成因矿物学及应用共40页文档
成因矿物学(矿物的标型性)2

如金刚石原只产于金伯利岩岩筒中,现发现在钾 镁煌斑岩中、基性、超基性岩包体中也有产出,其 中钾镁煌斑岩型金刚石矿床已成为一重要的金刚石 矿床类型。
海绿石:原是海相地层的指示矿物,现在不同 盐度的陆相水体沉积物中也有发现。 3)区域性:有些标型矿物具有全球的适用性, 而有一些只是在某一区域或某一矿床或矿区内适用 ,这是由于当地的构造地质背景决定的。
形成和稳定于某种特定的地质环境,或者只在某一特定的地质作用 中形成的矿物。
特点: 1)矿物的单成因性:
在自然界有些矿物主要趋向于或者只有一种成因。如:铬铁矿主要 产于超基性岩中;斯石英、柯石英专属于高压冲击变质成因(多在陨石坑 和上地幔);辰砂、辉锑矿是低温热液矿床的标志。
2)标型矿物的相对性:
一些是单成因的矿物,在其它成因中也有发现。
5.分布于不同地质时代和不同矿床类型、不同岩石类型中的 矿物同位素组成不同。
如:沉积碳酸盐:δ13C,接近于0值(PDB; 岩浆成因的碳酸盐矿物:δ13C -5.3~-7.0‰; 有机质堆积物:δ13C -24~-29‰; 基性超基性岩矿物组合包裹体中金刚石:δ13C -0.25~-03.44‰ 陨石中有金刚石δ13C -0.58~-0.63‰ 冲击岩中的金刚石δ13C -1.32~-1.87‰
黄铁矿中的Co/Ni:
王奎仁(1989)通过我国65个点,共115件黄铁矿样品的 分析研究指出不同成岩成矿条件下形成的黄铁矿其Co/Ni有一定 的标型特征。 同生沉积:显著小于1,范围0.011~ 0.37 沉积改造:随改造强度而增大,从0.16~0.8到接近于1 沉积变质:随变质程度加深而增大,从1.47~5.75
二、离子占位标型
一些结构复杂矿物中离子占位与其形成时的物理化学条件关系密切。 例如辉石的结构类型受化学成分和温度的控制; 辉石晶体的化学式基本上可用M1M2X2O6表示,X位置通常进行类质 配位数为6,M1位置为Ti4+, Al3+, Cr3+, Fe3+, 同 象代替的是Al, Si 它们占据四面体孔隙,配位数为4,M1M2为八面体孔隙, M2位置为Ca2+, Li+, Na+, K+
成因矿物学矿物的时空分布课件

物的成因
02
岩浆成因矿物
总结词
岩浆成因矿物是在岩浆活动中形成的矿物,主要与岩浆的冷却和结晶有关。
详细描述
岩浆成因矿物通常存在于火山岩和侵入岩中,如橄榄石、辉石、长石等。这些 矿物在高温下形成,并在岩浆冷却过程中结晶出来。
热液成因矿物
总结词
热液成因矿物是在热液活动中形成的矿物,主要与热液的流动和沉淀有关。
利用计算机模拟技术,模拟矿物形成过程,预测新矿物。
技术展望
随着计算机技术的不断发展,模拟精度和范围将进一步提高。
未来应用
计算机模拟将与实验研究更紧密结合,为成因矿物学提供更多理论 支持。
成因物学的研究
06
方法与技
野外地质调查与采样
野外地质调查
通过实地考察、观察和测量,了解矿物的分布、产状、 共生组合等信息,为后续研究提供基础数据。
保存条件
矿物的保存条件也对其时空分布有影响。在 某些条件下,矿物可能会被破坏或改变,而
在其他条件下则可以长期保存。
物形成的
05
算
实验设备与技术
高温高压实验设备
用于模拟地壳深部的温度、压力等环境条件,是 研究矿物形成的重要工具。
电子显微镜
用于观察矿物微结构,了解矿物形成过程中结构 变化。
X射线衍射仪
化学成分的影响
成分
矿物的化学成分是决定其性质和特征的关键因素。例如,某些元素的存在可以改变矿物 的光学性质或磁性。
共生关系
不同矿物之间存在共生关系,一种矿物的存在往往受另一种矿物的存在所影响。了解这 些共生关系有助于更好地理解矿物的成因。
时间因素的影响
成矿期
不同成矿期形成的矿物种类和特征不同。例 如,某些矿物只会在特定的成矿期形成。
成因矿物学矿物共生组合

