第二章时间序列数据的回归模型
时间序列回归模型步骤

时间序列回归模型步骤时间序列回归模型听起来可能有点吓人,像是你在做一道复杂的数学题,但其实它就像生活中的一段旅程,充满了未知和惊喜。
我们得明白什么是时间序列。
简单来说,就是一系列随时间变化的数据,就像你每天记录的天气,或者每周的销售额,这些都是时间序列数据。
咱们得来点有趣的,回归模型就是在这过程中,帮助我们找出数据之间的关系。
就像在找朋友,谁跟谁最有默契,那些数字之间的“友情”关系,真是妙不可言。
好啦,想要开始这个旅程,我们得先收集数据。
就像准备一场派对,没数据就像没有食物,那还叫派对吗?你可以从各种地方获取数据,相关部门网站、公司数据库,甚至社交媒体。
关键是数据要整齐,要有规律,不然就像那种没洗干净的菜,吃起来别提多难受了。
把数据整理好之后,咱们得对它们进行可视化。
你知道的,用图表把数据画出来,看起来就像把一幅风景画挂在墙上一样,赏心悦目。
这时,趋势、季节性和波动性都能一目了然,就像一场精彩的表演,数据们跳着舞,让我们看得目不暇接。
然后啊,咱们得选择一个合适的回归模型。
这里面有好多种选择,简单的线性回归就像是轻松的散步,复杂点的多项式回归就像爬山,虽然费劲,但风景更美。
而且还有季节性模型,适合那些有周期性变化的数据,想象一下,过年时的销售情况就特别有季节性,往年都能给你不少启示。
选择合适的模型之后,接下来就是“训练”它,让模型学会如何看数据。
就像教小朋友学认字,得耐心。
然后,咱们得把数据分成训练集和测试集。
训练集就像是陪伴小朋友成长的家庭,而测试集则是他们出去社会锻炼的机会。
这样做的目的是为了检验我们的模型到底厉害不厉害,能不能在真实情况下发挥作用。
我们就用训练集来“喂养”模型,看看它是怎么消化这些信息的。
用数学公式把模型和数据结合起来,这时候你会发现,模型开始渐渐有了自己的思维,像个聪明的小孩,慢慢掌握了数据的奥秘。
当模型训练完成后,咱们就要进行预测。
哇,这可是最刺激的时刻,像是在开盲盒,充满期待。
时间序列数据差分gmm模型回归

时间序列数据差分GMM模型回归引言时间序列数据是在金融、经济学、气象学等领域中广泛应用的一种数据类型。
时间序列的特点是包含了时间顺序的信息,因此在分析和预测时常常需要考虑时间的影响。
时间序列数据的分析方法有很多种,其中一种常用的方法是差分GMM模型回归。
本文将深入探讨时间序列数据差分GMM模型回归的原理、应用和优势。
什么是时间序列数据差分GMM模型回归?时间序列数据差分GMM模型回归是一种利用差分和广义矩估计方法来建立模型并进行回归分析的方法。
差分是将时间序列数据转化为平稳序列的一种常用方法,平稳序列的特点是均值和方差不随时间变化。
广义矩估计方法(GMM)是一种通过选择适当的权重矩阵来估计参数的方法,可以解决估计过程中的异方差和内生性问题。
差分GMM模型回归可以用于分析和预测时间序列数据的关联性以及变量之间的影响关系。
它可以应用于金融数据中的股票价格预测、经济数据中的经济增长预测等问题。
通过对差分后的时间序列数据进行拟合和回归分析,可以得到关于时间序列数据的有用信息,从而做出准确的预测和决策。
差分GMM模型回归的原理1.差分:差分是将非平稳时间序列数据转化为平稳序列的一种方法。
差分的步骤是将当前观测值减去前一观测值,得到的差分序列具有无趋势和平稳性质。
差分的数学表达式如下:Δx t=x t−x t−1其中,Δx t表示第t时刻的差分值,x t表示第t时刻的原始观测值,x t−1表示第t−1时刻的原始观测值。
2.广义矩估计方法(GMM):广义矩估计方法是一种利用样本矩和理论矩之间的差异来估计参数的方法。
在GMM中,通过选择适当的权重矩阵来优化估计的效果,可以解决估计过程中的异方差和内生性问题。
