陈家璧版光学信息技术原理及应用习题解答811章
《光学信息处理》习题解答

第 2 页 共 61 页
Q
a
<
1 L
,
b
<
1 W
《光学信息技术原理及应用》习题解答
∴ 1 > L, 1 > W ab
Q
1 a
是
H(
fx,
fy)
在
fx
方向的宽度,
1 b
是
H(
fx,
fy)
在
fy
方向的宽度,
L
、W
分别是输入函数
f ( x, y) 在频域上的频带宽。
∴ H( fx, fy) 在 fx 、 fy 方向的宽度大于 F( fx, fy) ,即 F( fx, fy) 能完全通过系统传递函数为
解:对于线性空间不变系统,设系统的脉冲响应为 h( x) ,输入函数表示式为 g( x) ,输出函数表示式为
g ' ( x) ,则
g'(x) = g(x) ∗h(x) 或 G'( f ) = G( f ) ⋅ H ( f )
+∞
∑ 由 g(x) = comb(x) 知, G( f ) = comb( f ) = δ ( f − n) ,所以 n=−∞
第 6 页 共 61 页
《光学信息技术原理及应用》习题解答
图 1.4(a)
(1)由 H 1 (
f
)
=
rect
(
f 2
)
得 h1 ( x )
=
2 sin
c(2 x)
,函数图形如图
1.4(b)所示
图 1.4(b)
+16
∑ g1(x) = gi (x) ∗ h1(x) = Λ( x − 3n) * h1( x) ,函数图形如图 1.4(c)所示。 n=−16 +16 ∑ 如果考虑到系统为线性不变系统,对上式的卷积可以先计算 Λ(x) * 2sinc(2x) 。 Λ(x − 3n) 表 n=−16
陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第七章 习题解答1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径)解: 记录轨道数为 25000002.0280180=⨯-=N单面记录容量按位计算为 ∑=⨯≈⨯+=Nn n M 110107.10006.0)002.040(2π bits = 17 Gb.按字节数计算的存储容量为 2.1GB.2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。
证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距.对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为:24)cos(n K K ar πλθφδ--=其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22πθθφ++=sr ,θr 为再现光束与系统光轴夹角 (参见图7-9).当 δ = 0 时,有2422cos n K K a r s r πλθπθθ=⎪⎭⎫ ⎝⎛-++ 即:Λ=Λ=⎪⎭⎫ ⎝⎛-2422sin 0λππλθθn s rλ为介质中的波长. 由于角度2sr θθ-恰为照明光与峰值条纹面的夹角θ, ∑ ©亦即布拉格条件2Λ sin θ = λ.当读出光偏离布拉格角θo 和布拉格波长λo 的偏移量分别为∆θ和∆λ时,有[]0200200002044sin )sin(cos )cos( 4)()(cos n K n K K K n K K πλπλθθφθθφπλλθθφδ∆--∆--∆-=∆+-∆+-=利用布拉格条件式(7-17), 以及∆θ和∆λ很小时的近似关系 cos ∆θ≈1 和 sin ∆θ≈∆θ, 立即可得:δ =∆θK sin(φ-θ0) - ∆λK 2/4πn 0 即(7-18)式 原题得证。
陈家璧版-光学信息技术原理及应用习题解答(4-7章)

第四章习题4.1若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。
设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。
若把光谱分布看成是矩形线型,那么相干长度?=c l 证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。
421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆4.2设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。
(1)试求光场的复自相干度的模。
(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。
假设每一根谱线的线型为矩形,光源的归一化功率谱为()^1212rect rect νννννδνδνδν⎡--⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦G (1)光场的复相干度为^1()()exp(2)1sin ()exp(2)[1exp(2)]2r j d c j j τνπντνδντπντπντ∞==+∆⎰G 式中12ννν-=∆,复相干度的模为ντπδνττ∆=cos )(sin )(c r 由于νδν∆ ,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。
相干时间由第一个因子决定,它的第一个零点出现在δντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。
(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为()()()()∑21-21--=+-1=N N n n NνννδνΔgˆ式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。
光学教程课后习题答案

