二维高分子链形态的计算机模拟-高分子物理-实验3-03

合集下载

聚合物链状分子的构象统计——推荐一个高分子实验

聚合物链状分子的构象统计——推荐一个高分子实验

大学化学Univ. Chem. 2022,37 (7), 2110015 (1 of 6)•化学实验• doi: 10.3866/PKU.DXHX202110015 聚合物链状分子的构象统计——推荐一个高分子实验陈彦涛1,*,胡惠媛1,杨波1,石玉磊2,*1深圳大学化学与环境工程学院,广东深圳 5180712深圳浦华系统技术有限公司,广东深圳 518129摘要:介绍了利用分子模拟对链状分子进行构象统计的实验设计。

选取常见且结构简单的聚乙烯作为研究对象,利用软件Materials Studio对聚乙烯进行建模,模拟其运动过程,在微观层面重现了链状分子构象,验证了构象尺寸的标度理论,有利于学生对链构象建立形象化认知。

该实验设计便于学生在个人电脑上操作,满足有限的实验课时要求。

关键词:高分子实验;聚合物链;构象统计;分子模拟中图分类号:G64;O6Conformation Statistics of Polymer Chain: A Recommended Polymer ExperimentYantao Chen 1,*, Huiyuan Hu 1, Bo Yang 1, Yulei Shi 2,*1 School of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518071, Guangdong Province, China.2 Shenzhen Puhua System Tech Co., LTD, Shenzhen 518071, Guangdong Province, China.Abstract:An experimental design on conformation statistics and analysis of polymer chains by means of molecular simulation is introduced in this paper. Polyethylene, which is commonly used and has a simple structure, was selected as the research object, and the “Materials Studio” software was used to construct the polyethylene chain, simulate its thermal relaxation, and verify the scaling theory of conformation size in combination with statistical methods. In this experiment, the latest molecular simulation software was used to reproduce the microscopic images of polymer chains at the microscopic level, which is helpful for students to achieve visual understanding of the concept of “random coils” and deepen their understanding of polymers. In addition, conditions such as vacuum and high temperature were chosen, which considerably accelerate the simulation process and help students quickly obtain reliable experimental results on personal computers and meet the time requirements of the experimental courses.Key Words: Polymer experiment; Polymer chain; Conformation statistics; Molecular simulation高分子拥有数目巨大的构象,这是与小分子的重要区别,也是学习高分子课程过程中的重点与难点。

高分子材料的分子模拟研究及其应用

高分子材料的分子模拟研究及其应用

高分子材料的分子模拟研究及其应用高分子材料是一类特殊的材料,由于它的特殊性质,近年来受到了越来越广泛的关注。

高分子材料的应用领域也变得越来越广,例如塑料、纤维、涂料、胶粘剂以及医用材料等。

分子模拟技术在高分子材料研究领域的应用也越来越受到重视。

高分子材料的分子模拟研究是利用计算机模拟来预测高分子材料的性质和行为,从而为实验室的研究提供理论依据。

分子模拟主要涉及分子动力学模拟和量子化学计算两种方法。

分子动力学模拟可以模拟高分子材料的结构和动力学行为,从而得到高分子的力学性质、热力学性质和功能性质等方面的信息。

由于高分子材料的分子量较大,所以在模拟时需要将高分子体系划分成较小的模块,并考虑模块间相互作用的影响。

这种方法需要在计算机上构建原子模型,并使用数值模拟的方法来检验。

分子动力学模拟的优点是可以模拟高分子材料的宏观特性,例如熔化、流变和聚合等行为,而且可以更加有效的预测高分子材料的性能。

量子化学计算则是通过分子结构、相互作用、电填充状态和振动热等分子属性来计算分子力学和电学性质。

相较于分子动力学模拟方法,量子化学计算方法更加精确。

这种方法需要考虑单个分子的量子化学特性。

由于聚合物的量子化学特性较为复杂,所以通过量子化学计算来得到这些复杂物质的性质较为困难。

由于量子化学计算方法更加精确,它被广泛地应用于原子材料、小分子化学品和有机分子合成等领域中,增强了对这些材料的理解。

高分子材料的分子模拟研究可以预测高分子材料的结构和性质,并为高分子材料的设计和开发提供重要的理论帮助。

例如在材料选择方面,分子模拟可以确定分子之间的相互作用,并预测材料的力学性质和透明性等。

在高分子材料的应用研究方面,分子模拟可以模拟高分子材料在不同环境下的性质,例如在高温、高压和磁场等条件下的行为,从而提高高分子材料的功能性。

此外,分子模拟也可以在制备新材料时发挥重要的作用,例如通过分子动力学模拟来指导聚合物的合成。

在高分子材料研究中,分子模拟技术的应用以及得到的相应结果十分有价值。

高分子物理-第04讲-高分子链的构象统计(选讲)

