结构力学之三铰拱

合集下载

结构力学之三铰拱

结构力学之三铰拱

下面我们研究拱截面的受力情况。
QM
R
N
e
拱截面一般承受三种内力:M、Q、N。 若用合力 R 代替截面所有内力,则其偏心距为e = M/N,显
然我们可以求出各个截面的合力大小、方向和作用点。
P1 P2
作用线
G
F
rD
D
k2
C
k1
A
RA
RA
P1
D 大小和方向 o 23
P2
RB
P3
P3
(1)确定各截面合力的
q=2kN .m
P=8kN
例 1、三铰拱及其所受荷载如
y
34
5
图所示拱的轴线为抛物线方程
2 1
2
y2
0
6 7 8
f=4m
y
4f l2
xl x
计算反力并绘
x
制内力图。
A
7.5kN
x2=3m 6m
VA 11kN
B
3m
H 7.5kN (1)计算支座反力
6m
VB 9kN
VA
VA
2
698 12
3
例3、设三铰拱上承受填土荷载,填土表面为一水平面,试求拱的合理轴线,设
填土的容重为,拱所受的分布荷载为 q qC y。
[解]由拱截面弯矩计算式 M M Hy 在本例的座标系中可表达为:
M M H y M H f y 0
M y f
H
因事先 M 得不到,故改用q(x)和y(x)表示:
§5-3 拱的合理轴线 在固定荷载作用下,使拱处于无弯矩状态的轴线称为合理 轴线。由上述可知,按照压力曲线设计的拱轴线就是合理轴线。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。

结构力学5三铰拱课件

结构力学5三铰拱课件
拱架搭设
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件

CONTENCT

• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动

结构力学-三铰拱

结构力学-三铰拱

曲梁

拱 (arch)
一、概述
2.拱的受力特点 拱的受力特点 拱
曲梁
P
拱比梁中的弯矩小
拱 (arch)
一、概述
3.拱的分类 拱的分类
超静定拱
静定拱
两铰拱
三铰拱 拉杆 拉杆拱
高差h 高差
超静定拱
无铰拱 斜拱
拱 (arch)
一、概述
4.拱的有关名称 拱的有关名称 顶铰 拱肋 拱趾铰 跨度 拱肋 拱趾铰 矢高
1 l l a1 b1 不再顶部,或 铰C不再顶部 或 不再顶部 FH = [Y A × − P1 ( − a1 )] f 2 2 0 b a2右边的结2 YB0 YA不是平拱 不是平拱,右边的结 l l
M c0 = [Y A0 × − P1 ( − a1 )]
YB=YB YA=YA0 XA=XB =FH
二、三铰拱的数解法 ----支反力计算 支反力计算 P1 三铰拱的竖向反 P2 C 力与其等代梁的 XB 反力相等 水平反 f FH 反力相等;水平反 A B 力与拱轴线形状0 XA Mc YA l/2 l/2 无关.荷载与跨度 无关 荷载与跨度 YB YA l 一定时, 一定时,水平推 YA0 等代梁 P1 P2 A C 力与矢高成反比. 力与矢高成反比 B 请问:有水平荷载 有水平荷载,或 请问 有水平荷载 或
32kN.m C C 32kN.m
8m B 4m 4m 2kN 2kN A 4m 4m
8m B 2kN
A 2kN
32kN.m
16kN.m
16kN.m
16kN.m
水平反力的作用:使相应水平代梁弯矩 水平反力的作用:使相应水平代梁弯矩MC0 降至为零。 降至为零。