光学教程课后习题答案光学教程课后习题答案光学作为物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象,是一门既有理论基础又有实践应用的学科。
在学习光学的过程中,课后习题是巩固知识、提高理解能力的重要环节。
下面我将为大家提供一些光学教程课后习题的答案,希望对大家的学习有所帮助。
1. 什么是光的折射?折射定律是什么?光的折射是指光线从一种介质传播到另一种介质时,由于介质的光密度不同,光线的传播方向发生改变的现象。
折射定律是描述光的折射现象的基本规律,它可以用一个简单的数学公式表示:n₁sinθ₁ = n₂sinθ₂,其中n₁和n₂分别表示两种介质的折射率,θ₁和θ₂分别表示光线在两种介质中的入射角和折射角。
2. 什么是光的干涉?干涉定律是什么?光的干涉是指两束或多束光线相遇时产生的明暗交替的干涉条纹的现象。
干涉定律是描述光的干涉现象的基本规律,它可以用一个简单的数学公式表示:d·sinθ = mλ,其中d表示两个光源之间的距离,θ表示干涉条纹的倾斜角,m 表示干涉条纹的序数,λ表示光的波长。
3. 什么是光的衍射?衍射定律是什么?光的衍射是指光通过一个孔或绕过一个障碍物后,发生偏折和扩散的现象。
衍射定律是描述光的衍射现象的基本规律,它可以用一个简单的数学公式表示:a·sinθ = mλ,其中a表示衍射孔的尺寸,θ表示衍射角,m表示衍射条纹的序数,λ表示光的波长。
4. 什么是光的反射?反射定律是什么?光的反射是指光线从一种介质射向另一种介质的界面时,由于介质的光密度不同,光线发生改变方向的现象。
反射定律是描述光的反射现象的基本规律,它可以用一个简单的数学公式表示:θ₁ = θ₂,其中θ₁和θ₂分别表示光线在入射介质和反射介质中的入射角和反射角。
5. 什么是光的色散?色散定律是什么?光的色散是指光通过一个介质时,由于介质的折射率与波长有关,不同波长的光线被折射的角度不同,从而产生彩虹色的现象。
光学信息技术原理及技术陈家壁第二版课后习题答案

第一章 习题解答1.1 已知不变线性系统的输入为()()x x g comb = 系统的传递函数⎪⎭⎫⎝⎛bfΛ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f sinc sinc 1,,y x,f ∴,,,,y x,f ====bxa x ab bf af rect y x f bf af rect y x f Wf L f rect y x f y x yx yx F F F F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
陈家璧版_光学信息技术原理及应用习题解答(1-3章)

第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果La 1<,Wb 1<,试证明()()y x f y x f bx a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1证明:(){}(){}(){}()()(){}(){}()y x,f bxsinc a x sinc ab bf afrect y x f y x,f bfaf rect y x f W f L f rect y x f y x,f yxyx y x *⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F,,F ,,F F 1-(2)如果La 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()yx yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x fy x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F FF F F ,F ,F F,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫⎝⎛75⎪⎭⎫⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect xrect x cos f rect f sinc 75f sinc x cos y 7x sin y rect xrect x cos y x h y x fy x g x yxππδπF FF F F ,F ,F F,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75fsinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g yxx y xx y xx x x y xδδδδδπδπF FFF FF F F,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f ff rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comby x g y x y x y x y x y xx y x y x y x y x xy x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F,.,.,.,F FF F F,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
激光原理及应用陈家璧主编习题解答

思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kTh 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
信息光学习题答案

