,∴S (0,0,1),∴E ⎝⎛⎭⎫0,12,12,AE ―→=-1,12,12,SD ―→=(0,-1,-1).∴cos 〈AE ―→, SD ―→〉=AE ―→·SD ―→|AE ―→||SD ―→|=-12-1262×2=-33, ∴AE 与SD 所成角的余弦值为33. 答案:C7.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′―→=x AB ―→+2y BC ―→+3zC ′C ―→,则x +y +z 等于( )A .1 B.76 C.56D.23解析:如图,AC ′―→=AB ―→+BC ―→+CC ′―→=AB ―→+BC ―→-C ′C ―→,所以x =1,2y =1,3z =-1,所以x =1,y =12,z =-13,因此x +y +z =1+12-13=76.答案:B8.如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线P Q 与AM 所成的角为( )A.π6 B.π4 C.π3D.π2解析:以A 为坐标原点,AB ,AC ,AA 1所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,设AA 1=AB =AC =2,则AM ―→=(0,2,1),Q (1,1,0),P (1,0,2),Q P ―→=(0,-1,2),所以Q P ―→·AM ―→=0,所以Q P 与AM 所成角为π2.答案:D9.如图,在长方体ABCD -A1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.255C.155D.105解析:以D 点为坐标原点,以DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1―→=(-2,0,1),AC ―→=(-2,2,0),且AC ―→为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1―→,AC ―→〉=BC 1―→·AC ―→|BC 1―→|·|AC ―→|=45·8=105.∴BC 1与平面BB 1D 1D 所成角的正弦值为105. 答案:D10.已知OA ―→=(1,2,3),OB ―→=(2,1,2),OP ―→=(1,1,2),点Q 在直线OP 上运动,则当Q A ―→·Q B ―→取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎫12,34,13B.⎝⎛⎭⎫12,32,34 C.⎝⎛⎭⎫43,43,83D.⎝⎛⎭⎫43,43,73解析:∵Q 在OP 上,∴可设Q (x ,x,2x ),则Q A ―→=(1-x ,2-x,3-2x ), Q B ―→=(2-x,1-x,2-2x ).∴Q A ―→·Q B ―→=6x 2-16x +10,∴x =43时,Q A ―→·Q B ―→取得最小值,这时Q ⎝⎛⎭⎫43,43,83. 答案:C11.如图,在四面体P -ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为( )A.22 B.33C.77D.57解析:如图,作BD ⊥AP 于点D ,作CE ⊥AP 于点E .设AB =1,则易得CE =22,EP =22,PA =PB =2,可以求得BD =144,ED =24. ∵BC ―→=BD ―→+DE ―→+EC ―→,∴BC ―→2=BD ―→2+DE ―→2+EC ―→2+2BD ―→·DE ―→+2DE ―→·EC ―→+2EC ―→·BD ―→, ∴EC ―→·BD ―→=-14,∴cos 〈BD ―→,EC ―→〉=-77.故二面角B -AP -C 的余弦值为77. 答案:C12.如图,在三棱柱ABC -A1B 1C 1中,底面ABC 为正三角形,且侧棱AA 1⊥底面ABC ,且底面边长与侧棱长都等于2,O ,O 1分别为AC ,A 1C 1的中点,则平面AB 1O 1与平面BC 1O 间的距离为( )A.355B.255C.55D.510解析:如图,连接OO 1,根据题意,OO 1⊥底面ABC ,则以O 为原点,分别以OB ,OC ,OO 1所在的直线为x ,y ,z 轴建立空间直角坐标系.∵AO 1∥OC 1,OB ∥O 1B 1,AO 1∩O 1B 1=O 1,OC 1∩OB =O ,∴平面AB 1O 1∥平面BC 1O .∴平面AB 1O 1与平面BC 1O 间的距离即为O 1到平面BC 1O 的距离.∵O (0,0,0),B (3,0,0),C 1(0,1,2),O 1(0,0,2),∴OB ―→=(3,0,0),OC 1―→=(0,1,2),OO 1―→=(0,0,2),设n =(x ,y ,z )为平面BC 1O 的法向量,则n ·OB ―→=0,∴x =0.又n ·OC 1―→=0,∴y +2z =0,∴可取n =(0,2,-1).点O 1到平面BC 1O 的距离记为d ,则d =|n ·OO 1―→||n |=25=255.∴平面AB 1O 1与平面BC 1O间的距离为255.答案:B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q )共线,则p +q =________. 解析:由已知得AB ―→=(1,-1,3),AC ―→=(p -1,-2,q +2),因为AB ―→∥AC ―→,所以p -11=-2-1=q +23,所以p =3,q =4,故p +q =7.答案:714.已知空间四边形OABC ,如图所示,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG ―→=3GN ―→,现用基向量OA ―→,OB ―→,OC ―→表示向量OG ―→,并设OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的和为________.