结构力学 三铰拱

结构力学 三铰拱

4 4 yk 2 4(16 4) 3m 求MK 16 MK 0 MK 12.5 4 10 3 20kN.m(下拉)
求MJ
yJ 3m
M
J
0
M J 7.5 4 10 3 30 30 0
3. 求FQ、FN的计算公式
拱轴任意截面D切线与水平线夹角为φ。 相应代梁中, F 设为正方向。
FP1=15kN K FHA A yk 4m
l/2
C f=4m
MC 0
FVA
4m
l l FVA FHA f FP1 0 2 4 0 MC 1 l l FHA ( FVA FP1 ) () f 2 4 f
0 上式中,M C 为代梁C截面弯矩。
M FHB () f
0 ND右 QD右 sin D H cosD 12 0.555 10.5 0.832 15.4kN
重复上述步骤,可求出各等分截面的内力,作出内力图。
三、三较拱的合理轴线
在给定荷载作用下,三铰拱任一截面弯 矩为零的轴线就线为合理拱轴。 三铰拱任一截面弯矩为 M M FH y
超静定拱
拉杆拱 静定拱
拱顶
C
拱轴线 拱高 f
B
拱趾
A
起拱线 跨度 l
f l
f
高跨比
l 通常 f l 在1-1/10之间变化,f 的值对内力有 很大影响。
工程实例
拱桥 (无铰拱)
超静定拱
世界上最古老的铸铁拱桥(英国科尔布鲁克代尔桥)
万县长江大桥:世界上跨度最大的混凝土拱桥
二、三铰拱的计算
A 12.5kN K左 Fº =12.5kN QK左 A 12.5kN

三铰拱

三铰拱

M
O
0 FN ( FN d FN ) 0
可得 d FN 0 合理拱轴线方程为

FN q
FN =常数
d 2 qd 0
沿s-s 写出投影方程为
2 FN sin sin d 2
圆弧线
因 d 极小
d 2
返 章
M
0
FH
合理拱轴线方程
例4-2 试求图a所示对称三铰拱在图示荷载作用下的合理拱轴 线。
解:相应简支梁(图b)的弯矩方程为
M
0

1 2
qx ( l x )
0
三铰拱的推力为
FH
0
MC f
4f l
2

ql
2
8f
合理拱轴线方程为
y
M
FH

x (l x )
北京建筑工程学院
三铰拱合理拱轴线形状的确定
三铰拱
14kN m
A
50kN
B
C
75.5kN 58.5kN
175.5 201
M图(kNm)
与三铰拱相应弯矩相比,要大 很多。
北京建筑工程学院
结构力学教研室
三铰拱
计算图(a)斜拱的支反力 时为避免解联立方程,可将反力
分解如图(b)。
由平衡条件可得 (a
F AV F
0 AV
, F BV F
0
FS F AV F1
0 0
轴力以压力为正
北京建筑工程学院
结构力学教研室
三铰拱
三铰拱的内力不但与荷载及三个铰的位置有关,而 且与拱轴线的形状有关。 由于水平推力的存在,拱的弯矩比相应简支梁的弯矩要 小。 三铰拱在竖向荷载作用下轴向受压。

结构力学 第三章 三铰拱

结构力学 第三章 三铰拱

B
②剪力、轴力计算公式
FQFQ 0co-sFHsin
F0yA φ FP1
M0
F0yB
FNFQ 0sin-FHcos
KM
FN
F
0 Q
—相应简支梁对应截面上的剪力
φ φ—截面处拱轴切线倾角,在左半拱
FH A
y φ FQ
为正(右半拱为负)
φ
x
FVA φ
◆ 拱截面轴力较大,且一般为压力
例3-5 作图示三铰拱的内力图,拱轴为抛物线,其方程为
1kN/m C
f=4m x
FQ0L 1kN
FV A l1=8m
4m
l=16m
4kN
D
B FH B
4m
FV B
FQ0R 5kN
1kN/m
A
C
4kN B
F0yA
F0yB
F QLF Q 0L co-sFHsin 1 0 .89 6 ( 4 0 .44 ) 4 1 .7 7k 8 2 N
F Q RF Q 0c R o -sF Hsin 5 0 .8 9 6 ( 0 4 .44 ) 4 1 7 .7k 2 8N 9
四 三铰拱的合理拱轴线(reasonable axis of arch) 1 合理拱轴线的概念 在给定荷载作用下,使拱处于无弯矩状态的拱轴线,称 为拱的合理拱轴线
2 合理拱轴线的确定 根据荷载作用下,任一截面弯矩为零条件确定。如竖向 荷载作用下的三铰拱:
MM0FHy0 y M0
FH
通过由调此整可拱见的,轴当线拱,上使荷拱载在为确已定知荷时载,作只用要下求各出截相面应上简的支弯梁 矩值的为弯零矩,方这程时,拱除截以面支上座只水有平通推过力截FH面,形即心可的求轴得向合压理力拱作轴 用,的其轴压线应方力程沿截面均匀分布,此时的材料使用最为经济