高分子物理-第04讲-高分子链的构象统计(选讲)

h
2 0
无扰状态下高分子链的均方末端距
(1) 调节溶剂-链节的作用屏蔽掉体积排除 效应 和链节-链节相互作用
达到θ温度的溶液, 测得无扰尺寸<h2>0 (2) 降低高分子链的分辨率—消除局部的刚性和旋 转的不自由将链重新划分成有效链节数 Z 和有效 链节长度 b (Kuhn segment)
粗粒化
近程相互作用: short range interaction
主要是指高分子链节中非键合原子间的相互作用, 主要表现为 斥力.
近程相互排斥作用的存在,使得实际高分子的内旋转受阻, 使之在空间可能有的构象数远远小于自由内旋转的情况。受 阻程度越大,构象数就越少,高分子链的柔性就越小。
远程相互作用: long-distance interaction
高分子链占有体积及交联和氢键等都属于远程相 互作用。
2、均方末端距的计算(统计算法)
三维空间无规行走: 在三维空间中
z
任意行走, 从坐标原点出发, 第跨一
步距离为 l, 走了 n 步后, 出现在离
原点距离为 h 处的小体积单元
dxdydz内的几率大小为 W(h)----末
O
端距的几率密度, 则均方末端距可 x
用下式表示:
h2 Whh2dh 0
dV=dxdydz y
对于一维无规行走, 有: W xdxe2x2dx
对于三维无规行走, 有:
23
2nl2
3
W x,y,zdxdydz e2x2y2z2dxdydz
对于无规行走, 末端距向量在三个坐标轴上的投影的平均 值相等, 且 x2 y2 z2 h23
Review 链段(segment)
单个化学键能否独立运动(旋转)? 不能。因为高分子的链式结构,一个键运动必然 要带动附近其它键一起运动。也就是说,一个键 在空间的取向与相连的其它键有关。

分子模拟的原理与方法

分子模拟的原理与方法

分子模拟的原理与方法分子模拟是一种计算化学的方法,用于研究分子的结构、动力学和热力学性质。

它基于牛顿力学和量子力学的基本原理,通过计算机模拟分子的行为,从而获得有关分子结构和特性的信息。

分子模拟涉及多个学科领域,如计算机科学、物理学、化学和生物学。

本文将重点介绍分子模拟的原理和方法。

1. 分子模拟的原理分子模拟的基本原理是在牛顿力学或量子力学的框架下,构建分子的数学模型,并计算分子在特定条件下的行为。

牛顿力学基于牛顿第二定律,即力等于质量乘以加速度,在此基础上,分子的运动可以通过定量计算来模拟。

量子力学则基于薛定谔方程,以波函数为基础,对分子的运动和结构进行计算。

在分子模拟中,不同的方法选择不同的力场模型,最常用的是分子力场(Molecular Mechanics,MM)和分子轨道(Molecular Orbital,MO)。

分子力场主要考虑原子之间的相互作用,通过选择不同的力场参数可以描述分子的力学和热学性质。

分子轨道则利用量子化学的理论,通过求解薛定谔方程得到分子的能量和电子结构。

2. 分子模拟的方法分子模拟的方法多种多样,常用的方法有分子动力学(Molecular Dynamics,MD)、蒙特卡罗(Monte Carlo,MC)、量子化学计算等。