3
角闪石、云母和石榴子石共生
在酸性火成岩中,角闪石、云母和石榴子石常常 共生在一起,形成一种常见的矿物组合。
变质岩中的矿物共生组合
01
绿泥石、黑云母和白云母共生
在变质岩中,绿泥石、黑云母和白云母常常共生在一起,形成一种常见
的矿物组合。
02
石榴子石、透辉石和硅灰石共生
在变质岩中,石榴子石、透辉石和硅灰石常常共生在一起,形成一种常
沉积岩中的矿物共生组合会受到沉积环境的影响,通过分析矿物共生组合,可 以推断出沉积环境的水深、水动力条件、氧化还原状态等信息。
指示成矿作用的意义
指示成矿物质来源
矿物的共生组合可以提供关于成矿物 质来源的信息,例如岩浆熔离成矿、 接触交代成矿等。
指示成矿时间和过程
通过研究矿物共生组合的演变,可以 推断出成矿作用的时间和过程,有助 于确定矿产资源的形成历史和分布规 律。
指导找矿勘探
矿物共生组合可以指示矿产资源的分布和储量,为找矿勘探提供重 要的依据。
在矿产资源评价和预测中的应用前景
评估矿产资源量和品质
通过研究矿物共生组合,可以评估矿产资源的数量和品质,为资源开发提供科学依据。
预测矿产资源的可利用性和经济价值
根据矿物共生组合的特点,可以预测矿产资源的可利用性和经济价值,为投资决策提供支 持。
野外地质观察
通过实地考察,了解矿物的分布、产状、共生关系等,为室 内研究提供基础数据。
室内实验研究
通过物理、化学实验,模拟矿物的形成过程,探究矿物共生 组合的成因机制。
矿物学与岩石学、地球化学等学科的综合研究
01
02
03
矿物学
研究矿物的化学成分、晶 体结构、物理性质等,揭 示矿物的本质特征。
成因矿物学1

方向及其核心部分的标型学说。
20世纪初,Ф.拜克提出了标型矿物的概念,
为 GM 奠定了矿物标型学说的基础; А.Е.费尔斯曼(А.Е.Ферсман)(1940) 完成对矿物标型学说的全面阐述。
拉姆多尔将矿物标型学说引入矿床学,提出
矿石的标型矿物、标型组合及标型结构构造。
则按照这种规律(即矿物成因标征参数的
变化规律)可以论证所研究矿物和矿物共生组合
的成因。
具体研究时,
一般多采用矿物本身的某几个变量 来反映某些热力学参数(e.g.:T / P)。 e.g.: Hb在薄片中的颜色大致反映tf的高低; OPx的Ca含量反映结晶t的高低; mica的不同多型与结晶t有一定的相关性;
判据: 若Gar 的 MgO wt%: >7﹪, 有希望找到Dm;
<7﹪,
没希望找到Dm
若CPx的
➊ Na2O wt% = 1﹪时,
则 Gar 的 MgO wt%
须>16﹪, <16﹪, 有希望找Dm; 无希望找Dm。
➋ Na2O wt% = 10﹪时,
则须 Gar 的 MgO wt% > 9﹪, 有希望找到Dm。
GM研究,必须注意的问题:
➊ 假设性
➋ 复杂性
➌ 多解性
➍ 片面性 ➎ 表面性 ➏ 地区性
五、研究意义
研究GM的目的:
➊ 为人们寻找矿产资源指出方向; ➋ 为国家急需的矿物原料提出人工合成
的理论依据和有效途径; ➌ 为深入开展地幔研究提供基础资料和 可靠的信息;
➍ 为开拓古气候及古温度变化研究新领地; ➎ 为深入研究地球演化、天体演化
Sph中的FeS组分含量反映结晶时的T、P
对于一个地区或一个矿床进行GM研究 的一般工作步骤:
成因矿物学矿物的时空分布课件

