存贮论(存储论,库存论)
合集下载
第九章 存贮论

25 32 1 C (100 ) 100 1 32 9 346 100 2
最佳订货量为50 桶,最小费用为345元。
27
本章总结
课外作业: P243/9.9
28
t1
t
B R(t0 t1 )
15
第九章 存贮论
C 1 SC S 1 ( Rt S )C (t S ) T 3 1 0 2 0 2 R 2 R C1 2 C2 C3 S ( Rt 0 S ) 2 2R 2R
1 C1 2 C2 T ' [C3 S ( Rt0 S ) 2 ] t0 2R 2R T ' 1 C1 2 C2 1 2 2 [C3 S ( Rt0 S ) ] [C2 ( Rt0 S )] 0 t0 t0 2R 2R t0 T ' 1 C1S C2 [ ( Rt0 S )] 0 S t0 R R
Q0
Q2
求解步骤
24
第九章 存贮论
1 Q0 C3 C (Q0 ) C1 K1 2 R Q0
I
1 Q1 C3 C (Q1 ) C1 K2 2 R Q1
II
1 Q C C III (Q2 ) C1 2 3 K 3 2 R Q2
Q0 Q1
Q2
1 Q C C II (Q0 ) C1 0 3 K 2 2 R Q0 1 Q2 C3 C (Q2 ) C1 K3 2 R Q2
该模型的基本假设为: (1)缺货费用为无穷大; (2)当存贮量降至0时,可 以立即得到补充; (3)需求是连续均匀的;
Q
斜率=-R
Q0
(4)每次订货量固定,订购
费不变; (5)单位存贮费不变。
第八章_存贮论

Lot Size (Q)
up down
模型2: 不允许缺货,生产需一定时间
非即时补充的经济批量模型 • 货物并非一次运到; • 通过内部生产来实现补充;
up
down
假设
缺货费用无穷大; 不能得到立即补充,生产需一定时间; 需求是连续的、均匀的; 每次订货量不变,订购费用不变(每次 生产量不变,装配费不变); 单位存贮费不变。
up
down
设全年分 n 批供货,每批生产量 Q=D/n,周期为 1/n 年(即每隔 1/n 年供 货一次)。 每个周期内平均存贮量为(1/2)Q,
每个周期内的平均存贮费用为
1 1 C1Q 2 n
C1Q 2n
up
down
全年所需存贮费用
C1Q C1Q n 2n 2
全年所需装配费用
D C3 n C3 Q
up
down
全年总费用(以年为单位的平均费用),
Q D C(Q) C1 C3 2 Q
为求出 C(Q)的最小值,把Q看作连续的变量
dC(Q) C1 D C3 2 0 dQ 2 Q 2C 3 D C1 D C 3 2 Q0 2 Q C1
up down
最佳批次
D n0 Q0
T
t
决策变量: t 和 Q 在[0,T]区间内存贮以P-R 速度增加,在[T,t]内存贮以R 速度减少。且有(P-R)T = R(tT ,即 PT = Rt, 天数 T) t 所以 T = Rt/P 又因 Q = PT,所以 Q = Rt
up down
存贮量 斜率 = P-R 斜率 = -R
存贮状态:
最佳周期
C1 D 2C3
存贮论

第十章 存贮论
第一节 存贮论的基本概念 第二节 确定型存贮模型
存贮问题的提出 人们在生产活动或日常生活中往往把所需要的物资、食
物或日用品暂时储存起来, 以备日后使用或消费. 这是解
决供应(或生产)与需求(或消费)之间矛盾的一种手段. 粮食储备 水电站蓄水 外汇储备
人才储备
…..
诸如此类与存贮有关的问题, 需要人们出合理决策.
2C3 最佳周期为 t 0 1 / n 0 C1 D
27
例3 某轧钢厂每月计划需产角钢3000吨, 每吨每月需要存 贮需用5.3元, 每次生产需调整机器设备等, 共需要装配 费用25000元. 问: (1) 按现在的生产计划, 每年的总费用是多少.
(2) 如何调整生产安排, 可使得即满足生产的计划要求, 又
单位存贮费为C1.