结构力学 三铰拱

结构力学 三铰拱

9 / 13
À
第四章 静定拱
试求图示对称三铰拱在均布荷载作用下的合理拱轴线
q y A x q f C B
FH=ql2/8f M0=qlx/2-qx2 /2 =qx(l-x)/2 y=M0/FH=4fx(l-x)/l2
l
x
抛物线À
10 / 13
第四章 静定拱
荷载布置改变,合理拱轴亦 改变 荷载确定、拱脚位置确定, 则顶铰位置决定水平反力, 因此,有无限多个相似图形 可作合理拱轴 三铰位置确定,合理拱轴唯 一确定 设计时只能根据主要荷载选 择近似合理拱轴
第四章 静定拱 §4-1 概述
三铰拱(three-hinges arch)的构成
拱顶 拱轴线 拱高 拱址 起拱线 拱跨 拱址
1 / 13
ÀБайду номын сангаас
第四章 静定拱
1)拱的分类
三铰拱 拉杆拱1
两铰拱
无铰拱
拉杆拱2
斜拱
2 / 13
À
第四章 静定拱
2)拱的受力特点
FP
曲梁
FP • 在竖向荷载作用下 会产生水平推力。
6 / 13
À
第四章 静定拱
拱的内力图
− y ⎤⎧M ⎫ ⎧M ⎫ ⎡1 0 ⎪ 0⎪ ⎪ ⎪ ⎢ ⎥ ⎨FS ⎬ = ⎢0 cosϕ − sinϕ⎥⎨ FS ⎬ ⎪F ⎪ ⎢0 sinϕ cosϕ ⎥⎪ F ⎪ ⎦⎩ H ⎭ ⎩ N⎭ ⎣
0
由于拱轴线是弯曲的,所以内力图都是曲线形 的,内力图要通过逐点描图的方法绘制。