中生代时期是火山活动和岩浆 活动的又一高峰期,形成了大 量的金属矿床,如钨、锡、钼 、铅、锌等。这些矿产主要与 中生代时期的岩浆活动和火山 喷发有关。
新生代时期是地壳运动的重要 时期,也是人类活动逐渐增多 的时期。这一时期的矿产形成 与人类活动密切相关,如一些 贵金属矿产和宝石矿产的形成 。
04
矿物的成因与地质作用
BIG DATA EMPOWERS TO CREATE A NEW
ERA
火成岩与矿物的关系
总结词
火成岩是矿物形成的重要地质体之一,其与矿物的关系主要体现在岩浆岩的形成过程中。
详细描述
在岩浆岩的形成过程中,由于温度、压力等地质环境的变化,岩浆中的矿物质会发生结晶和聚集,形 成各种不同的矿物。这些矿物在火成岩中的分布和组合规律,对于研究火成岩的形成和演化具有重要 意义。
接触交代矿物
这类矿物主要形成于岩浆与围岩 相互接触的区域,岩浆向围岩渗 透过程中与围岩中的矿物发生交 代作用。
水成成因矿物
沉积矿物
这类矿物主要形成于水盆地或滨海、 浅海、深海等环境中,通过沉积作用 从溶液中析出或从悬浮物中沉淀而成 。
热水成因矿物
这类矿物主要形成于高温热液(如温 泉、热泉等)中,通过热水溶液中的 化学反应或交代作用而成形。
案例二:金矿的成因与分布特征
要点一
3. 地球化学条件
要点二
4. 成矿时代
金元素在特定的地球化学环境中才能形成富集。例如,在 还原环境下,金元素更易被吸附在有机质或硫化物矿物中 形成金矿床。
不同时代的地质事件对金矿的形成有不同的影响。例如, 前寒武纪时期的大陆地壳形成过程中,由于地壳隆起和侵 蚀作用,形成了大量的金矿床。而中生代时期的板块碰撞 和岩浆活动则形成了更多的岩浆型金矿床。
成因矿物学

与其他学科关系
与其他学科关系
成因矿物学成因矿物学要解决地质体的成因与含矿性,所以岩石学、矿床学、地层学和古生物学与它关系密 切,它又是研究矿物形成条件的学科,因此它与实验矿物学、实验岩石学相辅相成。矿物对外界应力反应十分敏 感,因此与构造地质学也密切相关。
成因矿物学和找矿勘探学都为找矿与勘探服务,因此两者密切。成因矿物学还与固体物理学、波谱学、物理 化学和胶体化学等学科有关。
相关学科
相关学科
地质学、构造地质学、板块构造学、矿物学、矿床地质学、地层学、层序地层学、地震地层学、生物地层学、 事件地层学、冰川地质学、地震地质学、水文地质学、海洋地质学、火山地质学、煤地质学、石油地质学、区域 地质学、宇宙地质学、地史学、古生物学、古生态学、古地理学、沉积学、地球化学、岩石学、实验岩石学、工 程地质学。
谢谢观看
科。1979年拉扎连柯提出矿物成因分类纲要,并在矿物成因分类中引入矿物标型学说。中国陈光远与其学生 于1963年提出闪石、绿泥石、黑云母、石榴子石等矿物的成因分类和成因矿物族的概念。1987年陈光远等在其 《成因矿物学与找矿矿物学》一书中进一步完善了成因矿物学理论体系。
研究内容
研究内容
成因矿物学归纳起来有下述4个方面:①矿物的发生、发展、形成和变化的条件和过程,即矿物发生史。主 要包括矿物个体发生史,矿物系统发生史(矿物种属发生史、矿物共生组合发生史、矿物成因年代学)。②矿物 形态、成分、性质、产状的内在及其对介质的依赖关系,反映介质状态和条件的宏观标志和微观标志,即矿物的 标型性。矿物温度计和矿物压力计是矿物特征反映出的矿物形成时的温度和压力状况,属于矿物标型范畴。③矿 物和矿物组合的平衡共生及其时空分布规律。④矿物的成因分类,主要根据不同成因的同一矿物种或族具有的化 学成分特点,并结合其形态、性质等标型,对某种或族的矿物进行成因分类建立体系。根据矿床成因划分的矿床 类型。常用的矿床成因分类是依据成矿物质及其来源、成矿环境和成矿作用这3个基本成矿因素来划分的,其中, 成矿作用是划分的主要依据,按此原则划分的矿床成因分类如下:内生矿床岩浆矿床伟晶岩矿床气化热液矿床喷 气矿床(含火山一喷气矿床)接触交代矿床(夕卡岩矿床)热液矿床外生矿床风化矿床残余矿床(残积矿床)淋积矿床 沉积矿床机械沉积矿床(砂矿床)蒸发沉积矿床(盐类矿床等)胶体化学沉积矿床生物一化学沉积矿床(石油、煤等) 变质矿床受变质矿床变成矿床上述成因分类是基本的归类,有人将火山成因矿床独立划出,还可划出由多种成因 形成的层控矿床、叠加矿床等。矿床成因类型的划分有助于合理进行找矿、勘探等工作,也有利于深人研究成矿 规律。随着勘查工作的进展,还将有新的矿床类型被发现,现有的分类还需要进一步补充和完善。
金矿成因矿物学与找矿矿物学