GMM的数学表达式如下:θ̂GMM=argming(θ)′Wg(θ)θ其中,θ̂GMM表示通过GMM方法得到的参数估计值,θ表示待估计的参数向量,g(θ)表示由样本矩和理论矩之间差异构成的矩方程,W表示选择的权重矩阵。
时间序列 自回归模型

时间序列自回归模型时间序列自回归模型 (Time Series Autoregressive Model) 是一种预测时间序列的方法。
其基本假设是时间序列是自相关(autocorrelated)的,即当前时刻的值受前一时刻的值影响。
本文将基于此介绍时间序列自回归模型的基本概念和步骤。
一、基本概念1、时间序列:指按时间顺序排列的、反映某种变化过程的一系列随机变量值的序列。
时间序列通常不懂静态数据集,而是变化的数据集。
2、自相关性:指时间序列某个数据与其前一个数据之间存在的相关性。
当当前的数据值受到其前一个数据值的影响时,就存在自相关性。
3、自回归模型:指建立在自相关性假设下的对时间序列进行预测的模型。
二、建模步骤1、数据处理:时间序列模型建立的第一步是对数据进行处理,通常包括样本数据的收集、清洗、排序、排除离群值等操作。
2、确定模型类型:根据数据结构,确定一个最适合建模的模型特征,并选择适当的自相关平稳性检验方法(如ADF检验)。
3、选择自回归阶数:根据数据的自相关和偏相关函数图和信息准则等方法,选择合适的自回归阶数。
4、估算参数:利用样本数据,应用最小二乘法或最大似然法等方法对选定的自回归模型进行参数估算。
5、模型诊断:对模型拟合效果进行检验,如残差具有随机性、正态分布,检验该模型是否很好地描述了数据中自回归部分的特征。
三、应用范围时间序列自回归模型是一种通用的数据建模方法,可以适用于各种领域的数据预测,如股票价格预测、气象预测、经济指标预测等等。
但是,在使用时需要考虑到时间序列的动态性,尤其是数据的周期性和节假日等因素带来的干扰。
综上所述,时间序列自回归模型是一种常用的数据预测和建模方法。
建立时间序列自回归模型需要经历数据处理、模型类型的确定、自回归阶数选择、参数估计以及模型诊断等步骤。
应用时需要考虑到数据的周期性和节假日等因素带来的干扰,以达到更加精确的预测效果。
时间序列预测与回归分析模型

40 40 40 40 50 50 50 50 50 50 80 80 80 80 80 15 单位成本(元/小时) 15 15 15 16 14 14 15 15 15 16 14 14 14 14 第 27页
完成量(小时)
( 二)相关图:又称散点图。将x置于横轴上,y置于 纵轴上,将(x,y)绘于坐标图上。用来反映两变 量之间相关关系的图形。
第 3页
首页
上页
下页
结束
2.1.1.1.移动平均 根据时间序列资料逐项推移,依次计算包含 一定项数的序时平均值,以反映长期变化趋 势。 适用于短期预测。 移动平均法能有效地消除预测中的随机波动。 不足: (1)不能很好地反映出未来趋势; (2)需要大量的过去数据的记录。
首页 上页 下页 结束
例:为了研究分析某种劳务产品完成量与其单位产品成本之 间的关系,调查30个同类服务公司得到的原始数据如表。
20 30 20 20 40 30 40 80 80 50 40 30 20 80 50 单位成本(元/小时) 18 16 16 15 16 15 15 14 14 15 15 16 18 14 14
内容从一组样本数据出収确定变量乊间的数学关系式对这些关系式的可信程度进行各种统计检验并从影响某一特定变量的诸多变量中找出哪些变量的影响显著哪些丌显著利用所求的关系式根据一个或几个变量的叏值来预测或控制另一个特定变量的叏值并给出这种预测或控制的精确程度二简单线性回归分析回归模型不回归方程回归模型个或多个数字的或分类的自变量解释变量主要用亍预测和估计回归模型的类型一一个个自自变变量量两个两个及及两个两个以上自以上自变变量量回归模型回归模型多元回归多元回归一元回归一元回归线性回归线性回归非线性回归非线性回归线性回归线性回归非线性回归非线性回归一元线性回归模型概念要点当只涉及一个自变量时称为一元回归若因变量乊间为线性关系时称为一元线性回归