• 由于水平推力的存 在,使得拱内弯矩大 大减小。
3 / 13
À
第四章 静定拱 §4-2 三铰拱的计算

结构力学 三铰拱

结构力学  三铰拱
三铰拱
一、概述
(一)工程应用
赵州桥
永定河七号铁路桥(150m)
BEH办公大楼(78m)
菜园坝长江大桥建设方案
(二)拱结构类型
(三)拱的构造
高跨比(矢跨比): 拱高与跨度之比,即 f l 。 高跨比一般为1~1/10,常用1/4 ~1/6。 拱轴线的形状可以为抛物线、 圆弧曲线等。
(四)拱的特点(拱的共性,并非三铰拱特有)
1.提出公式的目的 (1)求三铰拱内力的方法:截 取 力 平 (2)遇到类似情况,可以直接用公式计算。 2.公式的说明 (1)适用范围:对称三铰拱,任意竖向荷载。 (2)公式中各参数的含义 (3)分析拱的内力特点
M K = M K − HyK
QK = QK cos ϕ K − H sin ϕ K
N K = QK sin ϕ K + H cos Βιβλιοθήκη K例三、合理拱轴线
(一)定义
合理拱轴线:在给定荷载作用下拱所有截面上只承受轴力,弯矩为零时的拱轴线。
(二)合理拱轴线的形状
MK = M − HyK = 0
0 K
M(x) = M0 (x) − Hy(x) = 0 ⇒ y(x) = M (x) / H
0
⇒ yK = M / H
0 K
0 H = MC f
1.曲杆
2.竖向荷载作用下有水平推力 在竖向荷载作用下产生水平推力的曲杆结构称为拱。 3.由于水平推力的存在,使M<M0(可以小到100%)。 4.内力一般有M、Q、N,许多情况下N是主要内力。
(五)拱的性能
1.拱比梁更能发挥材料的作用,适用于较大的跨度和荷载。 2.拱主要受压,便于利用抗压性能好而抗拉性能差的材料。 3.三铰拱给基础施加向外的推力,所以基础比梁的基础要大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式回顾
(1) 三铰拱支座反力计算公式为
FV A FV0 A
FV B FV0 B
FH
M
0 C
f
FHA A FVA
FP1 KC
yf x
FP2 B FHB
l/2
l/
FVB
l2
(2) 支座反力与 跨度l 和矢高 f(亦即三个铰的位置) 以及荷载情况有关,而与拱轴线形式无关。
(3) 推力 FH与矢高 f 成反比。拱越低,推力越大;如 果矢高 f → 0,则 FH → ∞,这时,三铰在一直线上, 成为几何可变体系。
M
0 C
f
(3)计算拱身内力
q
y FH
A FVA
C
x
f
钢l/2拉杆(拉力Fl/S2)
l
B
e1
FVB
须注意两个计算特点:一是要考虑偏心矩e1,
二是左、右半跨屋面倾角φ为定值。 于是,可参照式(4-6)写出拱身内力计算式为
M M 0 FS ( y e1)
FQ FQ0 cos FS sin FN FQ0sin FS cos
第五章 三铰拱 (three-hinged arch )
内容: 三铰拱的支座反力和内力,合理拱轴。
要求: 1、了解静定拱的合理拱轴线的概念; 2、理解静定拱的基本概念及基本特点; 3、掌握静定拱的反力及内力计算。
重点:静定拱反力、内力的计算。 难点:静定拱的内力计算。
§5-1 概述 一、实例——拱桥(Arch Bridge)
【讨论】对于如图所示的二次抛物线三铰拱:
(1) 当仅在左半跨或右半跨作用均布荷
q
载q时,其M图都是反对称的,如图所
示;而FQ图都是对称的。
仅在左半跨作用均布 荷载时的M图
仅在右半跨作用均布 荷载时的M图
仅在左半跨作用均布 荷载时的FQ图
仅在右半跨作用均布 荷载时的FQ图
(2) 显见,当全跨同时作用均布荷载q时,M图将为零,FQ图 也将为零(只须将相应内力图相叠加,即可得到验证),拱仅
M M 0 FS y
I
FCy
FP3
FCx
C
FQ FQ0 cos FS sin
F B
FS
FN FQ0sin FS cos
I
l/2
FVB
【例2】求图示三铰拱式屋架在竖向荷载作用下的支反力和内力。
解: (1) 计算支座反力
FH 0, FV A FV0A , F V B FV0B
(2)计算拉杆内力:FS
拱桥是承受轴向压力为主的拱圈或拱肋作为主要 承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。
赵州桥,建于隋大业(公元605-618)年间
世界上最古老的铸铁拱桥(1781年,英国科尔布鲁克 代尔桥)
云南人字桥(保罗 ·波登 )
• 学名:肋式三铰拱钢 梁桥
• 人字桥自1910年3月1 日通车至今为止,从 未影响过铁路线的畅 通,甚至没有更换过 一个零件,即便是百 年之后,现在的桥梁 工程师也为之惊叹
即 FH 0,而内力多了一个水平水平拉杆的三铰拱在竖向荷载作用下
的支座反力和内力。