以下将分别介绍这些方法的基本原理和应用。

2.1 分子动力学分子动力学是模拟分子在一定温度、压力和体积(或密度)条件下运动规律的方法。

它基于牛顿运动定律和正则系综,通过求解拉格朗日方程和哈密顿方程,描述分子在力场作用下的运动轨迹。

分子动力学计算的结果包括分子的构型和动力学性质,如振动频率、热容和热膨胀系数等。

分子动力学的应用范围广泛,包括分子材料、生物分子、纳米颗粒和表面反应等领域。

例如,分子动力学可以用于预测有机分子的溶解度、材料的导电性能、蛋白质的稳定性和反应等。

分子动力学模拟通常需要大量的计算资源和时间,但也可以通过采用并行计算和GPU加速等方式提高计算效率。

分子模拟实验报告分子光谱模拟

分子模拟实验报告分子光谱模拟

分子模拟实验报告分子光谱模拟分子光谱模拟实验报告摘要:本实验采用分子模拟的方法,通过计算机模拟的手段,研究了分子光谱。

通过构建分子模型、选择适当的计算方法和参数,得到了分子的能级结构和光谱。

实验结果表明,分子模拟可以较好地模拟分子的能级和光谱。

这种方法可以为分子光谱的研究提供一种新的途径。

1.引言分子光谱是研究分子内部能级和分子结构的重要手段。

传统的实验方法繁琐且成本较高,分子模拟则是一种新的研究手段,可以通过计算机模拟的方法得到分子的能级结构和光谱。

本实验旨在通过分子模拟的方法,研究分子的光谱现象,并探讨模拟方法的准确性和适用性。

2.实验方法2.1分子模型的构建2.2计算方法和参数的选择选择适当的计算方法和参数对于分子模拟的准确性和有效性具有重要意义。

本次实验采用量子力学方法进行计算,选择了Hartree-Fock方法作为计算方法,并设置了合适的收敛阈值和基组。

2.3能级结构的计算通过计算机程序,对构建的分子模型进行能级结构的计算。

通过求解Schrödinger方程,可以得到分子的不同能级及其能量。

2.4光谱的模拟在能级结构的基础上,模拟分子的光谱现象。

根据波长、频率和吸收强度的关系,得到分子的吸收光谱图和发射光谱图。

3.实验结果与分析3.1能级结构的计算结果通过计算机程序,得到了水分子的能级结构。

结果显示,水分子的基态电子能级为X^1A1,第一激发态能级为A^1B1、各能级的能量差异较小,符合分子光谱的特点。

3.2光谱的模拟结果根据能级结构,模拟了水分子的吸收光谱和发射光谱。

吸收光谱图显示,在不同波长范围内,水分子的吸收强度存在明显的吸收峰,这与实验观测结果一致。

发射光谱图显示,水分子在受激条件下会发出特定波长的光,这也符合实验观测结果。

4.结论通过分子模拟实验,我们成功地模拟了水分子的能级结构和光谱现象。

实验结果表明,分子模拟可以较好地模拟分子的能级和光谱,为分子光谱的研究提供了一种新的途径。

高分子物理第二章 高聚物的聚集态结构

高分子物理第二章  高聚物的聚集态结构

晶态 非晶态
取向结构 Orientation


高分子的聚集态 定 聚合物的基本性能特点 定 材料的性能
控制成型加工条件
获 得
预定材料结构
得 到
预定材料性能
高聚物的聚集态
晶态 一般晶态与半晶态
半晶态 取向晶态与半晶态 玻璃态
非晶态 取向态Leabharlann 橡胶态 粘流态液晶态
织态
第二节 结晶高聚物的结构模型
一、樱状微束模型(两相结构模型)
从而存在最大结晶温 度Tmax
Tmax=(0.80~0.85) Tm
低温
高温
Tmax=0.63 Tm+0.37 Tg-18.5
如: PP Tm=176℃ Tmax=0.85(176+273)K=381K
例 如 定向PS
Tc →Tm时,成核少,但生长快,
容易成为大球晶,不透明,脆,
表面粗糙。
Tc →Tg时,成核多,但生长慢, 容易成为小球晶,可能透明, 脆,表面细致。
这是人们多年来所接受和公认的结晶高聚物的结构模 型。
1、依据: 通过X-衍射
证实:除了有晶 相的衍射环外, 还有由于非晶造 成的弥散环。
2、中心论点: 高聚物只能部分结晶,有晶区,同时也有非晶区,
两相同时并存,一条高分子链可以贯穿好几个晶区和非晶 区,在非晶区中分子链仍是卷曲的。
3、应用: 用此模型可以解释一些实验事实,但有另一些实验事
后来许多聚合物如古塔波胶,PP, 聚α-烯烃,纤维素及衍生物等也相 继培养出了单晶。在电镜下可以清楚 的看到这些单晶具有规则的几何外 形。
Andrew Keller (1925~) 英国
远程有序和进程有序贯穿整个晶体。