解析:OG ―→=OM ―→+MG ―→=12OA ―→+34MN ―→=12OA ―→+34⎝⎛⎭⎫-12 OA ―→+OC ―→+12 CB ―→=12OA ―→-38OA ―→+34OC ―→+38OB ―→-38OC ―→=18OA ―→+38OB ―→+38OC ―→, ∴x =18,y =38,z =38.∴x +y +z =78.答案:7815.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为______________.解析:由OA ―→=(-1,1,0),且点H 在直线OA 上, 可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA ,∴BH ―→·OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12, ∴H ⎝⎛⎭⎫-12,12,0. 答案:⎝⎛⎭⎫-12,12,0 16.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .则A 1B 与平面ABD 所成角的正弦值为________.解析:以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,CC 1所在的直线为z 轴建立空间直角坐标系,如图所示.设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13, GE ―→=⎝⎛⎭⎫a 6,a 6,23,BD ―→=(0,-a,1). ∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ―→⊥平面ABD ,∴GE ―→·BD ―→=0,解得a =2. ∴GE ―→=⎝⎛⎭⎫13,13,23,BA 1―→=(2,-2,2), ∵GE ―→⊥平面ABD ,∴GE ―→为平面ABD 的一个法向量. 又cos 〈GE ―→,BA 1―→〉=GE ―→·BA 1―→|GE ―→||BA 1―→|=4363×23=23, ∴A 1B 与平面ABD 所成角的正弦值为23. 答案:23三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ―→⊥b ?(O 为原点)解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2. (2)OE ―→=OA ―→+AE ―→=OA ―→+t AB ―→ =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ). 若OE ―→⊥b ,则OE ―→·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0, 解得t =95,因此存在点E ,使得OE ―→⊥b , 此时E 点坐标为⎝⎛⎭⎫-65,-145,25.18.(本小题满分12分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠BAD =60°,∠BAA 1=∠DAA 1=45°.(1)求|BD 1―→|;(2)求证:BD ⊥平面ACC 1A 1. 解:(1)∵BD 1―→=BA ―→+BC ―→+BB 1―→∴|BD 1―→|2=(BA ―→+BC ―→+BB 1―→)2=BA ―→2+BC ―→2+BB 1―→2+2(BA ―→·BC ―→+BA ―→·BB 1―→+BC ―→·BB 1―→)=1+1+1+2⎝⎛⎭⎫-12-22+22=2,∴|BD 1―→|= 2.(2)证明:∵BD ―→=AD ―→-AB ―→, ∴AA 1―→·BD ―→=AA 1―→·(AD ―→-AB ―→)=0, ∴BD ⊥AA 1,又BD ⊥AC ,AA 1∩AC =A , 所以BD ⊥平面ACC 1A 1.19.(本小题满分12分)如图,已知点P 在正方体ABCD -A1B 1C 1D 1的对角线BD 1上,∠PDA =60°.(1)求DP 与CC 1所成角的大小; (2)求DP 与平面AA 1D 1D 所成角的大小.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系Dxyz .则DA ―→=(1,0,0),CC 1―→=(0,0,1).连接BD ,B 1D 1.在平面BB 1D 1D 中,延长DP 交B 1D 1于H . 设DH ―→=(m ,m,1)(m >0), 由已知〈DH ―→,DA ―→〉=60°,由DH ―→·DA ―→=|DA ―→||DH ―→|cos 〈DA ―→,DH ―→〉, 可得2m =2m 2+1. 解得m =22,所以DH ―→=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH ―→,CC 1―→〉=22×0+22×0+1×11×2=22,所以〈DH ―→,CC 1―→〉=45°. 即DP 与CC 1所成的角为45°.(2)平面AA 1D 1D 的一个法向量是DC ―→=(0,1,0). 因为cos 〈DH ―→,DC ―→〉=22×0+22×1+1×01×2=12,所以〈DH ―→,DC ―→〉=60°,可得DP 与平面AA 1D 1D 所成的角为30°.20.(本小题满分12分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. 解:设正方体ABCD -A 1B 1C 1D 1的棱长为1.如图所示,以AB ―→,AD ―→,AA 1―→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0),所以BE ―→=⎝⎛⎭⎫-1,1,12,AD ―→=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD ―→是平面ABB 1A 1的一个法向量, 设直线BE 和平面ABB 1A 1所成的角为θ,则 sin θ=|BE ―→·AD ―→||BE ―→|·|AD ―→|=132×1=23. 