33
S (二)、存贮系统的费用计算 斜率=(P-R) Q 斜率=-R
0 T
t
T
T t
在[0, T]区间内, 存贮以(P-R)速度增加, 在[T, t]内存贮速度 以R减少.
问题是如何确定t和T, 使得系统的费用最小?
34
S 斜率=(P-R) Q 斜率=-R
0 T
t
T
T t
26
全年所需总费用为: C(Q)= C1Q/2 +C3D/Q
一阶导数为: dC(Q)/dQ = C1/2 -C3D/Q2
二阶导数为: d2C(Q)/dQ2=2 C3D/Q3>=0
令 得 C1/2 -C3D/Q2=0
2C3 D Q 0 Rt 0 C1
C1 D 最佳批次为 n 0 D / Q 0 2C3
0
t0
t0
T
第一节 存贮论的基本概念 第二节 确定型存贮模型
存贮问题的提出 人们在生产活动或日常生活中往往把所需要的物资、食
物或日用品暂时储存起来, 以备日后使用或消费. 这是解
决供应(或生产)与需求(或消费)之间矛盾的一种手段. 粮食储备 水电站蓄水 外汇储备
人才储备
…..
诸如此类与存贮有关的问题, 需要人们出合理决策.
2C3 最佳周期为 t 0 1 / n 0 C1 D
27
例3 某轧钢厂每月计划需产角钢3000吨, 每吨每月需要存 贮需用5.3元, 每次生产需调整机器设备等, 共需要装配 费用25000元. 问: (1) 按现在的生产计划, 每年的总费用是多少.
(2) 如何调整生产安排, 可使得即满足生产的计划要求, 又
单位存贮费为C1.
33
S (二)、存贮系统的费用计算 斜率=(P-R) Q 斜率=-R
0 T
t
T
T t
在[0, T]区间内, 存贮以(P-R)速度增加, 在[T, t]内存贮速度 以R减少.
问题是如何确定t和T, 使得系统的费用最小?
34
S 斜率=(P-R) Q 斜率=-R
0 T
t
T
T t
26
全年所需总费用为: C(Q)= C1Q/2 +C3D/Q
一阶导数为: dC(Q)/dQ = C1/2 -C3D/Q2
二阶导数为: d2C(Q)/dQ2=2 C3D/Q3>=0
令 得 C1/2 -C3D/Q2=0
2C3 D Q 0 Rt 0 C1
C1 D 最佳批次为 n 0 D / Q 0 2C3
0
t0
t0
T
库存论(储存论)-第8讲

5
6 7 8
2990
3000 3020 3000
9
10 11 12 总计 平均每周
2980
3030 3000 2990 36000 3000
§1 经济订购批量存贮模型
过去12周里每周的方便面需求量并不是一个常量,而以后时间里需求 量也会出现一些变动,但由于其方差相对来说很小,我们可以近似地把它 看成一个常量,即需求量每周为3000箱,这样的处理是合理的和必要的。
计算存贮费:每箱存贮费由两部分组成,第一部分是购买方便面所占 用资金的利息,如果资金是从银行贷款,则贷款利息就是第一部分的成本; 如果资金是自己的,则由于存贮方便面而不能把资金用于其他的投资,我 们把此资金的利息称为机会成本,第一部分的成本也应该等于同期的银行 贷款利息。方便面每箱30元,而银行贷款年利息为12%,所以每箱方便面 存贮一年要支付的利息款为3.6元。第二部分由贮存仓库的费用、保险费用、 损耗费用、管理费用等构成,经计算每箱方便面贮存一年要支付费用2.4元, 这个费用占方便面进价30元的8%。把这两部分相加,可知每箱方便面存贮 一年的存贮费为6元,即C1=6元/年· 箱,占每箱方便面进价的20%。 计算订货费:订货费指订一次货所支付的手续费、电话费、交通费、 采购人员的劳务费等,订货费与所订货的数量无关。这里批发部计算得每 次的订货费为C3=25元/次。
§1 经济订购批量存贮模型