庞浩计量经济学第二章简单线性回归模型

最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε
第二章平稳时间序列模型——ACF和PACF和样本ACFPACF

第⼆章平稳时间序列模型——ACF和PACF和样本ACFPACF⾃相关函数/⾃相关曲线ACFAR(1)模型的ACF:模型为:当其满⾜平稳的必要条件|a1|<1时(所以说,⾃相关系数是在平稳条件下求得的):y(t)和y(t-s)的⽅差是有限常数,y(t)和y(t-s)的协⽅差伽马s除以伽马0,可求得ACF如下:由于{rhoi}其在平稳条件|a1|<1下求得,所以平稳0<a1<1则⾃相关系数是直接收敛到0-1<a1<0则⾃相关系数是震荡收敛到0对于AR(2)模型的ACF:(略去截距项)两边同时乘以y(t),y(t-1),y(t-2)......得到yule-Walker⽅程,然后结合平稳序列的⼀些性质(yule-Walker⽅程法确确实实⽤了协⽅差只与时间间隔有关的性质),得到⾃相关系数如下:rho0恒为1(⼆阶差分⽅程)令⼈惊喜的是,这个⼆阶差分⽅程的特征⽅程和AR(2)模型的是⼀致的。
所以,我们的rho本就是在序列平稳的条件下求得,所以{rhoi}序列也平稳。
当然,其收敛形式取决于a1和a2MA(1)模型的ACF:模型为:由于y(t)的表达式是由⽩噪声序列中的项组成,所以不需要什么平稳条件,就可以求得rho的形式如下:对于MA(p)模型,rho(p+1)开始,之后都为0.所以说,到了p阶之后突然阶段,变为0了。
ARMA(1,1)模型的ACF:模型为:还是使⽤yule-Walker⽅程法(⽤到了序列平稳则协⽅差只与时间间隔有关的性质)得到:所以有:ARMA(p,q)模型的ACF:ARMA(p,q)的⾃相关系数满⾜:(式1)前p个rho值(rho1,rho2...rhop)可以看做yule-Walker⽅程的初始条件,其他滞后值取决于特征⽅程。
(其实是这样的,rho1,rho2...rhop实际上能写出⼀个表达式,⽽rho(p+1)开始,就满⾜⼀个差分⽅程,⽽这个⽅程对应的特征根(即式1)⽅程和AR(p)对应的⼀模⼀样),所以,他会从之后q期开始衰减。
stata 时间序列回归模型

stata 时间序列回归模型使用 Stata 进行时间序列回归建模时间序列分析是统计学的一个分支,用于对按时间顺序排列的数据进行建模和预测。
Stata 是一个用于统计分析的强大软件包,它提供了广泛的功能来处理时间序列数据。
本文将指导您使用Stata 进行时间序列回归建模,重点介绍基本概念、过程和最佳实践。
基本概念时间序列回归模型是一种统计模型,用于预测未来值,同时考虑过去值的影响。
这些模型假设观测值之间存在时间相关性,并利用这种相关性来提高预测精度。
最常见的时间序列回归模型类型包括:自回归(AR)模型:当前值由过去的值线性加权。
移动平均(MA)模型:当前值由过去误差项的线性加权。
自回归移动平均(ARMA)模型:结合 AR 和 MA 模型。
自回归综合移动平均(ARIMA)模型:用于处理非平稳时间序列的 ARMA 扩展。
Stata 中的时间序列回归在 Stata 中,使用 `arima` 命令执行时间序列回归。
该命令需要指定模型类型、滞后阶数和估计选项。
基本的语法如下:```stataarima depvar [indepvars] (p d q) [options]```其中:`depvar` 是您要预测的因变量。
`indepvars` 是任何要包含在模型中的自变量。
`p`、`d` 和 `q` 是 AR、差分和 MA 滞后阶数。
