首都师范大学数理统计2012-2013期末考试试卷
2012-2013概率期末试题+答案

2012-2013-1《概率论与数理统计》期末试卷(A)一、填空题(每小题4分,共28分)1.对一批次品率为p (0<p <1)的产品逐一检测, 则第二次或第二次后才检测到次品的概率为________.2.二维离散型随机变量),(Y X 的联合分布律为j i p , (i , j =1 , 2 ,……),关于X 及关于Y 的边缘分布律为p i •及p •j (i , j =1,2,……),则X 与Y 相互独立的充分必要条件是_________. 3.设样本),,,(21n X X X 抽自总体22, ). ,(~σμσμN X 均未知. 要对μ作假设检验,统计假设为,:00μμ=H (0μ已知), ,:01μμ≠H 则要用检验统计量为_________.4.若总体) ,(~2σμN X ,则~n Z σμ-X =__________其中n 为样本容量.5.设某种零件的寿命),(~2σμN Y ,其中μ未知. 现随机抽取5只,测得寿命(单位小时)为1502 , 1453 ,1367 , 1650,1498,则用矩估计可求得μˆ=________. 6.设某离散型随机变量ξ的分布律是{}⋅⋅⋅===,2,1,0,!k k Ck P kλξ,常数λ>0,则常数=C ________.7.设A ,B 是两个互不相容的随机事件,且知21)(,41)(==B P A P , 则=)(B A P ______. 二、单项选择题(每小题4分,共40分)1.对任意两个互不相容的事件A 与B ,必有_________.(A ) 如果0)(=A P ,则0)(=B P . (B ) 如果0)(=A P ,则1)(=B P .(C ) 如果1)(=A P ,则0)(=B P . (D ) 如果1)(=A P ,则1)(=B P .2.已知随机变量X 在]1,0[上服从均匀分布,记事件}5.00{≤≤=X A ,}75.025.0{≤≤=X B ,则_________.(A ) A 与B 互不相容. (B ) B 包含A . (C ) A 与B 对立. (D ) A 与B 相互独立. 3.6.0 ,1)( ,4)(===ξηρηξD D ,则=-)23(ηξD _________.(A) 40 (B) 34 (C) 25.6 (D) 17.64.任一个连续型的随机变量ξ的概率密度为)(x ϕ,则)(x ϕ必满足_________.(A) 1)(0<<x ϕ (B)()⎰+∞∞-=1dx x ϕ (C) 单调不减 (D)1)(lim =+∞→x x ϕ5.设两个随机变量X 与Y 相互独立且同分布,{1}{1}0.5P X P Y ====,{1}{1}0.5P X P Y =-==-=,则下列各式成立的是_________.(A){}0.5P X Y == (B) {}1P X Y == (C) {0}0.25P X Y +== (D) {1}0.25P XY == 6.若随机变量ξ和η相互独立,且方差21)(σξ=D 和22)(ση=D 2121,),0,0(k k >>σσ 是已知常数,则)(21ηξk k D -等于_________.(A )222211σσk k - (B )222211σσk k + (C )22222121σσk k - (D )22222121σσk k +7.设( X , Y )为二维随机变量,其概率密度函数为⎩⎨⎧≥≥=+-其他,0,0,),()(y x e y x f y x ,则下列各式正确的是_________.⎰⎰∞-∞-+-=x y y x dxdy e y x F A )(),()( ⎰∞+∞-+-=dy e x f B y x X )()()(dx e dy Y X P C y y x ⎰⎰-+-=≤+240)(2}42{)( ⎰⎰∞+∞-∞+∞-+-=dxdy xe X E D y x )()()(8.对总体的某个参数做检验,取显著性水平α,如果原假设正确,但由于样本的随机性做出拒绝原假设的决策,因而犯了错误,这类错误称第一类错误,也称“弃真错误”,犯这类错误的概率是_________.(A )α-1 (B) 21α-(C) α (D)α19.设n X X ,,1 是来自随机变量X 的样本∑=--=ni i X X n S 122)(11(样本方差),则下列结论正确的是_______. (A))()(2X D S E = (B) )(1)(2X D n nS E -=(C) )(1)(2X D nn S E -= (D) )()1()(22X D n nS E -= 10.采用包装机包装食盐,要求500g 装一袋. 已知标准差g 3=σ,要使食盐每袋平均重量的95%的置信区间长度不超过4.2g ,则样本容量n 至少为_______.(已知u 0.025=1.96)(A ) 4 (B) 6 (C) 8 (D) 10三、不同的两个小麦品种的种子混杂在一起,已知第一个品种的种子发芽率为90%,第二个品种的种子发芽率为96%,并且已知第一个品种的种子比第二个品种的种子多一倍,求:(1)从中任取一粒种子,它能发芽的概率;(2)如果取到的一粒种子能发芽,则它是第一个品种的概率是多少?