1 D 单位时间内的总费用 TC Qc1 c3 ( Dc) 2 Q 2 Dc3 求极值得使总费用最小的订购批量为 Q c1
这是存贮论中著名的经济订购批量公式,也称哈里斯-威尔逊公
式。 单位时间内的存贮费用=
Dc3c1 2 Dc3c1 2
单位时间内的订货费用= 单位时间内的总费用=
存储论

大连大学
28
数学建模工作室
随机性存储模型的策略
❖ (1) 定期订货,但订货数量需要根据上一个周期末剩下货物的数量决
定订货量。剩下的数量少,可以多订货。剩下的数量多,可以少订或不 订货。这种策略可称为定期订货法。
❖ (2) 定点订货,存储降到某一确定的数量时即订货,不再考虑间隔的 时间。这一数量值称为订货点,每次订货的数量不变,这种策略可称之 为定点订货法。
存储模型的基本介绍
存储模型的分类
存储模型大体分为两类:一类是确定性模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机性模型,即模型中含有随机变量。
大连大学
7 数学建模工作室
存储模型的分类
存储模型的分类
存储模型大体分为两类:一类是确定型模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机型模型,即模型中含有随机变量。
确定型存储模型
(4)允许缺货,补充时间极短的经济订购批量模型
基本假设:除允许缺货外,其余条件皆与模型一相同。
大连大学
23
数学建模工作室
确定型存储模型
从图上可知:
平均存储量 Q S T1 Q S 2
2T
2Q
平均缺货量 ST2 S 2 2T 2Q
因此,最优策略为:
Q* 2CD DCP CS
Q
C
1 2
1
D P
QC
P
CDD Q
因此,平均总费用为:
大连大学
21
数学建模工作室
Q确* 定CP型2C1D存DDP 储 模 型
T * Q* D
2CD P
CPDP D
A* 1 D Q* P
管理运筹学--存储论

1.3 存贮论的研究对象 • 何时订货——时间 • 每次订多少货——数量
1.4 存贮论的基本概念
1、需求:
即库存的输出(生产消耗、商业销售)。
需求量:单位时间的需求。
初始存 贮量
I Q I Q T时间后 的存贮量
T (1)连续式输出
T (2)间断式输出
2、补充订货:库存的输入。 控制两个主要因素:补充库存的时间。 每次补充的数量。
则有
D D D D C2 C2 C 2 C2
C1 C1 C1 C1
Q Q * Q Q*
Q
D 2C 2 C1
2 D(1 D )C 2 (1 C 2 ) C 1 (1 C 1 )
所以
Q Q * Q Q* (1 D )(1 C 2 ) 1 (1 C 1 )
B类物资品种占总物资品种数目的20%-30%,但其 年金额占全部物资年金额的20%左右.
C 类物资品种多 , 占总物资数目的 60%-70%. 但其年 金额小,只占全部物资年金额的10%-20%. 分类管理: 对A类物资:计算最经济的批量,尽可能缩减库存 量和与库存有关的费用,它的储备天数较少; 对C类物资:订货次数不能过多,可适当增大批量, 减少订购次数,其储备天数较长;
从订货费角度看,订货批量越大越好。 存贮费:一般指每存储单位物资单位时间所需花费 的费用。
存贮费率:每存储1元物资单位时间所支付的费用。
从存贮费角度看,订货批量越大越不好。
缺货损失费:一般是指由于中断供应影响生产造 成的损失赔偿费,包括生产停工待料,或者采取应急 措施而支付的额外费用,以及影响利润、信誉的损失 费等。
对B类物资:对一部分品种计算最经济的批量,对 另一部分品种实行一般性管理。
运筹学 课件 第八章库存论

11:09 8
