李萨如图模拟(Matlab大作业)

合集下载

2非线性电路混沌实验

2非线性电路混沌实验

非线性电路混沌实验混沌是非线性系统中存在的一种普遍现象,它也是非线性系统所特有的一种复杂状态。

混沌研究最先起源于 1963年洛伦兹(E.Lorenz )研究天气预报时用到的三个动力学方程 ,后来又从数学和实验上得到证实。

无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、 但实际是非周期有序运动,即混沌 现象。

由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同 步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授 1985年提 出的著名的蔡氏电路(Chua ' s Circuit )。

就实验而言,可用示波器观察到电路混沌产生的全 过程,并能得到双涡卷混沌吸引子。

本实验所建立的非线性电路包括有源非线性负阻、 LC 振荡器和RC 移相器三部分;采用 物理实验方法研究 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象。

【实验目的】观测振动周期发生的分岔及混沌现象; 测量非线性单元电路的电流一电压特性;了解非线性电路混沌现象的本质; 学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。

【实验原理】1. 非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件 R ,它是一个有源非线性负阻器件。

电感器L 和电容C 2组成一个损耗可以忽略的谐振回路; 可变电阻R V 和电容器C 串联将振荡器产生的正弦信号移相输出。

本实验中所用的非线性元件 R 是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线, 从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。

由于加在此元件上的电压增加时,通过它的电流却减小, 因而将此元件称为非线性负阻元件。

图1电路的非线性动力学方程为:C 2dU C L二 G (U C 1 -U C 21)I L(1)dt121C 1du e ’ dt=G (U C 2 -Uq) _g UqLd L实际非线性混沌实验电路如图式中,导纳G =1/R/ , U c.和U c2分别为表示加在电容器C和C2上的电压,i L表示流过电感器L的电流,G表示非线性电阻的导纳。

MATLAB大作业

MATLAB大作业

MATLAB大作业作业要求:(1)编写程序并上机实现,提交作业文档,包括打印稿(不含源程序)和电子稿(包含源程序),以班为单位交,作业提交截止时间6月24日。

(2)作业文档内容:问题描述、问题求解算法(方案)、MATLAB程序、结果分析、本课程学习体会、列出主要的参考文献。

打印稿不要求MATLAB程序,但电子稿要包含MATLAB 程序。

(3)作业文档字数不限,但要求写实,写出自己的理解、收获和体会,有话则长,无话则短。

不要抄袭复制,可以参考网上、文献资料的内容,但要理解,要变成自己的语言,按自己的思路组织内容。

(4)从给出的问题中至少选择一题(多做不限,但必须独立完成,严禁抄袭)。

(5)大作业占过程考核的20%,从完成情况、工作量、作业文档方面评分。

第一类:绘制图形。

(B级)问题一:斐波那契(Fibonacci)螺旋线,也称黄金螺旋线(Golden spiral),是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。

斐波那契螺旋线,以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线,如图所示。

问题二:绘制谢尔宾斯基三角形(Sierpinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出,它是一种典型的自相似集。

其生成过程为:取一个实心的三角形(通常使用等边三角形),沿三边中点的连线,将它分成四个小三角形,然后去掉中间的那一个小三角形。

接下来对其余三个小三角形重复上述操作,如图所示。

问题三:其他分形曲线或图形。

分形曲线还有很多,教材介绍了科赫曲线,其他还有皮亚诺曲线、分形树、康托(G. Cantor)三分集、Julia集、曼德布罗集合(Mandelbrot set),等等。

这方面的资料很多(如),请分析构图原理并用MATLAB实现。

问题四:模拟掷骰子游戏:掷1000次骰子,统计骰子各个点出现的次数,将结果以下表的形式显示,并绘制出直方图。

李萨如图

李萨如图

李萨如图形的应用摘要:李萨如图形是波与波叠加的结果,通过对波形的观察,可以比较出两组波的差异,在已知一组波的相关数据的情况下可以得出另一组波的相关数据,根据这些数据又可以得出与那一组波的相关的一些数据等,从而求出所需数据,如求频率,电阻,电阻的变化情况,容抗阻抗,电压大小……关键词:李萨如图形,对比,数据1.李萨如图的形成原理李萨如图形就是利用一个示波器,在X轴和Y轴上输入不同的正弦信号,把他们有机的叠加起来所形成的一种图形,如图所示,把X轴的信号换成正弦信号,就形成了李萨如图形。

