信息光学课后习题解答_苏显渝主编

合集下载

陈家璧版-光学信息技术原理及应用习题解答(4-7章)

陈家璧版-光学信息技术原理及应用习题解答(4-7章)

第四章习题4.1若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。

设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。

若把光谱分布看成是矩形线型,那么相干长度?=c l 证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。

421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆4.2设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。

(1)试求光场的复自相干度的模。

(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。

假设每一根谱线的线型为矩形,光源的归一化功率谱为()^1212rect rect νννννδνδνδν⎡--⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦G (1)光场的复相干度为^1()()exp(2)1sin ()exp(2)[1exp(2)]2r j d c j j τνπντνδντπντπντ∞==+∆⎰G 式中12ννν-=∆,复相干度的模为ντπδνττ∆=cos )(sin )(c r 由于νδν∆ ,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。

相干时间由第一个因子决定,它的第一个零点出现在δντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。

(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为()()()()∑21-21--=+-1=N N n n NνννδνΔgˆ式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。

信息光学习题答案1(word文档良心出品)

信息光学习题答案1(word文档良心出品)

第一章 习题解答1.1 已知不变线性系统的输入为 ()()x x g c o mb= 系统的传递函数⎪⎭⎫⎝⎛b f Λ。

若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。

并画出输出函数及其频谱的图形。

答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。

1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。

因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。

1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。

(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。

信息光学教程全书习题及参考答案

信息光学教程全书习题及参考答案

L{} 来表示,当
2
L{ f ( x, y)} = g (ξ ,η ) , L{ f
1 1
( x, y )} = g 2 (ξ ,η ) ,且 a1 、 a 2 为常数时,
L{a
1 1
f ( x, y ) + a 2 f 2 ( x, y )} = a1 g1 (ξ ,η ) + a 2 g 2 (ξ ,η )
1 ,y 方 2Bx
向的格点距为
1 。 2B y
由此可见,Whittaker-Shannon 二维抽样定理并不是唯一的抽样定理,只要改变这两个 条件中的任何一个,就可以导出别的二维抽样定理。例如,用一个传递函数为
H ( ρ ) = circ( ) 的滤波器来滤波,可导出新的二维抽样定理,其公式描述为: B
2
2
⎞ ⎡ jk 2 2 ⎟ exp ⎢− 2 f x + y ⎟ ⎣ ⎠
(
x
⎛ x +y 2 P0 exp⎜ 2 ⎜ − w2 πw ⎝
2
2
⎡ jk ⎛ 1 1 ⎞ 2 ⎤ ⎞ ⎛ jk 2 ⎞ ⎜ ⎟ ⎟ ⎜ − + exp x exp ⎢ ⎥ ⎜− 2 f y ⎟ ⎟ ⎟ ⎜f f ⎟ 2 ⎝ ⎠ ⎠ x ⎠ ⎝ ⎣ ⎦
g ( x, y ) =
ρ
π
2 n = −∞ m = −∞
∑ ∑ g ( 2B , 2B ) ×


n
m
J 1 [2πB ( x −
n 2 m 2 ) + (y − ) ] 2B 2B n 2 m 2 2πB ( x − ) + (y − ) 2B 2B
式中 B 为空间函数 g ( x, y ) 的频谱以极半径的形式描述的频率带限宽。 公式推导中用到的博里叶变换关系为:

信息光学习题答案

信息光学习题答案

信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。

证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。

n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。

于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。

解:设卷积为g(x)。

当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。

陈家璧版-光学信息技术原理及应用习题解答(4-7章)

陈家璧版-光学信息技术原理及应用习题解答(4-7章)

第四章习题4.1 若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。

设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。

若把光谱分布看成是矩形线型,那么相干长度?=c l证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。

421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆ 4.2 设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。

(1)试求光场的复自相干度的模。

(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。

假设每一根谱线的线型为矩形,光源的归一化功率谱为 (1)光场的复相干度为式中12ννν-=∆,复相干度的模为 由于νδν∆,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。