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由n ·BA 1―→=0,n ·BE ―→=0, 得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,连接B 1F ,则F (t,1,1)(0≤t ≤1), 又B 1(1,0,1),所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .21.(本小题满分12分)(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.解:(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC . 又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC .所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12.故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→=⎝⎛⎭⎫-1,32,12.设n =(x 1,y 1,z 1)是平面DAE 的法向量, 则⎩⎪⎨⎪⎧ n ·AD ―→=0,n ·AE ―→=0,即⎩⎪⎨⎪⎧-x 1+z 1=0,-x 1+32y 1+12z 1=0. 可取n =⎝⎛⎭⎫1,33,1. 设m =(x 2,y 2,z 2)是平面AEC 的法向量, 则⎩⎪⎨⎪⎧ m ·AC ―→=0,m ·AE ―→=0,即⎩⎪⎨⎪⎧-2x 2=0,-x 2+32y 2+12z 2=0, 可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=-33+3213×2=77.由图知二面角D -AE -C 为锐角, 所以二面角D -AE -C 的余弦值为77.22.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD , 故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6,得DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点, HF ―→的方向为x 轴正方向,建立空间直角坐标系H -xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),故AB ―→=(3,-4,0),AC ―→=(6,0,0),AD ′―→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB ―→=0,m ·AD ′―→=0即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AD ′―→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m||n|=-1450×10=-7525.故sin 〈m ,n 〉=29525. 因此二面角B -D ′A -C 的正弦值是29525.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 空间向量与立体几何1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b存在实数λ,使a=λb 。
4. 共面向量(1)定义:一般地,能平移到同一平面的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数,,x y z,使OP xOA yOB zOC=++。
6.空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作,(两个向量的起点一定要相同),则叫做向量与的夹角,记作,且。
7. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O xyz-中,对空间任一点A,存在唯一的有序实数组x y z叫作向量A在空间直角坐标系(,,)x y z,使+=,有序实数组(,,)+A x y z,x叫横坐标,y叫纵坐标,z叫竖坐标。
-中的坐标,记作(,,)O xyz(2) 右手直角坐标系:右手握住z轴,当右手的四指从正向x轴以90°角度转向正向y轴时,大拇指的指向就是z轴的正向;(3)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示。
(4)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ⋅=++,112233//,,()a b a b a b a b R λλλλ⇔===∈或λ===332211b a b a b a 1122330a b a b a b a b ⊥⇔++=。
②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(5)模长公式:若123(,,)a a a a =,123(,,)b b b b =,则222123||a a a a a a =⋅=++,222123||b b b b b b =⋅=++(6)夹角公式:112233222222123123cos ||||a ba b a b a a a b b b ⋅⋅==⋅++++(7)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2222212121||()()()AB AB x x y y z z ==-+-+-, 或222,212121()()()A B d x x y y z z =-+-+-(8)空间线段),,(),,,(22221111z y x P z y x P 的中点),,(z y x M 的坐标:⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x (9)球面方程:2222R z y x =++8. 空间向量的数量积。