由于输入信号是加在X方向偏转电压和Y方向的偏转电压上,从电子枪里头喷出的电子就会在这两个电压的影响下,向不同的方向偏转,然后打在屏上,显示出不同的波形。

所以,通过对波形的研究,我们就可以了解到两个方向所加的信号得特征,如果已经知道一个方向的型号特征,就可以通过对比,得出另一个信号的特征,再根据这些特征来求出一些需要的值。

2.影响李萨如图的因素要想通过一个信号的特征推出另一个信号特征,那么就必须了解影响李萨如图形的一些关键因素,通过比较这些因素,才能得出结果。

通常情况下能够影响图形形状的有输入信号的振幅大小,两个输入信号的初始相位的不同,两个信号的频率的不同等。

2.1频率对李萨如图的影响李萨如图形的周期与频率是分不开的,设一个方向上的频率为fx,另一个的为fy,那么李萨如图形的周期T即为1/fx和1/fy的最小公倍数,因为在T时间内,X方向和Y方向都经过了几个完整的周期,之后又重头开始,和刚开始时一样。

有时示波器调出的波形会移动,就是因为周期没有调好的缘故。

根据对李萨如图形一个周期的测量,在已知一个信号的频率的情况下,就可求出另一个信号的频率;李萨如图形本身还具有一个特点,图形边界与水平方向的交点和竖直方向的交点的比等于fy/fx,如图,因为图形的最低点即为Y方向信号的波谷,图形最左端与竖直的交点即为X方向信号的波谷,在一个李萨如图形周期T内,有几个交点,则对应X方向和Y方向信号就经历了多少个周期,正好与fy/fx相吻合。

李萨如图在捷联惯导系统圆锥误差估计中的应用

李萨如图在捷联惯导系统圆锥误差估计中的应用

第13卷第3期中国惯性技术学报2005年6月文章编号:1005-6734(2005)03-0061-03李萨如图在捷联惯导系统圆锥误差估计中的应用刘道静,李立新,纪志农,陈明刚(北京自动化控制设备研究所,北京 100074)摘要:分析了激光陀螺捷联惯导系统产生圆锥运动的原因,给出了估计圆锥误差的一般方法,并在此基础上给出了一种简单、实用的方法---李萨如图法,后者比前者更加接近工程应用。

最后给出了验证试验结果。

关 键 词:捷联惯导系统;圆锥运动;李萨如图;激光陀螺中图分类号:U666.1 文献标识码:AApplication of Lissajous Figures in SINS’s Coning Error EstimationLIU Dao-jing, LI Li-xin, JI Zhi-nong, CHEN Ming-gang(Beijing Institute of Automatic Control Equipment, Beijing 100074, China)Abstract: The coning motion in SINS with three-axis dithered laser gyroscope is discussed. Theclassic method of coning error estimation is described; and based on this, a more effective methodis given, i.e. the method of Lissajous figures. The Lissajous method is more effective and simple,and it’s more close to engineering application. All the above is verified by experiments.Key words: SINS; coning motion; Lissajous figures; ring laser gyroscope0 引 言在捷联惯性导航系统的工程实践中,一般采用四元数法作为姿态更新算法。

李萨如图形的相关研究

李萨如图形的相关研究

李萨如图形的相关研究姓名:XXX班级:XXX学号:XXX指导教师:XXX班级序号:XXX摘要:探究李萨茹图形形成的原因以及影响其形状的因素,并通过matlab软件模拟出李萨茹图形,给出其原程序,及其相关图形;利用示波器和信号源,演示出一个李萨茹图形,探究李萨如图形的应用并设计出一个简易演示李萨茹图形的教具,并做简单说明。