五、库存策略(库存量何时补充,补充多少的策略) (1)T-循环策略:每经时间间隔T(常数)就补充一定的库存量; (2)(L,S)策略:当库存量降到L单位以下时,就补充库存 量到S; (3)(T,L,S)策略:每经时间间隔T就检查库存量,若已 已低于L就补充到S,否则不予补充。
11:09
第八章 存贮论
什么是存储论? 物资常需要储存起来以备将来使用 存储需要成本。存储多少,多少时间补充一次是 合理的? 应满足两个要求: 存储量应保证不产生供不应求或供过于求的现象 存储计划应使成本最小 ——研究上述问题,并给出有关解答的理论和方法叫做
存储论
11:09 1
第一节 基本概念 第二节 确定型库存模型 模型一:不允许缺货,补充时间很短 模型二:不允许缺货,补充需一定时间 模型三:允许缺货,补充时间很短 模型四:允许缺货,补充需要一定时间 模型五:价格有折扣的存储问题 第三节 随机库存模型 模型六:单周期离散随机库存模型
(3000 − 2400) = 2×0.1×150× 2400× + 3×2400 3000 = 7320 元/ 月 ( )
* * 因 :C(t2 ) < C(t1 ) 为
结论:该企业应选择自行生产 11:09
缺货时间和缺货量有关。一般给出单位时间单位货物的缺货费,
记成 C2
11:09
7
3、订货费/生产费用 1)订货费 订货补充。包括两项费用 订购费:它与订货次数 有关,与订货量无关。订一次货所 订购费: 有关,与订货量无关。 支付的费用C 支付的费用 3 表示 订货本身的成本: 订货本身的成本:KQ,与产品数量有关。 K:单价 ,与产品数量有关。 : 2)生产费用 自行生产补充。包括两项费用 生产准备费用:它与组织生产的次数 有关,与产品数量无 关 (对应于订购费用)。组织一次生产所需要的调整、装 配费 用C3 表示。 生产本身的成本:KQ (对应于订货成本),它与产品数量 有关。K:单位生产成本
五、库存策略(库存量何时补充,补充多少的策略) (1)T-循环策略:每经时间间隔T(常数)就补充一定的库存量; (2)(L,S)策略:当库存量降到L单位以下时,就补充库存 量到S; (3)(T,L,S)策略:每经时间间隔T就检查库存量,若已 已低于L就补充到S,否则不予补充。
11:09
第八章 存贮论
什么是存储论? 物资常需要储存起来以备将来使用 存储需要成本。存储多少,多少时间补充一次是 合理的? 应满足两个要求: 存储量应保证不产生供不应求或供过于求的现象 存储计划应使成本最小 ——研究上述问题,并给出有关解答的理论和方法叫做
存储论
11:09 1
第一节 基本概念 第二节 确定型库存模型 模型一:不允许缺货,补充时间很短 模型二:不允许缺货,补充需一定时间 模型三:允许缺货,补充时间很短 模型四:允许缺货,补充需要一定时间 模型五:价格有折扣的存储问题 第三节 随机库存模型 模型六:单周期离散随机库存模型
(3000 − 2400) = 2×0.1×150× 2400× + 3×2400 3000 = 7320 元/ 月 ( )
* * 因 :C(t2 ) < C(t1 ) 为
结论:该企业应选择自行生产 11:09
缺货时间和缺货量有关。一般给出单位时间单位货物的缺货费,
记成 C2
11:09
7
3、订货费/生产费用 1)订货费 订货补充。包括两项费用 订购费:它与订货次数 有关,与订货量无关。订一次货所 订购费: 有关,与订货量无关。 支付的费用C 支付的费用 3 表示 订货本身的成本: 订货本身的成本:KQ,与产品数量有关。 K:单价 ,与产品数量有关。 : 2)生产费用 自行生产补充。包括两项费用 生产准备费用:它与组织生产的次数 有关,与产品数量无 关 (对应于订购费用)。组织一次生产所需要的调整、装 配费 用C3 表示。 生产本身的成本:KQ (对应于订货成本),它与产品数量 有关。K:单位生产成本
第九章 存储论.