(8分)四、设随机变量X 和Y 相互独立且)5,3(~N X , )19,3(~-N Y . 试求 Z =3X –2Y –15的概率密度. (8分)五、从一台车床加工的成批轴料中抽取15件,测量其椭圆度(设椭圆度服从正态分布),(2σμN ) ,计算得2s =0.025,问该批轴料的椭圆度的总体方差2σ与规定的方差 04.020=σ 有无显著差别?(最后结果保留3位小数),(α =0.05). (8分) (已知220.9750.025(14) 5.629,(14)26.119χχ==,220.9750.025(15) 6.262,(15)27.488χχ==)六、设某种零件长度X 服从正态分布),(2σμN ,现随机从该批零件中抽取10件,测得其样本均值)(05.10cm X =,样本标准差)(2415.0cm S =,求μ的置信度为95%的置信区间(最后结果保留3位小数). (8分) (已知2281.2)10(,2622.2)9(025.0025.0==t t ,2281.2)10(,8331.1)9(025.005.0==t t )答案:一、填空1.1-p ;2.j i j i p p p ••⨯=;3.,/0nS X t μ-= ;4.)1 ,0(N ;5.1494. 6.λ-e ;7. 21二、单项选择题 题号 12345678910答案C D C B A D C C A C三、A i (i =1,2)分别表示取到的一粒种子是第一,二品种的事件B =“取到的一粒种子能发芽”则()()%90,3211==A B P A P ,()()%96,3122==A B P A P 由全概率公式 ()()()2121230.90.960.92=3325i i i P B P A P B A ===⨯+⨯=∑由贝叶斯公式 ()()()()⎪⎭⎫⎝⎛≈===65.0231592.060.0111B P A B P A P B A P 四、因为)3,2(~N X , )6,3(~-N Y ,且X 与Y 独立,故X 和Y 的联合分布为正态分布,X 和Y 的任意线性组合是正态分布.即 Z ~N (E (Z ), D (Z ))015)(2)(3)(=--=Y E X E Z E 121)(4)(9)(=+=Y D X D Z D Z ~N (0, 112)则Z的概率密度函数为 2242(),()x f x x -=-∞<<+∞五、显著性水平 α = 0.05,检验假设04.0:;04.0:20212020=≠==σσσσH H22201140.0258.750.04n s χσ-⨯===()由于()22220.0250.97521(14) 5.6298.7526.119(14)n αχχχχ-==<=<=故接受H 0 即认为该批轴料的圆度的总体方差与定的方差0.04 无显著差别. 六、当2σ未知时,μ的置信度为0.95的置信区间为22(1),(1)X n X n αα⎛⎫-- ⎪⎝⎭10.05 2.2622,10.05 2.2622⎛⎫=+ ⎪⎝⎭(9.877,10.223)=。
2012,2013,2014年概率论与数理统计期末考试试卷答案

2012年概率论与数理统计期末考试试卷一. 填空题(每题5分, 共30分)1. 设随机变量X 服从正态分布(1,4)N , 已知(1)a Φ=, 其中()x Φ表示标准正态分布的分布函数, 则{13}P X -≤≤=21a -.解: 111311{13}11(1)(1)2222(1)(1(1))2(1)12 1.X X P X P P a -----⎧⎫⎧⎫-≤≤=≤≤=-≤≤=Φ-Φ-=⎨⎬⎨⎬⎩⎭⎩⎭Φ--Φ=Φ-=- 2. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = 0.1 . 解: ()()()()0.2P AB P A P B P A B =+-+=,()()()0.30.20.1P AB P A P AB =-=-=.3. 设随机变量,X Y 的数学期望分布是-2, 1, 方差分别是1, 4, 两者相关系数是—0.5, 则由契比雪夫不等式估计(|2|6)P X Y +≥≤ 13/36 . 解: 由已知条件得, (2)2220E X Y EX EY +=+=-+=,(2)4()2(,2)4()4(,)D X Y DX D Y Cov X Y DX D Y Cov X Y +=++=++4()41164(1/2)213DX D Y ρ=++=++⋅-⋅=, 所以, 13(|2|6)36P X Y +≥≤. 4. 已知,X Y 是具有相同分布的两个独立随机变量, 且1(1)(1)2P X P Y =-==-=, 1(0)(0)2P X P Y ====, 则()P X Y == 1/2 . 解:()(0,0)(1,1)1(0)(0)(1)(1).2P X Y P X Y P X Y P X P Y P X P Y ====+=-=-===+=-=-=5. 设1216,,,X X X 是来自2(0,)N σ的样本, S 是样本均方差, 则1614ii XS=∑服从t (15).解: 由定理3(15)t ,161611(15)4i ii X X X t S ===∑∑.6. 