信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题8.1利用4f 系统做阿贝—波特实验,设物函数t (x 1,y 1)为一无限大正交光栅⎥⎦⎤⎢⎣⎡*⨯⎥⎦⎤⎢⎣⎡*=)comb()rect()comb()rect(),(21212111111111b y a y b b x a x b y x t 其中a 1、a 2分别为x 、y 方向上缝的宽度,b 1、b 2则是相应的缝间隔。
频谱面上得到如图8-53(a )所示的频谱。
分别用图8-53(b )(c )(d )所示的三种滤波器进行滤波,求输出面上的光强分布(图中阴影区表示不透明屏)。
图8.53(题8.1 图)解答:根据傅里叶变换原理和性质,频谱函数为T ( f x , f y ) = ℱ [ t ( x 1 , y 1 )]= {11b ℱ [)rect(11a x ]·ℱ [)comb(11b x ] } *{21b ℱ [)rect(21a y ·ℱ [comb(21b y ]} 将函数展开得T ( f x , f y ) = {}•••++++)δ(sinc()δ()sinc()sinc(111111111b 1b 1-x x x f b a f b a f a b a * {}•••++++δ()sinc()δ()sinc()sinc(222222222b 1b 1-y y y f b a f b a f a b a (1) 用滤波器(b )时,其透过率函数可写为1 f x = + 1/ b 1 f y = 0F ( f x , f y ) =0 f x 1/ b 1 f y = 任何值 滤波后的光振幅函数为T ·F = [])δ()δ()sinc(111111b 1b 1-++x x f f b a b a 输出平面光振幅函数为t ’(x 3,y 3)= ℱ -1[ T ·F ]= (exp[)](){exp [sinc(13131111b 2-b 2x j x j b a b a ππ+= )(cos )sinc(131111b 22x b a b a π• 输出强度分布为 I (x 3,y 3)= )(cos )(sinc 1321122121b 24x b a b a π• = )cos()(sinc 131122121b 42x b a b a π• - C 其中C 是一个常数,输出平面上得到的是频率增加一倍的余弦光栅。
(2)用滤波器(c )时,其透过率函数可写为1 f x ,f y 0F ( f x , f y ) =0 f x = f y = 0滤波后的光振幅函数为T ·F = {}•••+++)()sinc()()sinc(11111111b 1b 1-x x f b a f b a b a δδ * {}•••+++)()sinc()()sinc(22222222b 1b 1-y y f b a f b a b a δδ 输出平面光振幅函数为t ’(x 3,y 3)= ℱ -1[ T ·F ]= {[)(rect 1311a x b *])comb(13b x - )rect(1311b x b a } × {[)(rect 2321a y b *])comb(23b y - )rect(2322b y b a }输出强度分布为I (x 3,y 3)= t ’(x 3,y 3) 2有两种可能的结果,见课本中图8.9和图8.10。
(3)用滤波器(d )时,输出平面将得到余弦光栅结构的强度分布,方向与滤波狭缝方向垂直,周期为b ’,它与物光栅周期b 1、b 2的关系为2221111b b b +=’8.2 采用图8-53(b )所示滤波器对光栅频谱进行滤波,可以改变光栅的空间频率,若光栅线密度为100线/mm ,滤波器仅允许 + 2级频谱透过,求输出面上干板记录到的光栅的线密度。
解答:根据对8.1题的分析,当滤波器仅允许+ 2级频谱通过时,输出平面上的光振幅应表达为t ’(x 3)= ℱ -1 { )]()()[sinc(111122-b f b f b a x x ++δδ} = 13111142b x b a b a πcos )c(sin 其振幅分布为一周期函数,空间频率是基频的2倍。
而干板记录到的是强度分布: I = 132112212144b x b a b a πcos )(sinc = 13112212182b x b a b a πcos )(sinc - C 其中C 是一个常数。
答:干板上记录到的光栅频率是基频的4倍,即400线/mm 。
8.3 在4f 系统中,输入物是一个无限大的矩形光栅,设光栅常数d = 4,线宽a =1,最大透过率为1,如不考虑透镜有限尺寸的影响,(a )写出傅里叶平面P 2上的频谱分布表达式;(b )写出输出平面复振幅和光强分布表达式;(c )在频谱面上作高通滤波,挡住零频分量,写出输出平面复振幅和光强分布表达 式; (d )若将一个π位相滤波器 exp (j π) x 2,y 2 ≤ x 0,y 0H (x 2,y 2)=0 其它放在P 2平面的原点上,写出输出平面复振幅和光强分布表达式,并用图形表示。