通过本章的学习,应当了解存储论的基本概念,掌握确定型存 储模型,了解单周期随机存储模型与其他类型的存储模型,学 会运用WinQSB求解确定型存储模型和单周期随机型存储模型。
3
第一节 存储论的基本概念
一、问题描述
在生产和生活中,人们经常进行着各种各样的存储 活动,这是为了解决供应(或生产)与需求(或消费) 之间不协调和矛盾的一种手段。
中,具有以下特点:在一个周期内订货只进行一次,若未到期
末已售完也不再补充订货;若发生滞销,未售出的货应在期末
降价处理。无论是供大于求还是供不应求都会造成损失,研究
的目的是确定该时期的订货量,使预期的总损失最少或总赢利
最大。
22
一、模型一:需求是离散型随机变量
23
一、模型一:需求是离散型随机变量
24
一、库容有限制的存储问题
27
一、库容有限制的存储问题
28
二、易腐物品的存储问题
易腐物品的存储问题按存货的寿命,可分为固 定寿命和随机寿命两大类。
由于易腐物品库存模型(特别是随机寿命类型)的 复杂性,寻找最优策略是十分困难的。现有的 研究主要集中在各种限定条件下的近似最优策 略上。例如,当库存量小于某个规定的临界值 才订货,否则不订货;在周期盘点下保持库存 量为常数;当库存物品由于需求或过期而减少 一个时就订货,且只订一个;应用不耐烦顾客 排队系统理论研究该类模型等。这些问题都有 很鲜明的实际背景。
7
二、基本概念
(五)存储模型
从存储模型的总体上看,可以分 为两类:
(1) 确定型模型,即模型中的 数据都为确定性的数值;
(2) 随机型模型,即模型中含 有随机变量,用以反应订购、 库存和需求的不确定性。
8
3
第一节 存储论的基本概念
一、问题描述
在生产和生活中,人们经常进行着各种各样的存储 活动,这是为了解决供应(或生产)与需求(或消费) 之间不协调和矛盾的一种手段。
中,具有以下特点:在一个周期内订货只进行一次,若未到期
末已售完也不再补充订货;若发生滞销,未售出的货应在期末
降价处理。无论是供大于求还是供不应求都会造成损失,研究
的目的是确定该时期的订货量,使预期的总损失最少或总赢利
最大。
22
一、模型一:需求是离散型随机变量
23
一、模型一:需求是离散型随机变量
24
一、库容有限制的存储问题
27
一、库容有限制的存储问题
28
二、易腐物品的存储问题
易腐物品的存储问题按存货的寿命,可分为固 定寿命和随机寿命两大类。
由于易腐物品库存模型(特别是随机寿命类型)的 复杂性,寻找最优策略是十分困难的。现有的 研究主要集中在各种限定条件下的近似最优策 略上。例如,当库存量小于某个规定的临界值 才订货,否则不订货;在周期盘点下保持库存 量为常数;当库存物品由于需求或过期而减少 一个时就订货,且只订一个;应用不耐烦顾客 排队系统理论研究该类模型等。这些问题都有 很鲜明的实际背景。
7
二、基本概念
(五)存储模型
从存储模型的总体上看,可以分 为两类:
(1) 确定型模型,即模型中的 数据都为确定性的数值;
(2) 随机型模型,即模型中含 有随机变量,用以反应订购、 库存和需求的不确定性。
8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
(RT
Q1)2 R
C3)
Y 有两个变量T , Q ,利用多元函数求机制的方法求最小值。
C Q1
1 T
( C1Q1 R
RT Q1 R
C2 )
0
C T
1 T2
( Q12C1 2R
1 2
(RT
Q1)2 R
C2
C3 )
1 T
(C2 (RT
Q1))
0
得到:
T
2C3(C1 C2 ) C1C2 R
库存物资占用仓库面积而引起的一系列费 用,如货物的搬运费,仓库本身的固定资 产折旧,仓库维修费用,仓库及其设备的 租金,仓库的取暖、冷藏、照明等费用, 仓库管理人员等的工资、福利费用,仓库 的业务核算费用等。
库存管理中费用分类
2 订货费
它包括二项:一项是订货费用(固定费用 )如采购人员的各种工资、旅差费、订购 合同、邮电费用等 ,它与订购次数有关, 与订购数量无关。
2.过高的存贮量占用了流动资金使资金周转困 难,降低了资金利用率;
3.过量存贮降低了材料或产品的质量,甚至于 产品过时,变质损坏.
存贮量不足会有什么后果:
1.由于原料不足可能会造成停工,停产等重大 经济损失; 2.因缺货失去销售机会,失去顾客;
3.用频繁订货的方法以补充短缺的物资,这将 增加订购费用.