设1281,,,(,9)X X X N μ, 要检验假设0:0H μ=, 则当0H 为真时, 用于检验的统计量3X 服从的分布是(0,1)N . 解: 由定理1(0,1)X N , 3(0,1)X N .二. 解答下列各题:7. (10分)已知男人中色盲人数所占比例是5%, 女人中色盲人数所占比例是0.25%. 现从男女人数各占一半的人群中随机选取一人, 求该人恰是色盲者的概率.解: 设A =“该人是色盲”, 1A =“该人是男人”, 2A =“该人是女人”.由全概率公式知, 2111()()()0.050.0025 2.625%22i i i P A P A P A A ===⨯+⨯=∑.8. (10分) 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i X ⎧=⎨⎩第次取出球第次取出白球,i 红i 1,2i =. 实在不放回模式下求12,X X 的联合分布律,4/7 3/7 j P因为1212{0,0}{0}{0}P X X P X P X ==≠==, 所以12,X X 不独立. 9. (10分)设随机向量(,)X Y 的联合概率密度函数为3,01,,(,)20,xx x y x f x y ⎧<<-<<⎪=⎨⎪⎩其他,求,X Y 的边缘概率密度函数. 解: 当01x <<时, 23()(,)32xX x xf x f x y dy dy x +∞-∞-===⎰⎰.所以,23,01,()0,.其他X x x f x ⎧<<=⎨⎩当10y -<<时, 1233()(1)24Y y x f y dx y -==-⎰;当01y ≤<时, 1233()(1)24Y y x f y dx y ==-⎰; 所以,23(1),11,()40,.其他Y y y f y ⎧--<<⎪=⎨⎪⎩10. (10分) 设,X Y 相互独立, 且(1)(1)0P X P Y p ====>, (0)(0)10P X P Y p ====->,令1,0,X Y Z X Y +⎧=⎨+⎩当为偶数,当为奇数,求Z 的分布律.解:{0}{0,1}{1,0}{0}{1}{1}{0}2(1)P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===- 22{1}{0,0}{1,1}{0}{0}{1}{1}(1).P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===+- 所以, Z11. (10分12,,X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39ii X N =∑. 所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 12. (10分)设总体X 的密度函数为36(),0,(;)0,其他,xx x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ.解: 依题意,306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=. 4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.13. (10分) 某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=. 解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)X U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.2013年概率论与数理统计期末考试试卷一. 填空题(每题4分, 共20分)1. 设随机变量,X Y 相互独立, 且同分布, {1}{1}0.5P X P X =-===,{1}{1}0.5P Y P Y =-===, 则{}P X Y == 1/2 .解: 1{}{1,1}{1,1}{1}{1}{1}{1}.2P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===2.22x edx +∞-=⎰2. 解:因为221x +∞--∞=⎰,所以22xe +∞--∞=⎰即2202x e +∞-=⎰. 3. 设连续型随机变量X的密度函数22()2()x f x μσ--=, x -∞<<+∞, 则EX =μ, DX =2σ. 解:因为22()2()x X f x μσ--=, 所以2(,)X N μσ.4. 设总体(3,10)XN , 12100,,,X X X 为来自总体X 的简单随机样本, 则10011100i i X X ==∑1~(3,)10X N . 解: 由定理1知, 1~(3,)10X N . 5. 设袋中有8个红球, 2个黑球, 每次从袋中摸取一个球并且不放回, 那么第一次与第三次都摸到红球的概率是 28/45 . 