FP1 FP2 I lCF FP3
解:该三铰拱由拉杆AB来 阻止支座的水平位移,因 此,拱的一个支座可改为 可动铰支座。相当简支梁
FH A
EC
D
f
F
B
FVA
拉杆
I
l/2
(3) 在竖向荷载作用下,梁的截面内没有轴力,而拱的截 面内轴力较大,且一般为压力(拱轴力仍以拉力为正、压 力为负)
三铰拱的内力图
1.画三铰拱内力图的方法 描点法。
2.画三铰拱内力图的步骤 1)计算支座反力 2)计算拱圈截面的内力(可以每隔一定水平距离取 一截面,也可以沿拱轴每隔一定长度取一截面)。 3)按各截面内力的大小和正负绘制内力图。
受轴向压力FN作用。
仅在左半跨作用均布 荷载时的M图
仅在左半跨作用均布 荷载时的FQ图
仅在右半跨作用均布 荷载时的M图
仅在右半跨作用均布 荷载时的FQ图
(3) 这种在给定荷载作用下,拱处于无弯矩状态的拱轴线,是三
铰拱最合理的拱轴线( reasonable axis of arch) 。
• 三铰拱的合理拱轴线计算公式:
注:
1)仍有Q=dM/ds 即剪力等零处弯矩达极值; 2)M、Q、N图均不再为直线; 3)集中力作用处Q 图将发生突变; 4)集中力偶作用处M 图将发生突变。
带拉杆的三铰拱和三铰拱式屋架的计算
受力特点:带拉杆的三铰拱的受力特点与平拱类似,不同的是,
带拉杆的三铰拱由于拉杆的存在,其水平方向不再有支座反力。
FP1 FP2
FH=0是其计算特点之一
A
C
DE
(2)计算拉杆内力
FV0A
l/2 l
FP3
F l/2
B
FV0B
取截面I-I之右为隔离体。
FCx I FCy FP3
由∑MC = 0,得
C F
FS
(FVB
l 2
FP
3
lCF
)/f
FS
MC0 f
FS
B
I
l/2
FVB
(3)计算拱身内力
在无拉杆三铰拱的内力计算式中,只须用FS去取代FH, 即可得出有水平拉杆拱身内力计算式为
三铰拱压力线的求解步骤
设三铰拱所承受荷载如图4-8a所 示,现作其压力线。
第一步,作合力多边形
• 第二步,确定各截面合力的作 用线。
• 第三步,确定压力线 多边形AHIJB是由拱各段的 合力作用线构成的,称为三 铰拱在所给荷载作用下的压 力多边形,简称压力线 。
压力线应通过A、B、C三 个铰的铰心。
压力线的用途
1、确定合理拱轴线。压力线即为三铰拱在 所给荷载作用下的合理拱轴线。 2、确定拱内弯矩不超过某一限值的拱轴线。 譬如,若要求拱的各个截面不出现拉应力, 则压力线应通过拱截面的核心。
关于压力线的求法,不再举例。
公式回顾
(1) 三铰拱的内力计算公式(竖向荷载、两趾等高):
M M 0 FH y
FQ FQ0 cos FH sin FN FQ0 sin FH cos (2) 由于推力的存在(前两式右边第二项),拱与相应简 支梁相比:其截面上的弯矩和剪力将减小。弯矩的降低, 使拱能更充分地发挥材料的作用。
l/2
FVB
l
如图所示
FP1 FP2
FP3
A
C
B
DE
F
FV0A
l/2
l/2
l
FV0B
(1)计算支座反力
由整体平衡条件∑Fx = 0、 ∑MB = 0和∑MA = 0,可分别求 得
FP1 FP2 I lCF FP3
FH A
EC
D
f
F
B
FVA
拉杆
I
l/2
l/2
FVB
l
FH 0, FV A FV0 A , F V B FV0B
宋卿体育馆(武汉大学)
建于1936年,采用 钢筋混凝土柱,屋 顶采用三铰拱钢架 结构 ,大跨度空间 和别具一格的山墙、 绿色琉璃瓦随三绞 拱变化转折
三铰拱受力特点:
(1)在竖向荷载作用下有水平反力H; (2)由拱截面弯矩计算式可见,比相应简支梁小得多; (3)拱内有较大的轴向压力N。
拱比梁能更有效的发挥材料作用,适用于较大跨度和 较重的荷载。由于主要受压,便于利用抗压性能好而抗拉 性能差的材料(砖、石、混凝土等)。但基础承受推力, 所以三铰拱的基础比梁的基础要大(桥梁),或需使用拉 杆拱(屋顶)。
瑞士人Robert Maillart(1872-1940)
他用砼创造了技术上适合其特性、视觉上耳目一新的新形式。共设计47座桥 梁,除过3座外,很多桥梁已经连续使用超过80年,几乎完好无损。结构形 式主要位三铰拱和桥面加劲拱。
Salginatobel Brige主跨90米,1930年建成。空腹 箱型三铰拱。他设计的最大跨度的桥,桥的壮丽 景色使它成为马拉尔最著名的设计
•由 •得
M M 0 Hy =0
y( x) M 0 ( x) H
上式表明,在竖向荷载作用下,三铰拱的合理拱轴 线的纵坐标y与简支梁弯矩图的竖坐标成正比。
关于合理拱轴线不再赘述。
三铰拱的压力线
• 定义:三铰拱任意截 面K上的内力M、Q、 N(图4-7b)有一合力 R,其作用点如图4-7a 所示。拱各个截面内 力的合力作用点的连 线,称为该拱在所给 荷载作用下的压力线
相关文档
最新文档