`options` 指定估计选项,例如最大似然法或贝叶斯估计。
例如,要估计具有 1 个 AR 滞后和 2 个 MA 滞后的 ARMA(1,2) 模型,您可以使用以下命令:```stataarima y (1 0 2)```模型选择和诊断选择合适的模型对于时间序列回归至关重要。
Stata 提供了信息准则(例如 AIC 和 BIC)来帮助评估模型的拟合度。
您还可以使用图形诊断,例如残差图和自相关图,来检查模型的假设是否得到满足。
预测和预测区间一旦您选择了一个模型,就可以使用它来预测未来值。
北航金融计量学第二章

编辑课件ppt
3
矩阵表示的最小二乘法
X'X bX'Y b(X'X)1X'y
❖ (如果X有线性独立列)
❖ 通过QR分解求解.
编辑课件ppt
4
b的期望值
E (b)E (X ('X)1X'Y)
E [X ('X)1X'(X )]
E [X ( 'X ) 1 X 'X (X 'X ) 1 X ' )]
X t
1
X X tt2 nX t ( 2
X t2 X t X t)2 X t n
SD(b1)
Xt2 nSXX
SD(b2)
1 SXX
编辑课件ppt
7
2 的估计
T
T
t2
(Yt Yˆt)2
S2 t1 t1
n2 n2
❖ 这里:分母是n-2,因为有两个参数是要被确 定的( 1 和 2 )。 ES2 2
(1)单调递增型: t2随X的增大而增大; (2)单调递减型: t2随X的增大而减小; (3)复 杂 型: t2与X的变化呈复杂形式。
编辑课件ppt
Back19
异方差产生的原因
❖ 1、学习——误差模型。人们随着学习的进展,它们
的特定行为的误差也随之减少。
编辑课件ppt
20
❖ 2、有关收入的模型。随着可支配收入的增加, 人们选择的余地较大,这就会产生异方差性。
R2 RSS1ESS TSS TSS
一元线性回归:H0: 2 =0 多元线性回归:
H1: 2 0
H0: 1= 2=…= m=0 H1: 1, 2,…, m中至少有一个不等于零 方差分析的结论是线性回归方程是否显著,是否
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归模型
回归模型的矩阵表达式: Y=X+U
y1 1 x 11 y2 y 1 x 1 T T xk1 u 1 0 k u xkT T
回归模型
满足经典假设条件时,OLS估计量满足
无偏性 有效性 服从正态分布
1 2 ˆ ~ N ( , ( X 'X ) u)
金融时间序列数据
时间序列数据:某个变量按时间顺序等间隔 排列的数字。 用yt表示变量Y在t时刻的观测值。经常使用的金 融变量包括 :股票指数,债券收益率,期权, 期货远期等资产的价格。t时刻与t+1时刻之间 的时间长度一般是一年,一个季度,一个月等 等,因此称数据有不同的频率,把不同频率的 数据称为年度数据,季度数据,月度数据,周 数据,日数据等。时间序列数据要求时间间隔 是相等的。 观测值的总数也称为样本容量,用T表示。
当使用时间序列数据时的习惯表达式:
y x ... x u , i 1 , 2 ,... T t 0 1 1 t k kt t
回归模型
y和x的不同名称: y
dependent因变量
x
independent 自变量
regressand(回归因变量) regressors(回归自变量)
t
yt 1 0.8 2 1.3 3 -0.9 4 0.2 5 -1.7 6 2.3 7 0.1 8 0.0
yt-1 0.8 1.3 -0.9 0.2 -1.7 2.3 0.1
yt 1.3-0.8=0.5 -0.9-1.3=-2.2 0.2--0.9=1.1 -1.7-0.2=-1.9 2.3--1.7=4.0 0.1-2.3=-2.2 0.0-0.1=-0.1
基本概念
随机过程的参数