无规行走链和自回避行走链的计算机模拟

无规行走链和自回避行走链的计算机模拟

N31Z,R2ccNm的标度关系较难用实验验证。我们尝试用计算机方法来模拟,用四位置模型来模拟=维
高分子链的形态。
在本文所写的程序中,高分子链统计单元数目,即聚合度N可以设置的范围是0~120(如果计算机
的配置更好,此值还可更大)。设置计算次数为100万次,采样间隔为10000。通过在“链长”对话框中输
“T‘
~2,R20CN2,这显然是正确的;当d=3时,"=315,h 20cN∞,R2ccN∞,与实验结果符合;而当d=2
时,v=314,hzocN”,R20CN3/2。d=2是二维单分子层的状态,而单分子层一定是附着在某个支撑物
上。它与支撑物的相互作用对单分子层中高分子链构象的影响是不能忽视的。所以,在二维状态h20c
2结果与讨论
如果忽略体积排斥作用,高分子链的构象可以用无规行走模型链(RW链)来描述。对RW链来说,
在走完前一步后,下一步走向任何方向都是等几率的,因此RW链的均方末端距h 2和均方半径R2与步数
(90聚合度N)成一次方的关系,即hzOCN,R2CCN。如果考虑体积排斥作用,高分子链的构象应该用自
回避行走模型链(sAw链)来描述。与RW链不同,SAW链是在走完前一步后,下一步走向任何方向虽
7 de Gennes Scalinz Concepts in Polymer Physics(吴:太诚,刘杰,朱谱新.等译).高分子物理学中的标度理论.北京:化学 工业出版社.2002:2~7.
COMPUTER SIMULATION ON THE TWO DIMENSIoNAL RANDOM AND SELF—AVoIDING WALK CHAINS
ZHOU Zi—binl,XIE Yong-jun2,YANG Hai—yan92

分子力学模拟方法探究

分子力学模拟方法探究

分子力学模拟方法探究分子力学模拟方法是一种通过计算机模拟和数值计算来研究分子间相互作用和运动行为的方法。

它是现代计算化学和生物物理学的重要工具之一、本文将介绍分子力学模拟方法的基本原理和应用,并探究其在不同领域中的具体应用。

分子力学模拟方法的基本原理是基于牛顿的第二定律和库仑定律的应用。

通过建立分子的结构模型和描述分子间相互作用的势能函数,通过求解运动方程组和数值积分等计算方法,可以模拟出分子体系在不同条件下的稳定结构和运动行为。

分子力学模拟方法在化学、材料科学和生物物理学等领域中有广泛的应用。

在化学领域中,可以利用分子力学模拟方法研究化学反应的动力学和产物的生成机理。

例如,通过模拟反应物在不同温度和压力下的相对稳定结构和能量变化,可以预测反应的速率和选择性。

分子力学模拟方法还可以用于设计新型催化剂和材料,通过模拟不同结构的分子体系的稳定性和反应活性,可以预测材料的性能并指导实验合成。

在材料科学中,分子力学模拟方法可以用于研究材料的力学性质和热力学行为。

通过模拟分子在应力和温度加载下的结构和运动行为,可以预测材料的强度、弹性模量和热膨胀系数等物理性质。

分子力学模拟方法还可以模拟材料的相变行为和晶体生长过程,深入理解材料的结构演化和相变机制。

在生物物理学中,分子力学模拟方法可以用于研究生物大分子的结构和功能。

例如,通过模拟蛋白质的折叠过程和稳定结构,可以揭示蛋白质的结构-功能关系和蛋白质的折叠机制。

分子力学模拟方法还可以模拟蛋白质和小分子药物的相互作用,预测药物的靶点和作用方式。

此外,分子力学模拟方法还可以研究生物膜的结构和功能,模拟离子通道和蛋白质运输机制。

除了以上的应用领域,分子力学模拟方法还可以在环境科学、能源材料和纳米科技等领域中发挥重要作用。

例如,通过模拟污染物在水和大气中的传输和分解,可以预测环境污染物的迁移行为和环境影响。

在能源材料领域,分子力学模拟方法可以用于设计高效的太阳能电池和储能材料,通过模拟光吸收和电荷传输过程,优化材料的光电转换效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 二维高分子链形态的计算机模拟
在“高聚物的结构与性能” (一些学校称为”高分子物理”) 课程教学中,高分子链的形态是教学的重点和难点。

由于单键的内旋转,使得线形大分子这一瞬间的构象与另一瞬间不同,链构象数很大,链的形态不断改变,尺寸也随之发生变化。

决定形态的重要因素是大分子链的化学结构和链单元间的相互作用,在溶液中的高分子链形态还受溶剂和温度的影响。

不同条件下高分子链的形态差别较大,需用不同的模型来描述,如:无规行走(简称RW )和自回避行走(简称SAW )[1,2]。

计算机模拟无疑是事半功倍的:在屏幕上构造SAW 、RW 链,直观展示高分子链的内旋转以及链的形态和尺寸变化,计算链的平均尺寸,验证平均尺寸与聚合度的标度关系,具有实体分子模型和课堂教学所达不到的效果。