解: 记i A =“第i 次摸到红球”, 1,2,3i =.13131223123123()()(())()P A A P A A P A A A A P A A A A A A =Ω=+=+123123121312121312()()()()()()()()P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+876827281098109845=⨯⨯+⨯⨯=. 二. 解答题6. (12分) 某矿内有甲乙两个报警系统, 单独使用时甲的有效性为0.92, 乙为0.93, 且在甲失灵的条件下乙有效的概率为0.85, 求意外发生时, 甲乙至少有一个有效的概率, 以及乙失灵时甲有效的概率. 参考练习册反12第4题. 解: 设A =“甲有效”, B =“乙有效”.题目转为: 已知()0.92,()0.93P A P B ==, {}0.85P B A =, 求()P A B +和{}P A B . 因为()()()(){}0.851()1()()P BA P B A P B P AB P B A P A P A P A --====--, 所以, ()0.862P AB =.所以, ()()()()0.988P A B P A P B P AB +=+-=;()()()()0.920.862{}0.831()1()10.93()P AB P A B P A P AB P A B P B P B P B ---====≈---. 7. (12分)设连续型随机变量X 的分布函数为()arctan ()F x a b x x =+-∞<<+∞, 求常数,a b 以及随机变量X 的密度函数. 解: 根据分布函数的性质得()1,2()0,2b F a b F a ππ⎧+∞=+=⎪⎪⎨⎪-∞=-=⎪⎩ 所以1,21.a b π⎧=⎪⎪⎨⎪=⎪⎩X 的密度函数为21()(1)f x x π=+.8. (14分) 设某种类型人造卫星的寿命X (单位: 年)的密度函数为21,0,()20,0.xe xf x x -⎧>⎪=⎨⎪≤⎩若2颗这样的卫星同时升空投入使用, 试求:(1) 3年后这2颗卫星都正常运行的概率;(2) 3年后至少有1颗卫星正常运行的概率. 参考教材P37例3 解: 1颗卫星3年内正常运行的概率为32231{3}2x P X e dx e +∞--≥==⎰. 记Y 表示2颗卫星在3年内正常运行的颗数, 则32(2,)Y B e -.(1) 3年后这2颗卫星都正常运行的概率2332{2}P Y e e --⎛⎫=== ⎪⎝⎭;(2) 3年后至少有1颗卫星正常运行的概率232{1}1{0}11P Y P Y e -⎛⎫≥=-≥=-- ⎪⎝⎭.9. (14分) 设某高校英语考试成绩近似服从均值为72的正态分布, 96分以上的考生占总数的2.3%(已知满分为100, 合格线为60), 试求: (1) 考生成绩在60-84之间的概率;(2) 该校考生的合格率.((2)0.977,(1)0.8413)Φ=Φ= 解: 设某高校英语考试成绩为X , 则2(72,)XN σ.由题意知{96}0.023P X ≥=, 即7296720.023X P σσ--⎧⎫≥=⎨⎬⎩⎭, 所以241()0.023σ-Φ=, 即24()0.977(2)σΦ==Φ.因此, 12σ=.(1) 考生成绩在60-84之间的概率6072728472{6084}(1)(1)2(1)10.6826;121212X P X P ---⎧⎫≤≤=≤≤=Φ-Φ-=Φ-=⎨⎬⎩⎭(2) 合格率726072{60}1(1)(1)0.8413.1212X P X P --⎧⎫≥=≥=-Φ-=Φ=⎨⎬⎩⎭10. (14分) 一工厂生产的某种电池的寿命服从正态分布(25,100)N , 现在从这种电池中随机抽取16个, 测得平均寿命为23.8小时, 由此能否断定: 在显著性水平为0.05α=时, 该种电池的平均寿命小于25小时. ((1.96)0.975,(1.64)0.95)Φ=Φ= 解: 设X 为电池寿命, 则~(,100)X N μ.(1)假设00:25H μμ≥=; (2)取统计量~(0,1)X U N=;(3) 由0.05α=, 确定临界值 1.64u α-=-, 使得{}0.05P U u α<-=; (4)由样本均值23.8x =, 得统计量U 的观察值00.48u ===-.(5)因为00.48 1.64u =->-,此时没有充分理由说明小概率事件{ 1.64}u <-一定发生. 所以接受原假设0H , 认为这种电池的平均寿命不小于25小时. 注: 原假设不能设为00:25H μμ<=,此时μ取不到0μ,统计量X U =就没有意义了!11. (14分)设总体X 是离散型随机变量, 其所有可能的取值为0, 1, 2, 已知2(1)EX θ=-, 2{2}(1)P X θ==-, θ为参数. 对X 取容量为10的样本如下 1, 1, 0, 2, 2, 1, 1, 1, 0, 2.求参数θ的矩估计和极大似然估计.解:(1) 由2(1)X θ=-, 得θ的矩估计量为12Xθ=-; 结合 1.1x =, θ的矩估计值为10.452x θ=-=.(2) 构造似然函数为11912101210(){1,1,,2}{1}{1}{2}32(1)L P X X X P X P X P X θθθ=========-,取对数ln ()ln3211ln(1)9ln L θθθ=+-+,求导数(ln ())11901d L d θθθθ=-+=-, 得θ的极大似然估计值为920θ=.2014年概率论与数理统计期末考试试卷一. 