相干时间由第一个因子决定,它的第一个零点出现在ντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。

(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为 式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。

(1)证明复自相干度的模为 (2)若3=N ,且ντΔ10≤≤,画出()τγ与ντΔ的关系曲线。

答:参阅《统计光学(基本概念个习题)》P131。

证明(1),复相干度)(τγ与归一化功率谱密度即光源的光谱特性间具有下列关系: 将(4.3.1)式带入得到其中()∑-=∆+∆∆--=2)1(022/)1(2211N n j N j nj e e eντπντπντπ 因而(){[]()[][][][]})2e xp ()2e xp (2/2/)1(2e xp 2/)1(2e xp 2/12e xp 2/)1(2e xp)2e xp (1ντπντπντπντπντπντπτνπτγ∆--∆-+∆--+∆--∆-+-∆-=j j N j N j N j N j j N=ντπντπντπτνπ∆-+∆--∆-2cos 12/)1(2cos 2/)1(2cos 12N N eN j =ντπντπτνπ∆∆-sin sin 12N e N j 复相干度的包络则为 (2),当N=3时,其ντγ∆-曲线如图1所示。

信息光学习题答案及解析

信息光学习题答案及解析

信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。

1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。

1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。

于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。

解:设卷积为g(x)。

当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。

信息光学第1章1 103页

信息光学第1章1 103页


y
2

0, others
r0
b. 函数图形
c.所代表的光学元件实物——圆形光阑
一般,成像系统的光阑均为圆孔状,这使 得圆域函数及其相关的弗朗禾费衍射图样 在光学理论中起到非常重要的作用。如“艾 里斑”,就是圆孔的衍射图样。表达“艾里 斑”所对应的光场为:
2 J1 (r )
r
c.圆形孔径的衍射场
2. 写出时间采样频率为1Khz的脉冲信号表达式,并画出图像。
解:f=1Khz,采样周期(间距)τ为1ms=0.001s。 1 c o m b ( t )


描述了幅值为1,间距为1ms的一系列脉冲函数
1.3 卷积
1. 卷积的定义
两个复值函数f(x,y)与h(x,y)的卷积定义为:
g ( x, y ) f ( , ) h ( x , y ) fd( xd,y ) h ( x, y )
(3) 函数的比例性质 (ax) 1 (x)
a
变量替换,利用定义1很容易证明
由此可以推出一个重要的性质:对称性
令a= -1
(x)(x)
从图像更容易理解对称 性。
比如:δ(x-2)是x=2 为对称轴。
• 例 1.4 已知连续函数f(x),利用δ函数可筛选出函数在x=x0+b的值,试 写出数学运算式。
a

sin ca x
a
c. 回顾:记得在哪见过?
c′. 回顾:记得在哪见过?
还记得吗?sinc函数在线性光学里曾几度出现? 上述的单缝、矩孔衍射条纹… 在本门课程中,sinc函数除了在上述场合出现外,还有 其他重要用途, 如它的极限形式,用来定义“狄拉克函数”;它 本身可作为插值函数,来填补不完全信息中的空白部分——往往 会使得丢失的信息竟然全部恢复。

信息光学原理第2章

信息光学原理第2章

2.1 光波的数学描述
2.1.5 复振幅分布的空间频谱(角谱)
利用傅里叶变换对位于单色光场中的xy平面上的复振幅分布进
行傅里叶分析,有
U x, y A fx, fy exp j2 fxx fy y dfxdfy
A fx, fy U x, yexp j2 fxx fy y dxdy
几何光学 (光与宏观物质的作用)
信息光学原理(电子工业出版社) 苏显渝 吕乃光 陈家壁
信息光学是光学和信息科学相结合的新的学科分支。 它研究以光为载体的信息的获取、信息的交换和处 理、信息的传递和传输,是信息科学的一个分支。 信息光学采用线性系统理论、傅里叶分析方法分析 各种光学现象。
第二章
标量衍射理论
cos2 cos2 cos2 1
2.1 光波的数学描述
对于如右图所示 的沿某一确定方向传播的平面波,在xy 平面上的复振幅为:
U x, y, z a exp jkz cos exp jk x cos y cos
a
exp
jkz
1
cos2
cos2
exp
jk
x
cos
y
cos
u x, y, z,t a x, y, zcos 2t x, y, z
其中,v是光波的时间频率;a(x,y,z)和(x,y,z)分别是P点光振动
的振幅和初相位。根据欧拉公式,可将该波函数表示为复指数函数 取实部的形式:
u x, y, z, t Re a x, y, z e j2tx,y,z
参考文献:
(1) W. Lauterborn, T.Kurz, M.Wiesenfeldt, Coherent optics, 北京:世界图书出版社,1998。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n n
( x n) e xp(j x )
n ( 1 ) ( x n)