的最大缺货量,并设单位时间缺货费用为 C3 ,则T1 为存储量为正的时间
周期, T2 为存储量为负的时间周期(缺货周期)。所以在一个周期内的
订货量仍为 Q1 RT1
与 模 型 (2.1) 的 推 导 类 似 , 在 一 个 周 期 内 0 ~ T1 的 平 均 存 量 为
Q1 2
, T1
~
T
时刻均缺货量为
R(T T1) 2
,或者表示为
S 2
。
在一个周期内费用为
存储费
Q1T1C1 2
1 2
Q1
Q1 R
C1
Q12C1 2R
,
缺货量为:
1 2
RT2
,缺货费用为:
S(T T1) 2
C2
1 2
C2 R(T
T1)2
1 2
(RT
Q1)2 R
C2
订购费为 C 3 ,
总的费用为: C(T ,Q)
1 T
( Q12C1 2R
第二节 经济定货批量的存贮模型
1.基本的EOQ(Economic order quality 经济定 货批量,1915年,英国,Harris)模型 设一种物品的需求率R(件/年)是已知常数,并 以批量Q供应给需求方,瞬间供货,不允许缺货, 货到后存在仓库中,并以速率R消耗掉.该类问 题只考虑两种费用:定货费 C3 (元/次),存贮费 C1(元/件·年),试确定每次的定货批量为多少时, 使全年的总费用为最少.
需求量
一种物资的需求方式可以是确定性 的,也可以是随机性的。在确定情况下, 假定需求量在所有各个时期内是已知的。 随机性的需求则表示在某个时期内的需求 量并不确切知道,但它们的情况可以用一 个概率分布来描述。
补充存货
库存物资的补充可以是订货,也可以 生产。当发出一张定单时,可能立即交货 ,也可能在交货前需要一段时间,从订货 到收货之间的时间称为滞后时间,一般地 ,滞后时间可以是确定性的,也可以是随 机性的。
与存贮问题有关的基本费用项目
(1)一次费用或准备费用:每组织一次生产,定 货或采购某种物品所必须的费用(如差旅费, 手续费,检验费等).通常认为它与定购数量无 关.但是,分配到每件物品上的费用随购买量 的增加而减少,此费用用C2表示. (2)存储费:包括仓库保管费,占用流动资金的 利息,保险金,存贮物品的变质损失费等.以每
存贮论(存储论,库存论) (Inventory theory)
引言 经济订货批量的存贮模型 具有约束条件的存贮模型 具有价格折扣优惠的存贮模型 单时期的随机存贮模型
第一节 引言
在生产和生活中,人们经常进行着各种个样的存 贮活动,这是为了解决供应(或生产)与需求(或消 费)之间不协调或矛盾的一种手段.例如,一场战 斗在很短时间内可能消毫几十万发炮弹,而兵工 厂不可能在这么短的时间内生产那么多炮弹,这 就是供需矛盾,为了解决这一矛盾,只能将军火 工厂每天生产的炮弹储存到军火库内,以备战争 发生时的需要.
件存贮物在单位时间内所发生的费用,用C1表 示. (3)缺货损失费:这是一种由于未及时满足顾 客需要而产生的损失,包括两种情况,其一是 顾客不愿意等待而损失一笔交易,进而影响企 业的声誉.其二是顾客愿意等待稍后的供应而 发生的处理过期定货的损失,用C3表示.
在一个存贮问题中主要考虑两个量:供应(需求) 量的多少;何时供应(需求),即量和期的问题.按 这两个参数的确定性和随机性,可分为确定性 存贮模型和随机性存贮模型.
三类物资的管理和控制办法:
C 类物资品种多,金额小,订货次数不能过 多,通常可按过去的消耗情况对它们进行上 下限控制,库存下降到下限时进货,每次进 货的数量与原有库存量合计不超过上限。这 种物资占用资金不多,所以保险储备天数较 大,总之,C类物资增大订货批量,减少订 货次数。
三类物资的管理和控制办法:
B 类物资也应加强管理,通常对其中一 部分品种应当计算最经济批量,对其余 部分则进行一般性管理,采用上下限控 制办法,其保险储备天数也较A类物资 多,比C类物资少。
库存管理中费用分类
1 存储费
存储费用是由于对库存物资进行保管而引 起的费用,它包括:货物占用资金的利息 ;为了库存物资安全而向保险机构缴纳的 保险金;部分库存物资损坏、变质、短缺 而造成的损失;
|T0
1 2
Rt 2
|T0 )
1 T
(QT
1 2
RT 2 )
Q 1 RT Q 1 Q 1 Q.