填空题(共40分, 每空5分)1. 设~(,)X B n p , ~(,)Y B m p , 且X 与Y 独立, 则X Y +~(),(p m n B +)分布;2. 设2~(,)X N μσ, 则X 的密度函数()f x =(222)(21σμσπ--x e);3. 设总体X 的方差为2σ, 12,,,n X X X 为样本, X 为样本均值, 则期望211()n i i E X X n =⎛⎫-= ⎪⎝⎭∑(21σn n -); 4. 设12,,,n X X X 为样本, 则统计量211n i i X n =∑的名称为(样本2阶原点矩);5. 设总体~(,1)X N μ, 12,,,n X X X 为来自该总体的样本, 则21()ni i X μ=-∑服从()(2n χ)分布;6. 一批产品中有5个正品, 3个次品, 从中任取2个, 恰有1个次品, 1个正品的概率为(2815281315=C C C );7. 样本的特性是(独立、同分布且与总体分布相同);8. 在假设检验中, 可能犯两类错误. 其中第一类错误也称为弃真, 弃真的确切含义为(当原假设是真的时,拒绝了它). 二. 计算题(60分, 每题10分)1. 假设某贪官收受一次贿赂而被曝光的概率为0.05, 到目前为止共收受80次贿赂, 假设案发前每次收受贿赂是否曝光相互独立. 试用概率说明 “多行不义必自毙”. (取20190.3520⎛⎫≈ ⎪⎝⎭)解:记i A 为事件“第i 次收受贿赂而被曝光”(1,2,,80i),---------------------2 于是案发的概率为 )(801∑=i i A P ------------- ------------- -----------------4 )(1)(1801801∏∏==-=-=i i i i A P A P----------------------6985.035.01)2019(195.0148080=-=-=-=。
数理统计期末复习题答案

数理统计期末复习题答案一、选择题1. 以下哪项不是描述统计学的特点?A. 描述性B. 推断性C. 数量化D. 客观性答案:B2. 正态分布的均值和方差之间的关系是:A. 均值是方差的两倍B. 均值是方差的平方根C. 均值和方差无关D. 均值是方差的平方答案:C3. 以下哪个选项不是参数估计的目的?A. 估计总体参数B. 估计样本参数C. 估计总体分布D. 估计总体特征答案:B4. 点估计与区间估计的区别在于:A. 点估计给出一个值,区间估计给出一个范围B. 点估计给出一个范围,区间估计给出一个值C. 点估计和区间估计都给出一个值D. 点估计和区间估计都给出一个范围答案:A5. 以下哪个不是假设检验的基本步骤?A. 建立假设B. 选择检验统计量C. 确定显著性水平D. 计算样本均值答案:D二、填空题1. 样本均值的期望等于总体均值,这是_______的性质。
答案:无偏性2. 总体方差的估计量是样本方差乘以_______。
答案:n/(n-1)3. 假设检验中的两类错误是_______和_______。
答案:第一类错误;第二类错误4. 置信度为95%的置信区间意味着,如果重复抽样,大约有95%的置信区间会包含总体参数。
5. 相关系数的取值范围是[-1, 1],其中1表示_______,-1表示_______。
答案:完全正相关;完全负相关三、简答题1. 请简述中心极限定理的内容。
答案:中心极限定理指出,无论总体分布如何,只要样本量足够大,样本均值的分布将趋近于正态分布。
2. 什么是独立同分布的随机变量序列?答案:独立同分布的随机变量序列指的是一系列随机变量,它们相互独立,且每个随机变量都服从相同的分布。
3. 请解释什么是总体和样本,并给出它们在统计分析中的作用。
答案:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
在统计分析中,由于直接研究总体往往不现实或成本过高,我们通过研究样本来推断总体的特征。
《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。
数理统计期末考试试题答案

1. Let be a random sample from the distribution(a) ( 8 %) Find the method of moment estimates of and.(b) ( 7 %) Find the MLE of, assuming is known.(c) ( 7 %) Giving, find the Cramer-Rao lower bound of estimates of.2. ( 8 %) Giving, find the UMVUE of.3. Suppose that are iid ~,. Let.(a) ( 5 %) Show that is a sufficient statistic for.(b) ( 5 %) Let. Show that is an unbiased estimate of.4. (10%) Find the UMVUE of.5. Let be a random sample from a, , distribution. Consider testing vs.