本实验应用自编的改进型四位置模型,模拟二维空间中的SAW 、RW 链。

一、实验目的
1.了解SAW 链与RW 链的差别,并理解排除体积效应对高分子链形态及尺寸的影响;
2.初步了解改进型四位置模型;
3.学会用改进型四位置模型模拟二维空间中的SAW 链和RW 链;
4.计算均方末端距、均方回转半径与聚合度的标度关系,并与诺贝尔物理奖获得者De Gennes 的理论值相比较。

二、实验原理
1.RW 链和SAW 链
RW 是假定在走完前一步后,下一步走向任何方向都是等几率的,RW 链的均方末端距2h 和均方回转半径2R 与步数(相当于高分子的聚合度)成一次方的关系,N N h ∝2,N R ∝2。

与RW 不同,SAW 是在走完前一步后,下一步走向任何方向虽然是等几率的,但是必须回避以前已经走过的地方,对于SAW 链,任何两个链单元不可能占据同一个位置。

显然SAW 链的尺寸比RW 链扩张了,2h 和2R 与应具有大于一次方的关系,N ν22N h ∝,ν22N R ∝,这里21>ν。

实际高分子链的链单元都占有一定的体积,链单元间还有斥力,存在排除体积效应。

另外,良溶剂中高分子链单元间也会由于溶剂分子-高分子链单元间的作用所产生的溶胀作用而呈现斥力,因此SAW 模型更符合实际情况。

只有在θ溶剂中,链单元间的斥力刚好与链单元间的Van der Walls 引力相互抵销,高分子链的形态才可用RW 模型描述。

一个不存在
链单元间相互作用的孤立高分子链也可用RW 模型来描述。

1991年度诺贝尔物理奖获得者de Gennes 从理论上推导出2
3+=d ν,d 是晶格的维数,即晶格的维数对高分子链的形态有显著的影响。

当1=d 时,1=ν,22N h ∝,
22N R ∝,这显然是正确的,当3=d 时,3=ν,562N h ∝,562N R ∝,与Flory 的理论以及实验结果都相符,而当2=d 时,43=ν,232N h ∝,232N R ∝,这是二维单分子层,但单分子层与它的支撑相存在的相互作用对单分子层中高分子链形态的影响不能忽视。

所以,232N h ∝,232N R ∝较难用实验验证,但可以尝试用计算机方法来模拟,这也是我们选择模拟二维高分子链形态的原因。

本实验主要模拟计算SAW 链,作为对照,对RW 链也进行了模拟计算。

2.改进型四位置模型简介
四位置模型及键长涨落算法是由Carmesin 和Kremer 提出[6],用于二维格子中,每个链单元的中心位于格子的中心,要用四个格点才能表示这个链单元,比较复杂,算法程序编写繁琐。

为此,作者对四位置模型进行改进,以格点作为链单元的中心,一根链单元只对应一个格点,即四个相邻格子的共同格点,每个链单元的位置用一个格点表示,简化了算法程序的编写。

改进后的模型仍具有原四位置模型的优点,即,在对SAW 链进行抽样时只需检验体积排除条件和键长条件是否满足,如果都满足,键就不可能相交,也就没有必要检验键是否相交。

具体算法如下:(1)预先设定一条聚合度为N 的高分子链的初始构象,可假设是一条沿着格线的直链,键长为2或3;(2)随机选择高分子链的某一链单元;(3)产生该链单元的新位置,即从与该单元相邻的8个格点中随机选择一个格点作为该链单元的新位置;
(4)键长条件检验:计算新位置与原链单元前后键接的链单元之间的距离,如果这一距离在键长范围内,继续下一步,否则原构象再参加一次统计后回到步骤(2);(5)体积排除条件检验:检查在与该链单元新位置邻近的8个格点中除了原链单元外,是否有其它链单元,如果有,则不满足体积排除条件,原构象再参加一次统计后回到步骤(2);(6)产生新构象和高分子链:将该单元迁移至新位置,使得高分子链的构象改变,新构象参与统计后回到步骤(2)。