关键词:李萨如图形;matlab;应用;设计教具1、李萨如图形简介(1)形成原因两个相互垂直的简谐振动,当他们的频率比是整数比时,合振动的轨迹是稳定的闭合曲线,此时就形成了李萨如图形。

(2)影响李萨如图形形状的因素:设两个互相垂直的简谐运动的方程为x=A1cos(2πn1t+Φ1)y=A2cos(2πn2t+Φ2)①设n1/n2=m1/m2(m1、m2是互质的整数),李萨如图形的形状由分振动振幅、频率比和cos(m1Φ1-m2Φ2)确定。

②萨如图形具有对称性。

设n1/n2=m1/m2(m1、m2是互质的整数)。

当m1为为偶数时,图形关于x轴对称;当m2为偶数时,图形关于y轴对称;当m1、m2均为奇数时,图形关于原点对称。

③李萨如图形具有周期性。

取a= =Φ2-Φ1当Φ1为定值时,图形随Φ2变化的周期是2π/m1;当Φ2取定值时,图形随Φ1变化的周期为2π/m2;a取定值,图形随Φ1或Φ2变化的周期为|2π/(m1-m2)|。

2、MATLAB制图①一个振动初相位为零时的振动合成设wx和wy,为x、y两个方向的振动频率.先讨论简单情况:不妨设y方向初相位Φy为零,则初相位差Φx-Φy=Φx程序设计:wx=input(‘wx=’);wy=input(‘wy=’);nx=input(‘nx=’);t=0:0.02:200;x=cos(wx*t+nx*3.1415926);y=cos(wy*t);plot(x,y)图像:②两个振动初相位均不为零时的振动合成程序设计:wx=input(‘wx=’);wy=input(‘wy=’);nx=input(‘nx=’);ny=input(‘ny=’);t=0:0.02:200;x=cos(wx*t+nx*3.1415926);y=cox(wy*t+ny*3.1415926);plot(x,y)图像:首先绘制几组不同y初相位条件下的图形,如图所示.为减少频率比的特殊性,选取频率比为3:2。

自动控制实验报告.

自动控制实验报告.

成绩北京航空航天大学自动控制原理实验报告学院机械工程及自动化学专业方向工业工程与制造班级110715学号********学生姓名吕龙指导教师自动控制与测试教学实验中心实验一一、二阶系统的电子模拟及时域响应的动态测试实验时间2013.10.30 实验编号同组同学无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.建立一阶系统的电子模型,观测并记录不同时间常数T时的跃响应曲线,测定其过渡过程时间Ts。

2.建立二阶系统的电子模型,观测并记录不同阻尼比ζ时的跃响应曲线,测定其超调量σ%及过渡过程时间Ts。

三、实验原理1.一阶系统:系统传递函数为:模拟运算电路如图1-1所示:图1-1由图得:在实验当中始终取, 则,取不同的时间常数T分别为: 0.25、 0.5、1。

记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时 ts。

(取误差带)2.二阶系统:其传递函数为:令,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取,,则及取不同的值, , ,观察并记录阶跃响应曲线,测量超调量σ%(取误差带),计算过渡过程时间Ts。

四、实验设备1.HHMN-1型电子模拟机一台。

2.PC 机一台。

3.数字式万用表一块。

4.导线若干。

五、实验步骤1. 熟悉HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。

2. 断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。

3. 将与系统输入端连接,将与系统输出端连接。

线路接好后,经教师检查后再通电。

4.运行软件,分别获得理论和实际仿真的曲线。

5. 观察实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成实验报告。

六、实验结果1.一阶系统T 0.25 0.5 1R2/MΩ0.25 0.5 11 1 1实测值/s 0.76 1.55 3.03理论值/s 0.75 1.50 3.00响应曲线(1)T = 0.25:(2)T = 0.5:(3)T = 12.二阶系统0.25 0.5 1.0R4/MΩ 2 1 0.51 1 1实测40.5 16.0 0理论44.4 16.3 0 实测值/s 10.95 5.2 4.9理论值/s 14 7 4.7响应曲线(1)R4=2MΩ(2)R4=1MΩ(3)R4=0.5MΩ七、结果分析从得到的数据可以看出,不论是一阶还是二阶系统,实测值均与理论值有着或多或少的偏差。