(a) (10%) Find a UMP level test,.(b) ( 7 %) For, the test rejects, if.Find the power function of the test.(c) ( 8 %) For, the test rejects, if.6. Evaluate the size and the power of the test.7. (10%) Let be iid distribution, and let the prior distribution of be a distribution, ,.Find the posterior distribution of.8. Let be a random sample from an exponential distribution with mean,.(a) ( 5 %) Show that is a sufficient statistic n for.(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR. ( 5 %) Find a UMP level test of vs by the Karlin-Rubin Theorem shown below. [Definition] A family of pdfs or pmfs has a monotone likelihood ratio, MLR, if for every, is a monotone function of.[Karlin-Rubin Theorem] Suppose that is a sufficient statistic for and the pdfs or pmfs has anon-decreasing monotone likelihood ratio. Consider testing vs. A UMPlevel test rejects if and only if, where.1. 數理統計期末考試試題答案2. (a) Since andJLet andJ・Furthermore, , ,The MME of.and are,(b)Let.Furthermore,JSo, is the MLE of.(c)CRLB =(c) Since, is an unbiased estimate of, andCRLB, is the UMVUE of.[Or]Given, is an exponential family in.is a sufficient statistic for.3. Since is an unbiased estimate of and a function of sufficient statistics, by Rao-Blackwell Theorem, is the UMVUE of.4. (a)Let and. By factorization theorem, is a sufficient statistic for.[Or]is an exponential family is a sufficient statistic.(b), so is an unbiased estimate of.(c) If, , are iid ~, then.5. By Rao-Blackwell Theorem, is the UMVUE of.6. (a) By Neyman-Pearson Lemma, a UMP level test rejects if and only if.Since, a UMP level test rejects if and only if, where is the smallest integersatisfying.[Or] is sufficient for and.By the corollary of Neyman-Pearson Lemma, a UMP level test rejects if and onlyif.(b)J(c) The size of this test is The power of this test is7. Since is sufficient for and.; and8. The posterior distribution of is.9. (a)Let and. By factorization theorem, is a sufficient statistic for.[Or]is an exponential family. is a sufficient statistic.Since is an unbiased estimate of and a function of sufficient statistics, by Rao-Blackwell Theorem, is the UMVUE of.(b),If is an increasing function of,Hence of has MLR.(c),If is increasing in. Hence of has an MLR.By Karlin-Rubin Theorem, the UMP size test rejectingif, where satisfies that; i.e.,.Word是学生和职场人士最常用的一款办公软件之一,99.99% 的人知道它,但其实,这个软件背后,还有一大批隐藏技能你不知道。