(1)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥。
(2)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a 。
(3)向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。
(4)空间向量数量积的性质:①||cos ,a e a a e ⋅=<>。
②0a b a b ⊥⇔⋅=。
③2||a a a =⋅=2)(= (5)空间向量数量积运算律: ①()()()a b a b a b λλλ⋅=⋅=⋅。
②a b b a ⋅=⋅(交换律)。
③()a b c a b a c ⋅+=⋅+⋅(分配律)。
9、空间向量在立体几何证明中的应用:),,(),,,(321321b b b a a a ==(1)证明//AB CD ,即证明//AB CD ,也就是证明332211,,b a b a b a λλλ===或λ===332211b a b a b a (2)证明AB CD ⊥,即证明0AB CD ⋅=,也就是证明0332211=++b a b a b a (3)证明//AB α(平面)(或在面),即证明AB 垂直于平面的法向量或证明AB 与平面的基底共面;(4)证明AB α⊥,即证明AB 平行于平面的法向量或证明AB 垂直于平面的两条相交的直线所对应的向量;(5)证明两平面//αβ(或两面重合),即证明两平面的法向量平行或一个面的法向量垂直于另一个平面;(6)证明两平面αβ⊥,即证明两平面的法向量垂直或一个面的法向量在另一个面。
10. 运用向量的坐标运算解题的步骤: (1)建坐标系,求相关点的坐标 (2)求相关向量的坐标 (3)运用向量运算解题11. 用向量方法来解决立体几何中的空间角的问题: (1) 两条直线的夹角:设直线,l m 的方向向量分别为,a b , 两直线l ,m 所成的角为θ(02πθ≤≤),cos a b a bθ⋅==b a ,cos(2) 直线与平面的夹角:设直线l 的方向向量分别为a ,平面α的法向量分别为u, 直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅==u a ,cos ;(3) 二面角: πθ≤≤0 ① 方向向量法:② 法向量法:法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角12. 利用“方向向量”与“法向量”来解决距离问题. (1)点与直线的距离:),cos (sin ><=a AP AP d 先求θ(2)点到平面的距离:d =||||PA n n ⋅.如图A ,α∈空间一点P 到平面α的距离为d ,已知平面α的一个法向量为n ,且AP 与n 不共线,分析:过P作P O⊥α于O,连结OA.则d=|PO|=||cos.PA APO⋅∠∵PO⊥α,,nα⊥∴PO∥n.∴cos∠APO=|cos,PA n〈〉|.∴d=|PA||cos,PA n〈〉|=||||PA nn⋅.(3)异面直线间的距离:nABnCDd⋅==已知a,b是异面直线,CD为a,b的公垂线,的方向向量,是直线CDn A,B分别在直线a,b上nABnCDd⋅==(4)其它距离问题:①平行线的距离(转化为点到直线的距离)②直线与平面的距离(转化为点到平面的距离)③平面与平面的距离(转化为点到平面的距离)13.补充:(1)三余弦定理设AC是α的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为1θ,AB与AC所成的角为2θ,AO与AC所成的角为θ.则12cos cos cosθθθ=.(2)三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin2sin sin cosϕθθθθθϕ=+-;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).(3)点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ).(4)异面直线上两点距离公式d θ=.',d EA AF=d =('E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). (5)三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a=+++⋅+⋅+⋅(6)长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=. (立体几何中长方体对角线长的公式是其特例). (7)面积射影定理'cos S S θ=. (平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).(8)斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V斜棱柱,它的直截面的周长和面积分别是1c 和1S,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.(9)欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).① E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:nF E 21=② 若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:.mV E 21(10) 球的组合体① 球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. ② 球与正方体的组合体:正方体的切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. ③ 球与正四面体的组合体: 棱长为a 的正四面体的切球的半径为a 126,外接球的半径为a 46.。