上述步骤周而复始,直到达到所要求的统计精度。

模拟RW 链比较简单,只要满足键长条件而不需考虑排除体积效应,在上述步骤中去掉第(5)步即可。

三、实验装备
1.CPU主频200MHz以上计算机,20M以上硬盘;128M内存;
2.VGA以上显示器;
3.鼠标器;
4.Windows 95,98,NT,2000,XP;
5.模拟计算软件(20M)。

四、实验步骤
1.程序窗口简介
本实验所使用程序的界面如图1所示。

图1 程序运行界面
在“参数设置”区域中,“链长”输入框用来设置所生成的高分子链统计单元的数目,即聚合度N,范围是0~300(可以更大,取决于计算机的配置)。

“计算数目”输入框用来设置尝试生成高分子链的数目。

需要注意的是,计算数目与成功生成的高分子链的数目是不同的,成功生成的高分子链数目通常要小于计算次数,因为并不是每一次链单元位置的改变都能生成一条有效的高分子链,如果不满足模型的要求,该次计算无效,进行下一次计算。

由于成功生成的高分子链数目仍然很大,因此在“采样间隔”输入框中需设置一定的数值,这样只是有选择地显示一些高分子链的形态,如:设置采样间隔为1000,表示如果成功生成了约500000个高分子链,则在主程序的窗口中只显示每1000链中的其中一个链的形态,一共可显示500个链,500就显示在“获得链数”框中。

通过“下一个”按钮可以在主窗口中依次浏览生成的500个高分子链,当然这500个链的形态是不同的。

也可通过点击“选择”框,打开图2所示对话框,在“输入”框中输入编号,在主窗口中即可浏览相应的高分子链形态,需注意:所选择的编号不能超过“获得链数”中显示的数值。

在主窗口右下的“输出结果”区域,显示的是生成
的高分子链的均方末端距和均方回转半径,如这里就是对约500000个链统计平均后的结果。

图2 “选择”窗口
2.程序的运行
参数设置完成后,点击“开始”按钮就开始运行程序。

首先生成伸直链,如图3所示。

图3 高分子链初始形态-伸直链
“开始”按钮下面的进度条显示当前计算的进度。

在计算完成后,获得一定数量的不同形态的SAW链或RW链。

图4所示的是其中的一个链长为50的SAW链,“获得链数”中显示为373,因采样间隔为1000,表明共生成了约373000个链,但是只显示其中的373个链,在“输入”框中输入20,这样显示的就是这373个链中的第20个。

图4 自回避行走链
3.计算不同链长高分子的平均尺寸
设置一种链长,如50,设置计算数目为100万次,采样间隔为1000。

点击“开始”按钮开始计算,在程序主窗口中可直接观察到链的形态和尺寸在不断变化。

计算完成后,记录均方末端距N 2h 和均方回转半径2R 。

依次在“链长”框中设置不同的数值,计算数目和采样间隔可不变。

每次计算完成后,记录对应的2h 和2R 。

4.验证标度律
如图5、图6所示,在对数坐标系下分别以2h 和2R 对相应的作图,求得斜率, 即分别为N 2h 和2R 对的标度律。

根据de Gennes 理论,对SAW 链,N 21h N ∝.5,
<h 2>
<R 2> 1010010010
N N 图6 均方回转半径对聚合度的作图
图5 均方末端距对聚合度的作图
2 1.5
∝。

将模拟计算结果与理论值比较。

∝,2R N
∝,对RW链,2h N
R N
五、思考题
1.改进的四位置模型与原四位置模型相比有哪些优点?
2.描述一个在良溶剂中的高分子链形态要用哪种模型?而θ溶剂中的高分子链形态又有何特征?需用哪种模型描述?
3.影响高分子链形态的因素有哪些?结合本实验结果和所学高分子物理知识进行讨论。

六、参考文献
1.de Gennes P J.Scaling Concepts in Polymer Physics,Ithaca:Cornell University Press,1979:29~68.
2.杨海洋,易院平,朱平平,何平笙.二维高分子链形态的计算机模拟.高分子通报,2003,(5): 76~80
3.冯新德,唐敖庆,钱人元,等.高分子化学与物理专论.广东:中山大学出版社,1984:139~152.
4.何平笙,杨小震.“分子的性质”软件用于高分子科学教学实验,高分子通报,2000,(1):86~89.
5.何平笙,杨海洋,朱平平,等.高分子物理实验.合肥:中国科技大学出版社,2002,1~16.
6.何平笙,李春娥.高分子物理实验初探.高分子通报,2000,(2):94~96. 7.Carmesin I, Kremer K, Macromolecules, 1988, 21: 2819~2823.。

相关文档
最新文档