基于MATLAB图形界面研究李萨如图形及其讨论

基于MATLAB图形界面研究李萨如图形及其讨论

基于MATLAB图形界面研究李萨如图形及其讨论作者:刘斯禹韩雪郭天超来源:《科技资讯》2016年第06期摘要:本文对应用MATLAB计算机语言编写李萨如图形演示软件进行了研究,在介绍了李萨如图形形成机理的基础上,编写了用于演示李萨如图形的图形用户界面,实现了直接输入振动参数,直接绘图得功能;并且可以直接对比有无阻尼的李萨如图形的对比。

直观地分析出各参量的变化对于结果的影响与理论分析相吻合,并总结了李萨如图形的实际应用。

图形用户界面可以有效地应用于教学之中。

关键词:李萨如图形 MATLAB 图形界面频率比相位差中图分类号:O32 文献标识码:A 文章编号:1672-3791(2016)2(c)-0000-00当两个互相垂直的简谐振动相耦合时,振动将为两个振动的叠加,其结果比一维振动复杂得多。

如果这两个互相垂直的简谐振动频率相同,则合成的总振动可形成椭圆曲线,一些极端情况下还可能形成圆或直线;若两个简谐振动频率不同,且频率比为整数比,则合振动可形成封闭曲线,称为李萨如图形。

若振动频率比不为整数,则合成的总不能形成稳定的图案。

而两个振动的频率比、初相位、相位差这些因素均会影响合振动的轨迹形状。

将李萨如图形绘制出来则可以比较直观地看出这些因素如何影响轨迹形状。

MATLAB是美国Math Works公司的软件产品,是一个高级的数值分析、处理及计算软件;本文采用MATLAB为工具,并编写图形用户界面以绘制不同参数条件下的李萨如图形,进一步讨论以上提及的多种因素对垂直简谐振动合成的影响以及实际的应用。

1 基于MATLAB的李萨如图形演示1.1 李萨如图形的形成李萨如图形中的点是两个振动方向互相垂直的简谐振动的叠加,都可以用以下的公式表示:由以上公式可以看出,李萨如图形本质上是一个质点同时在X轴和Y轴上振动而形成的,其合成交点的运动轨迹就是李萨如图形。

但是,如果这两个相互垂直的振动的频率为任意值,那么它们的合成运动就会比较复杂,而且轨迹是不稳定的。

频率特性的测量实验报告

频率特性的测量实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 频率特性的测量 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.掌握用李沙育图形法,测量各典型环节的频率特性;2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数。

二、实验内容和原理1.实验内容(1)R-C 网络的频率特性。

图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性。

(2)闭环频率特性的测试被测的二阶系统如图5-3所示,图5-4为它的模拟电路图。

取参考值051R K =,1R 接470K 的电位器,2510R K =,3200R K =2.实验原理对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()sin m X t X t ω=,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变。

输出信号为()sin()()sin()m Y t Y t G j t ωϕωωϕ=+=+其中()mmY G j X ω=,()arg ()G j ϕωω= 只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比()G j ω和它们的相位差()ϕω。

不断改变()x t 的频率,就可测得被测环节(系统)的幅频特性和相频特性。

本实验采用李沙育图形法,图5-1为测试的方框图在表(1)中列出了超前于滞后时相位的计算公式和光点的转向。

表中 02Y 为椭圆与Y 轴交点之间的长度,02X 为椭圆与X 轴交点之间的距离,m X 和m Y 分别为()X t 和()Y t 的幅值。

三、主要仪器设备1.控制理论电子模拟实验箱一台; 2.慢扫描示波器一台;3. 任意函数信号发生器一台; 4.万用表一只。

四、操作方法和实验步骤 1.实验一(1)根据连接图,将导线连接好(2)由于示波器的CH1已经与函数发生器的正极相连,所以接下来就要将CH2接在串联电阻电容上,将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学实验》报告
实验名称李萨如图模拟(Matlab大作业)
2011年11月8日
一、【实验目的】
运用数学知识与MATLAB相结合,运用数学方法,建立数学模型,用MATLAB软件辅助求解模型,解决实际问题。