解答:将8.1题结果代入,其中b 1 = d = 4,a 1 = a = 1,除去与y 分量有关的项,可得(a )P 2平面上的频谱分布为:})()sinc()()sinc(){sinc()(•••++++=414141-4141x x x x f f f f T δδ (b )输出平面:复振幅 t (x 3)= ℱ -1 [T (f x )]若不考虑透镜尺寸的影响,它应该是原物的几何像,即t (x 3) =)[rect(341x *)]comb(43x 光强分布 I (x 3) = | t (x 3)| 2 = )[rect(3161x *234)]comb(x (c)挡住零频分量,输出平面情况与8.1题(3)相同,即t (x 3) = )[rect(341x *)]comb(43x -)rect(4413x I = | t (x 3) | 2由于a = d / 4,所以强度将出现对比度反转,像光栅常数仍为d = 4,线宽为a ’= 3,见下图t (x 3) I (x 3)x 3(d )将一个 exp (j ) f x = f y = 0H (f x ,f y )=1 f x ,f y 0只考虑一维情况,频谱变为T ’(f x )= T (f x )·H (f x )=})()sinc()()sinc()exp(){sinc(•••++++414141-4141x x x f f j f δδπ =})()sinc()()sinc()sinc({•••++++414141-41-41x x x f f f δδ 输出平面上的复振幅为t (x 3) = ℱ -1[T (f x )·H (f x )]= -)[rect()rect(334141x x +*)]comb(43x - )rect(4413x 8.4 图8-54所示的滤波器函数可表示为:1 f x >0H (f f ,f y )= 0 f x =0-1 f x <0此滤波器称为希尔伯特滤波器。
证明希尔伯特滤波能够将弱位相物体的位相变化转变为光强的变化。
L 1 L 2fxx图8.54(题8.4 图)解答:位相物可表达为t 0(x 1,y 1)= A ·exp [ j φ(x 1,y 1)]对于弱位相物有φ 1弧度,上式近似为(忽略A )t 0(x 1,y 1) 1+ j φ(x 1,y 1)滤波平面得到T (f x ,f y )= ℱ [t 0(x 1,y 1)]=(f x ,f y )+ j (f x ,f y ) 其中 (f x ,f y )= ℱ [φ(x 1,y 1)]。
经希尔伯特滤波器,频谱面后的光分布为T ’(f x ,f y )= T (f x ,f y )·H (f f ,f y )j (f x ,f y ) f x 0= 0 f x 0- j (f x ,f y ) f x 0像平面光场复振幅为 (以下无把握) t ’(x 3,y 3)= ℱ -1[T ’(f x ,f y )]j φ(-x 3,-y 3) x 3 0= 0 x 3 0- j φ(-x 3,-y 3) x 3 0光强分布为 I = t ’· t ’∗-φ 2(-x 3,-y 3) x 3 0= 0 x 3 0φ 2(-x 3,-y 3) x 3 0(此结论和于美文书上的答案不一样,建议取消此题)8.5 如图8-55所示,在激光束经透镜会聚的焦点上,放置针孔滤波器,可以提供一个比较均匀的照明光场,试说明其原理。
图8.55(题8.5 图)8.6 光栅的复振幅透过率为t (x )= cos 2πf 0 x把它放在4f 系统输入平面P 1上,在频谱面P 2上的某个一级谱位置放一块λ/ 2位相板,求像面的强度分布。
解答:将复振幅透过率函数变换为t (x )= cos 2πf 0 x = [1+cos 2πf 0 x ] / 2其频谱为T (f x )= ℱ [t (x )] 21=δ(f x )+ 21ℱ [cos 2πf 0 x ] = 21δ(f x )+ 41 δ(f x - f 0)+ 41δ(f x + f 0) 其中第一项为零级谱,后两项以次为+1级和-1级谱。
设将λ/ 2位相板放在+1级谱上,其透过率表达为H (f x )= exp (j π)则频谱面P 2后的光振幅变为T ’= T ·H=21δ(f x )+ 41 δ(f x - f 0)·exp (j π)+ 41δ(f x + f 0) = 21δ(f x )- 41 δ(f x - f 0)+ 41δ(f x + f 0) 像平面光场复振幅为t ’(x )= ℱ -1 [T ’]=21 - 41exp (j 2πf 0x 3)+ 41exp (-j 2πf 0x 3) = 21 - 21j sin (2πf 0x 3) 像平面强度分布为 I =t ’(x ) 2 = t ’(x )· t ’(x )∗ =41[1- j sin (2πf 0x 3)][1+ j sin (2πf 0x 3)] =41+41 sin 2(2πf 0x 3) 像平面得到的仍是一周期函数,其周期缩小1倍,振幅减小4倍,本底也有所变化,并且出现图形的横向位移,位移量为1/2周期。
8.7 在用一维正弦光栅实现两个图象相加或相减的相干处理系统中,设图象A 、B 置于输入平面P 1原点两侧,其振幅透过率分别为:t A (x 1- l ,y 1)和 t B (x 1+ l ,y 1);P 2平面上光栅的空间频率为f 0,它与l 的关系为:f 0 = l /λf ,其中λ和f 分别表示入射光的波长和透镜的焦距;又设坐标原点处于光栅周期的1/4处,光栅的振幅透过率表示为:⎥⎦⎤⎢⎣⎡--+⎩⎨⎧⎥⎦⎤⎢⎣⎡++=)(exp )(exp ),(2222121202022ππππx f j x f j y x G试从数学上证明:1)在输出平面的原点位置得到图象A 、B 的相减运算;2)当光栅原点与坐标原点重合时,在输出平面得到它们的相加运算。