( x n) e xp(j n) (1) ( x n) ( x n)
n n
n
comb( x ) e xp(j x ) comb( x )
1
f ( )
h(- )
1
0
1

0

(3)、将曲线h(-)沿x轴平移x便得到h(x-),
当x 0时 , f ( )h( x ) 0
因此 g(x)=0
当x 0时, 计算积f(α)h(x α)曲线下面的面积 f ( )
1 h( x - )
0 x
g( x )

g( x )
第一章习题解答
x comb ( ) comb( x ) e xp(j x ) comb( x ) 1.2 证明 2 x x comb( ) ( n) 2 ( x 2n) 证: 2 2 n n
ccomb( x ) e xp(j x )
f ( x ) cos2 x 的响应
试计算各自对输入函数 g1 ( x ) 和 g2 ( x ) 解: H1 ( ) rect( )
H 2 ( )
1 rect( ) 3 3
1 F ( ) ( 1) ( 1) 2 1 G1 ( ) H 1 ( ) ( 1) ( 1) 2 1 rect( ) ( 1) ( 1) 0 2
-1
1.12 已知一平面波的复振幅表达式为
j(2 x 3 y 4 x) U ( x, y, z ) A e xp
试计算其波长以及沿x,y,z方向的空间频率。
U ( x, y, z ) A e xp jk r



A e xp j(k x x k y y kz z )
2
k 2 2 ( x0 y0 ) U0 ( x0 , y0 ) A0 P( x0 , y0 ) exp j 2f
x 0 y0 k 2 2 exp j ( x y A0 circ( ) 0 ) 2f 0 D1 / 2
2 2
将此式代入菲涅耳衍射公式
n
0

n
n为奇数
2 ( x 2n )
1.4 计算下面两个函数的一维卷积
h( x ) 1 x
f ( x) 1 x
1
0
x
0
1
x
解:(1)改变量
h( )
f ( )
0
1

h( x )
0
1

(2)折叠
(3)位移 当 1 x 0
f ( )

kx 2
k y 3
kz 4
k 2 k x k y kz 29
2 k 29
2 2 2 3 2 4
2
2
2
2 29

1

3 2 2

第二章习题解答
2.1单位振幅的平面波垂直入射到一半径为a的圆形孔径上,试 求菲涅耳衍射图样在轴上的强度分布。
g1 ( x )
-1
G1 ( ) 0
1 G2 ( ) H 2 ( ) ( 1) ( 1) 2 1 1 rect( ) ( 1) ( 1) 3 3 2 1 ( 1) ( 1) 6 1 g2 ( x ) G2 ( ) cos 2 x 3
h( x )
相乘、积分得卷积
g( x )
f ( )h( x )d (1 )(1 x )d
x 1 x
1
0 x
1