金矿成因矿物学与找矿矿物学引言金矿是一种重要的矿产资源,其存在与地球深部地壳变动有密切关系。
金矿成因矿物学是研究金矿产生的地质过程及相应的矿物组成的学科,而找矿矿物学是以矿物为指示标志来寻找金矿化点的方法。
本文将从金矿成因矿物学和找矿矿物学两个方面来探讨金矿与矿物学的关系及应用。
金矿成因矿物学金矿成因矿物学是研究金矿形成过程的科学,它通过分析和研究金矿矿物的形成机制和特征,揭示金矿形成的地质条件和演化历史。
1. 主要金矿矿物在金矿中存在着一些主要的矿物,如黄金(Au)、石英(SiO2)等。
黄金是金矿的主要矿石,其化学元素符号为Au,属于贵金属。
黄金以其独特的黄色、不锈蚀、延展性和韧性等特点而被广泛应用于珠宝、电子等领域。
石英是一种常见的硅酸盐矿物,其化学成分为SiO2。
在金矿中,石英往往与黄金共生,因为石英具有良好的稳定性和受热性,能够在地壳变动的过程中保存黄金。
2. 金矿形成机制金矿的形成与多种地质作用有关,主要包括构造变化、岩浆活动、热液流体作用等。
构造变化是指地壳中发生的断裂、褶皱等变形,这些变形会导致地壳中的岩石和矿物重新分布。
金矿往往形成于构造变形的断裂和褶皱带附近。
岩浆活动是指地壳中的岩浆运动,通过岩浆的上升和冷却结晶,金矿可以在岩浆中形成或沉淀。
热液流体作用是指地壳中的热水或热气体与矿石接触或通过地下渗透而产生化学反应,形成金矿。
热液流体作用是金矿生成的主要方式之一。
找矿矿物学找矿矿物学是利用矿物学的知识和方法来寻找金矿化点的科学。
通过观察和分析矿物的特征,可以推断出潜在的金矿化区域。
1. 与金矿成因矿物学的关系找矿矿物学与金矿成因矿物学密切相关。
通过对金矿成因矿物学的研究,找矿矿物学可以了解金矿在地质过程中的形成机制和矿物组成,从而指导找矿工作。
2. 金矿指示矿物的特征金矿化过程中存在一些与金矿相关的指示矿物,如黄铁矿、黄铜矿、菱铁矿等。
这些矿物往往与金矿共生或伴生,通过观察这些指示矿物的存在和分布,可以推测出潜在的金矿化点。
成因矿物学

1.深成岩和岩浆矿床的矿物共生组合 2.伟晶岩和伟晶矿床的矿物共生组合 例:花岗伟晶岩,云母、绿柱石
正长伟晶岩,稀土、稀有元素矿物
岩浆岩及岩浆矿床的矿物共生组合
方解石 + 透闪石 + 透辉石 + 钙铝榴石 + 绿帘石 + 斜长石(石 灰 岩、中压)
方解石 + 普通角闪石 + 单斜辉石 + 斜长石 ± 绿帘石(石灰岩、 低压)
变质相 特征矿物
典型矿物组合
夕线石
夕线石 + 铁铝榴石 + 黑云母 + 钾长石 + 石英 ± 斜长石(泥质 岩、中压)
高
夕线石 + 堇青石 + 黑云母 + 钾长石 + 石英 ± 斜长石(泥质岩、
低温热液,Sb、Hg、As,辉锑矿、辰砂、 雄黄、雌黄
化学沉积作用的矿物共生组合
原生岩石的化学风化产物,在水体系中沉 积和成岩过程中的“化学分异”,其化学成分 中的Al、Si、Fe、Mn、P、Ca、Na、K、Mg、 等主要化学元素,在迁移过程中发生分离,并 在水体低部的不同地点分别沉积。这与水动力 学环境、生物作用和化学作用(pH、Eh、胶体 吸附等)相关。
二.晶体化学式的内涵(书写方法)
①阳离子写在化学式的开始,在复盐中阳离子 按碱性强弱顺序排列。
②阴离子写在阳离子的后边,络阴离子则用方 括号[ ]括起来。
③附加阴离子写在主要阴离子或络阴离子之后。
④含水化合物的水分子写在最后,并用圆点 “·”相隔,当含水量不定时,用H2O表示。例:蛋 白石 SiO2·nH2O 或 SiO2·aq (aqua含水缩写)