2
22
C
TOC
TCC
C3 t
1 2
KR
C1Q
C3 t
1 2
KR
1 2
C1Rt,
求C的最小值,
dC dt
C3 D t2
1 2
C1R
0, t
2C3 , C1R
Q Rt 2RC3 , Q称为EOQ C1
ⅲ(s,S)策略:设s为定货点(或保险存储量,安全 存储量,警戒点等).当存储余额为I,若I>s则不
对存储进行补充;若I s时,则对存储进行补
充,补充数量Q=S-I.补充后的数量达到最大存 储量S. ⅳ(t,s,S)策略:在很多情况下,实际存储量需要 通过盘点才能得知,若每隔一个固定时间t盘 点一次,得知存储量为I,再根据I是否超过定货 点s决定是否定货.
一、ABC库存管理技术 ABC库存管理技术是一种简单,有效的库存 管理技术,它通过对品种,规格极为繁多的 库存物资进行分类,使得企业管理人员把主 要注意力集中在 金额较大,最需要加以重视 的产品上,达到节约资金的目的。
A类物资的特点:品种较少,但因年耗用
量特别大,或价格高,因而年金额特别大, 占用资金很多。通常它占总品种的10%以下 ,年金额占全部库存物资的年金额的60%到 70%。A 类物资往往是企业生产过程中主要 原材料和燃料。它是节约企业库存资金的重 点和关键。
订货周期
订货周期是指两次相邻订货之间的时间 。下一次的订货时间通常用以下两种方式来 确定:
1 连续检查:随时注意库存水平的变化,当 库存水平降到某一确定值时,立即订货。
2 定期检查:每次检查之间的时间间隔是相 等的,当库存水平降到某一确定值时,立即 订货。
存储问题的基本概念
存贮问题的基本要素 (1)需求率:指单位时间内对某种物品的需求量, 以R表示。 (2)定货批量:定货采用以一定数量物品为一 批的方式进行,一次定货包含某种物品的数量 称为批量,用Q表示. (3)定货间隔期:指两次定货之间的时间间隔, 用t表示.
这种供需不协调的现象十分普遍,在农业,商 业和物资领域大量存在.人们在解决这些矛盾 时,很容易想到用存贮这个环节来协调供需之 间的矛盾.我们可以把存贮看作中心,把供应 与需求看作一个具有输入(供应)和输出(需求) 的控制系统.
输入(供应)
存贮
输出(需求)
为什么要研究存贮问题?
存贮量过大会有什么后果: 1.由于不必要的存贮,增加了库存保管费及保 管场地,而使产品价格增高;
类别 物 资 物 资 比重 年 金 额 比 重
名称 品种 % (万元) %
A 钢 120 6 174 69.6
材…
B 铜…. 400 20 54
21.6
C 铁 1480 74 22 8.8
钉…
合计
2000 100 250 100
三类物资的管理和控制办法:
A 类物资品种少,金额大,是进行库存管 理和控制的重点。对列入A类物资的每一 种应当计算其年需要量,库存费用,每批 的采购费用,计算最经济的批量,要求尽 可能缩减与库存有关的费用,并应经常检 查,通常情况下A 类物资的保险储备天数 较少。
每年的存贮费为500 20%10 1000(元),
每年的定购次数为365 20 18.25(次),
每年的定购费为2018.25 365(元),
总费用为1000 365 1365(元).
显然比按EOQ公式计算的结果要差.
2.允许缺货,生产时间很短
Q11
T2
T1
S
假设周期 T T1 T2 , Q1 为周期T 内的最大存储量, S 为周期T 内
(4)定货提前期:从提出定货到收到货物的时间 间隔,用L表示. (5)存贮(定货)策略:指什么时间提出定货(对存 储进行补充)以及定货(补充)的数量. 几种常见的存储策略: ⅰt-循环策略:不论实际的存储状态如何,总是每 隔一个固定的时间t,补充一个固定的存储量Q. ⅱ(t,S)策略:每隔一个固定时间t补充一次,补充 数量以补足一个固定的最大存储量S为准.因此 每次补充的数量是不固定的,当存储余额为I时, 补充数量是Q=S-I.