1 1 1 3 x x 3 2 6
1 1 1 x x3 3 2 6
g( x )
1 x 0
1 1 1 x x3 3 2 6
0
1 x
1

(3)位移 当 1 x 0
1 x
如图
h( x )
f ( )
相乘、积分得卷积
g( x )
0 1 x
f ( )h( x )d
0
1 x
1


1 1 1 3 (1 )(1 x )d x x 0 3 2 6 f ( ) 0 x1 如图

2 e xp



2 2 x
?
2
2 2
2


2 e xp 2 2 2

1.10设线性平移不变系统的原点响应为 h( x ) e xp( x )step( x ) 试计算系统对阶跃函数step(x)的响应。 解: h( x ) exp( x )step( x ) e xp( x ) g( x ) step( x ) h( x ) f ( x ) h( x )
x y0
1 U (0,0, z ) e xp( jkz) jz
x 0 y0 k 2 2 circ( ) e xp j ( x 0 y 0 ) dx0 dy0 a 2z 2 a 1 k 2 e xp( jkz) d e xp j 2z r rdr jz 0 0 1 2z 1 a2 e xp( jkz) e xp( jk ) 1 jz jk 2 2z

x y0
2 x 0 y0 e xp( jkf ) exp ( jkf ) D 1 circ( )dx0 dy0 A0 U (0,0, f ) A0 D1 / 2 j f j f 4 2 2 2 D1 I 0 106 I (0,0, z ) A0 4 f
2 x
0
2
d x 2
2 x
0 x 2
g( x ) d
x
2 x
2 x0 0 x 2
g( x )
2 x
0
x 1 2 x 1 2
其它
2 x0 0 x 2
=2
0
x g( x ) 2 ( ) 2
其它
(3) comb( x ) rect( x )
解: 利用傅里叶变换的坐标缩放性质可求得答案

1 f (ax, by) F( , ) ab a b


2 x 2 ) e xp( x ) e xp(

exp( 2 2 )
2 2

x2 ) e xp exp( 2 2
解: U ( x, y )
1 k 2 exp( jkz) exp j ( x y 2 ) jz 2z 2 k 2 2 U 0 ( x0 , y0 ) exp j z ( xx0 yy0 ) dx0dy0 j 2z ( x 0 y 0 ) exp
1 k 2 2 U ( x, y ) exp( jkz) exp j ( x y ) jz 2z
2 k 2 2 U 0 ( x0 , y0 ) exp j z ( xx0 yy0 ) dx0dy0 j 2z ( x 0 y 0 ) exp
comb( x )
n
( x n) rect( x )
rect( x )
=

comb( x ) rect( x )



1.6 已知 exp( x 2 ) 的傅里叶变换为 exp( 2 ) 试求

e xp( x ) ?
2
x2 )? exp( 2 2
0 x1
0 1.5 计算下列一维卷积
x 1 (1) ( 2 x 3) rect( ) 2 x 1 x 1 ( 2) rect( ) rect( ) 2 2
其它
( 3) comb ( x ) rect( x )
解(1)
(1) ( 2 x 3) rect( x 1 1 3 x 1 ) ( x ) rect( ) 2 2 2 2
f ( x)
1, x0
x0 x0
h( x )
f ( x)
e x ,
0,
x0
其它
0,
1
其它
h( x )
1
0
1
x
0
x
(1)、将f (x)和h (x)变为f ()和h (),并画出相应的曲线
h( ) f ( )
1
1
0
1

0

(2)、将h() h(-) 只要将h()曲线相对纵轴折叠便得到其镜 像h(-)曲线。
2 2
1 2z 1 a2 e xp( jkz) e xp( jk ) 1 jz jk 2 2z 2 2 a a e xp( jkz)cos(k ) j si n ( k ) 1 2z 2z a 2 a 2 e xp( jkz)cos( ) j si n ( ) 1 z z a 2 a 2 a 2 e xp( jkz)cos( ) j 2 si n ( ) cos( ) 1 z 2 z 2 z a 2 a 2 a 2 e xp( jkz)cos(2 ) j 2 si n ( ) cos( ) 1 2z 2 z 2 z 2 2 2 a a a 2 e xp( jkz) 2 si n ( ) j 2 si n ( ) cos( ) 2z 2 z 2 z a 2 a 2 a 2 e xp( jkz) j 2 si n ( ) j si n ( ) cos( ) 2 z 2z 2 z
相关文档
最新文档