12-13II 概率论与数理统计试卷(A)64学时参考答案

| | | | | | | |装| | | | |订| | | | | |线| | | | | | | |防灾科技学院2012~2013年第二学期期末考试概率论与数理统计试卷(A)参考答案与评分标准使用班级本科64学时班答题时间120分钟一、填空题(本大题共7小题,每题3分,共21分)1、已知(),(),P B b P AB c==且b c>,则()P B A-=b-c ;2、一部4卷的文集随机地排放在书架上,卷号恰好是自左向右或自右向左的呈1、2、3、4排列的概率是1/12 ;3、若6.0)(,4.0)(,5.0)(===BAPBPAP ,则=)(ABP0.6 ;4、根据历史地震资料分析,某地连续两次强震之间时间间隔的年数X是一随机变量,其分布函数为0.11,0,()0,0.xe xF xx-⎧-≥=⎨<⎩现在该地刚发生了一次强震,则今后三年内再次发生强震的概率为0.31e--;5、本次考试共有7个选择题,每题有四个选项,其中只有一个为正确选项。
同学甲一题都不会,遂决定采取随便“蒙”的方法选答案。
若以X表示该同学“蒙”对答案的题数,则()E X= 7/4 ;6、设随机变量X的方差为2,则根据切比雪夫不等式有估计≤≥-})(E{2XXP____1/2____;7、设总体X服从参数10=λ的泊松(Poisson)分布,现从该总体中随机地选出容量为20的一个样本,则该样本的样本均值X的方差()D X= 1/2 ;二、单项选择题(本大题共7小题,每题3分,共21分)8、设A B C、、为三个事件,则事件“A B C、、都不发生”可表示为( C )(A) ABC;(B) 1ABC-;(C) A B C;(D) A B C⋃⋃.9、设()0.8,()0.7,(|)0.8,P A P B P A B===则下列结论正确的是(A )(A) A与B相互独立;(B) A与B互斥;(C) B A⊃;(D) ()()()P A B P A P B⋃=+.10、若X服从标准正态分布)1,0(N,则)1|(|>XP=(B )(A) 1)1(2-Φ;(B) )]1(1[2Φ-;(C) )1(2Φ-;(D) )1(21Φ-.11、设二维离散型随机变量(,)X Y的联合概率分布为则c= ( A )(A) 0;(B)16;(C)112;(D)124.12、将一枚硬币重复掷n次,以X和Y分别表示正面朝上和反面朝上的次数,则X和Y的相关系数为( A )(A) -1 ;(B) 0;(C) 1/2;(D) 1 .13、设样本4321,,,XXXX为来自总体)1,0(N的样本,243221)(XXXCXY+++=,若Y服从自由度为2的2χ分布,则=C( B )(A) 3;(B) 1/3;(C) 0;(D) -3 .14、设21θθ,是参数θ的无偏估计、)()(21θθDD=且相互独立,以下估计量中最有效的是( D ))(A21θθ-;)(B21θθ+;)(C213231θθ+;)(D212121θθ+.三、解答题(本大题共6小题,每题7分,共42分)15、据美国的一份资料报导,在美国总的来说患肺癌的概率约为0.1%,在人群中约有20%是吸烟者,他们患肺癌的概率约为0.4%,试求: (1)不吸烟者患肺癌的概率是多少?(2)如果某人查出患有肺癌,那么他是吸烟者的可能性有多大? 解:设A “吸烟”,C=“患肺癌”,则 P()0.001,()0.2,(|)0.004C P A P C A === ……………………(2分) 于是(1) 由全概率公式得P C P C A P A P C A P A ()()()(|)()即 0.0010.0040.2(|)0.8P C A =⨯+⨯ ……………………(2分) 得(|)0.00025P C A = ……………………(1分) (2) 由贝叶斯公式得020004080001P C A P A P A C P C ()(..().(). ……………………(2分)16、设随机变量X 的分布函数为011x F x x x e A xe ,,()ln ,,,.试求:(1)常数A ;(2)X 的概率密度f x ();(3)522032P X P XP X(),(),().解:(1)()1F +∞= 得1A = ……………………(2分) (2)11xx e f x ,,(),.其他 ……………………(2分)(3)(2)(2)(2)ln 2P X P X F <=≤==; (03)(3)(0)1P X F F <≤=-=555224(2)()(2)ln P X F F <<=-= ……………………(3分)17、设随机变量X 具有概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,,,,,)(其他020410121x x x f X 令2Y X =,求随机变量Y 的概率密度()Y f y .