均值函数mean function:每个时刻的随机变量求均 值得到的均值序列{t} 自协方差函数autocovariance function:任意两个 时刻变量间的自协方差构成自协方差函数{st} 自相关函数 autocorrelation function:任意两个时 刻变量间的自相关系数构成自相关函数{st}
effect variable(效果变量)causal variables(原因变量)
0, 1 ,…,k被称为系数(coefficients) ut随机扰动项(或称误差项)(random disturbance term)
回归模型
总体回归函数
x ... x , t 1 , 2 ,... T
金融时间序列模型
第二章:时间序列数据的回归模型
金融时间序列模型
回归模型回顾
回归模型
回归简单的说描述一个变量如何随其它变量的 变化而变化。 y 表示需要解释的变量 x1, x2, ... , xk 表示k个解释变量 线性回归模型表达式:
y c x ... x u , i 1 , 2 ,... N i 1 1 i k ki i
回归模型
普通最小二乘法估计结果:
1 ˆ ( X 'X ) X 'Y
估计式(estimator或估计量):计算系数 的公式 估计值(estimate):把样本观测值带入估 计式中计算得到的系数的数值。 隐含着解释变量不存在完全多重共线性
拟和优度和调整后拟和优度
2 ˆ ( y y ) ESS t R2 TSS ( yt y)2
回归模型
样本回归函数
ˆ ˆ ˆ ˆ Y x ... x , t 1 , 2 ,... T t 0 1 1 t k kt
ˆ ˆ ˆx 拟和值fitted value: y ˆ x ... t 0 1 1 t kt kt 残差residual: ˆ ˆt u y t y t
下面表达式哪些正确?
(1 ) y t x t u t ( 2 ) y t ˆ ˆ x t u t ( 3 ) y ˆ ˆ x uˆ
t t t
( 4 ) yˆ t ˆ ˆ x t uˆ t ( 5 ) yˆ t x t ( 6 ) yˆ t x t uˆ t
0 1 1 t kkt
0, 1 ,…,k被称为总体参数或真实值 总体回归函数是因变量的条件期望
E ( y | x , x ,... x ) x ... x t 1 t 2 t k t 0 1 1 t k kt
回归模型
具体的说:线性回归模型中“回归模型”的含义 是该模型的目的是计算因变量相对于自变量的 条件期望,“线性”的含义是假设因变量的条 件期望是解释变量的线性函数。
2 2 ˆ u ( y y ) RSS t 1 t t 1 1 TSS TSS TSS T 1 2 R 1[ (1 R2 )] T k
拟和优度
拟和优度是因变量拟和值和真实值的相 关系数的平方。 拟和优度是模型的变差能被模型解释的 部分。 拟和优度高并不能说明模型好,一个低 的拟和优度并不说明模型不好。 时间序列数据的拟和优度一般都比较高。
基本概念
平稳随机过程 (weakly stationary, covariance stationary ,second order stationary) 如果随机过程二阶矩有界,并且满足以下条件 (1)对任意整数t,E(Yt)= ,为常数; (2)对任意整数t和s,自协方差函数ts仅与t -s 有关,同个别时刻t和s无关。即ts=t-s=k
基本概念来自Yt-1称为一阶滞后变量,这个变量t时刻 的取值等于变量Yt在t-1时刻的值。 Yt-j称为j阶滞后变量,这个变量t时刻的 取值等于变量Yt在t-j时刻的值。 Yt –Yt-1称为一阶差分,用 Yt表示
滞后变量与一阶差分
date 1999:09 1999:10 1999:11 1999:12 2000:01 2000:02 2000:03 2000:04