二、【实验任务】
一个质点沿 X轴和 Y轴的分运动都是简谐运动,分运动的表达式分别为: x=Acos ( w1t+beta ) , y=Acos(w2t+beta ) 。

如果二者的频率有简单的整数比, 则相互垂直的简谐运动合成的运动将具有封闭的稳定的运动轨迹, 这种图称为李萨如图。

1,用matlab分别画出同一方向的传播波频率之比为2,3,4/5,1/2,1/3,5/4的图像(未合成)2,用matlab画出同一方向的传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像
3,用matlab画出x轴方向和y轴方向传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像。

(李萨如图)
三、【实验分析及求解】
1,设两个波的振幅为1,他们的beta为pi/5,我们可以根据波的传播公式,y =Acos
( w1t+beta ) 分别画出两个波的传播图像。

2,设两个波的振幅为1,他们的beta为pi/5,我们可以根据波的传播公式,y =Acos ( w1t+beta ),
用matlab画出同一方向的传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像。

3,设两个波的振幅为1,他们的beta为pi/5,我们可以根据波的传播公式,画出x轴方向和y 轴方向传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像。

(李萨如图)。

四、【实验程序及结果】
1,分别画出两个波的传播图像的实验程序
beta=pi/5;w1=1;A1=1;t=1:.01:50;
x=A1*cos(w1*t+beta);
w2=[2 3 4/5 1/2 1/3 5/4];
for j=0:0.5:7; for i=1:6;
y=A1*cos(w2(i)*t+(beta+j)*pi/4);
subplot(2,3,i);plot(t,x,t,y);pause(0.05);
title(['wy:wx=' ,num2str(w2(i))]); end;end
2,同一方向的传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像实验程序
beta=pi/5;w1=1;A1=1;t=1:.01:50;
x=A1*cos(w1*t+beta);
w2=[2 3 4/5 1/2 1/3 5/4];
for j=0:0.5:7; for i=1:6;
y=A1*cos(w2(i)*t+(beta+j)*pi/4);
subplot(2,3,i);plot(x+y);pause(0.05);
title(['wy:wx=' ,num2str(w2(i))]); end;end
3,x轴方向和y轴方向传播波频率之比为2,3,4/5,1/2,1/3,5/4的合成图像实验程序beta=pi/5;w1=1;A1=1;t=1:.01:50;
x=A1*cos(w1*t+beta);
w2=[2 3 4/5 1/2 1/3 5/4];
for j=0:0.5:7; for i=1:6;
y=A1*cos(w2(i)*t+(beta+j)*pi/4);
subplot(2,3,i);plot(x,y);pause(0.05);
title(['wy:wx=' ,num2str(w2(i))]); end;end
4,从1和2画出的实验程序和图对比上我们可以看出实际上是把1程序中的画图语句“plot(t,x,t,y)”改为“ plot(x+y)” ,则得到两个频率不同的简谐振动在
同一方向的合成, 当频率都较大但相差很小时会出现“拍”的现象。

5,从1和3画出的实验程序和图的对比我们可以看出实际上是把1程序中的画图语句“plot(t,x,t,y)”改为“plot(x,y)” ,则得到两个频率不同的简谐振动在
X和Y方向的合成,也就是李萨如图。

可以看出李萨如图合成的质点运动是具有
封闭稳定的运动轨迹。

五、【实验总结】
通过我们实验模拟李萨如图的研究,可以看出x轴方向和y轴方向传播波频率之比为
2,3,4/5,1/2,1/3,5/4的合成图像合成的质点运动是具有封闭稳定的运动轨迹。

相关文档
最新文档