解: 2()()()Y F y P Y y P X y =≤=≤…………………(1分)当0y <时,()0Y F y =………………(1分) 当01y ≤<时,014()(Y Fy P Xdy =≤≤=+=⎰1分)当14y ≤<时,12()(Y F y P X =≤≤=;…………………(1分) 当4y ≤时,()1Y F y =; ………………………(1分)所以,0,0,,01,()1,14,214.Y y y Fy y y <⎧⎪⎪≤<⎪=≤<⎪≤⎩,01,()(),14,0,.Y Y y f y F y y <<⎪'==<<⎪⎩其他……(2分) 注:能写出()Y F y 即可给分,分布函数求解过程中步骤不全可酌情给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首都师范大学2012-2013学年第一学期
期末考试试卷
考试科目:数理统计 试卷类型:A 卷 考试时间:120分钟
院 系 级 班
姓名 学号
一、填空(每空2分,共13分)
1、设1,......n X X 为来自总体X 的简单随机样本,则1,......n X X 满足
(1) ; (2)
2、若总体2~(,)X N μσ,2~(,)X N μσ为来自总体X 的样本,则
~X ;
~ 。
、1234,,,X X X X 为来自总体X 的样本
123412341234()/4
(234)/10(23)/6
X X X X X X X X X X X X μμμ∧
∧
∧
=+++=+++=+++
均为总体μ的估计,则无偏估计为 ,
在无偏估计中最有效的是
14分)设总体X 在[0, θ]上服从均匀分布,θ未知,1,......n X X
是一个样本,试求θ的矩估计和最大似然估计。
三、(10分)某钢厂生产直径为6mm 的钢筋,当标准差≤0.05时为优等品,现在抽查了10个样品,得到样本均值 6.0X =,样本方差20.005S =,在显著水平0.05下,能够认为钢筋为优等品。
(222
0.05
0.050.05(9)16.919,(10)18.307,(11)19.675χχχ===) 四、(10分)用天平称量某物体的质量9次,得到均值为15.4X =(克),样本方差为0.01(克)已知天平称量结果为正态分布,试求该物体质量的置信水平为0.95的置信区间。
(0.0250.0250.0250.050.05(8) 2.306,(9) 2.262,(10) 2.228,(8) 1.86,(9) 1.833t t t t t =====) 五、(10分)为募集社会福利基金,某地方政府发行福利彩票,中彩者用摇大转盘的方法确定最后中奖金额。
大转盘均分为20份,其中金额为5万,10万,20万,30万,50万,100万的分别占2份,4份,6份,4份,2份,2份。
假定大转盘是均匀的,则每一点朝下是
100万的人数分别为2、6、6、3、3、0,试问大转盘是否均匀?(0.05α=)
(2222
0.01
0.010.010.01(1) 6.635,(2)9.21,(3)11.345,(4)13.277χχχχ====)
六、(10分)某中学选取了三个条件相仿的班级,由一位教师采用不同的教学方法进行教学试验。
一段时间后举行统一测验,然后由每
604.93A SS =,=852.8E SS 假定第i 班的测验成绩2i i ~i=X N μσ(,) (1,2,3)试问:三种教学方法
的效果是否有明显差异。
(0.05α=)
(0.050.050.0250.05(212) 3.89(312) 3.49,(213) 3.81,(313) 3.41F F F ====,
,,F ,,,)
七、(10分)1976-1977年美国弗罗里达州20个地区的杀人案中的被
色有关.(2222
0.01
0.010.010.01(1) 6.635,(2)9.21,(3)11.345,(4)13.277χχχχ====)
xx xy yy (1) 试建立y 对x 的回归直线; (2) 检验0H :b=0 vs 1:0H b ≠(0.05α=) (3) 当父亲的身高为175厘米,预测儿子的身高; (4) 当父亲的身高为175厘米,在置信水平0.95下,求其儿子的身
高的置信区间。
(0.0250.0250.0250.050.05(8) 2.306,(9) 2.262,(10) 2.228,(8) 1.86,(9) 1.833t t t t t =====) 九、(8分)淡水资源的匮乏限制了我国许多城市的经济发展。
为了节约用水,城市甲准备对自来水提价。
现在需要对每吨水提价0.5元还是0.8元进行随机抽样调查,为的是即达到积水目的,又不影响百姓的日常生活。
(1)用p 表示赞同提价0.5元的人口比例,为了得到p 的置信水平0.95的置信区间,且置信区间长度不超过0.04,应当随机抽样调查多少人?
(2)如果随机抽样调查的n=2500个人中有1668个人同意提价0.5元,计算p 的置信水平为0.95的置信区间。
(0.0250.050.051.96 2.262, 1.645z z ===,z )。