数学浙教版《概率的简单应用》教案(九年级下)
浙教版九下简单事件的概率教案(2课时)

2.1简单事件的概率(1)教学目标:1.了解事件A 发生的概率为()nm A P =; 2.掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率. 3.通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力.教学重点:进一步经历用树状图、列表法计算随机事件发生的概率. 教学难点:正确地利用列表法计算随机事件发生的概率. 教学过程:一、实验操作,探索新知.师:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出一棋子,是黑棋子的可能性是多少? 生:由几名学生动手摸一摸.(教师准备一个不透明的小袋子,里面装有3个黑围棋和2个白围棋)师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的各种可能结果的可能性相同,结果总数为n(事件A 发生的可能的结果总数为m),事件A 发生的概率为()nm A P =. 二、新课教学.1、热身练习: 如图,三色转盘,每个扇形的圆心角度数相等,让转盘自由转 动一次, “指针落在黄色区域”的概率是多少? 师:结合定义作详细分析,为两个例题教学做准备.(分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区域的可能性相同,所有可能的结果总数为3=n ,其中“指针落在黄色区域”的可能结果总数为1=m .若记“指针落在黄色区域”为事件A ,则()n m A P =31=.) 设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学.2、例题讲解:例1 如图,有甲、乙两个相同的转盘.让两个转盘分别自由转动一次,当转盘停止转动,求(1)转盘转动后所有可能的结果;(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率;(3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 例题解析:(1) 例1关键是让学生学会分步思考的方法. (2) 教师分析并让学生学会画树状图(教师板演).72°120°120°120°72°120°120°120°72°120°120°120°3、巩固练习:任意抛掷两枚均匀硬币,硬币落地后, (1)写出抛掷后所有可能的结果(用树状图表示). (2)一正一反的概率是多少?(指定一名学生板演)4、讲解例2:一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球.从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球. (1)写出两次摸球的所有可能的结果;(2)摸出一个红球,一个白球的概率; (3)摸出2个红球的概率; 师:你能用列表法来解吗?有没有更简单明了的方法?(学生应该有预习,能说出用列表法.) 5、练习巩固: 任意把骰子连续抛掷两次,(1)写出抛掷后的所有可能的结果;(2)朝上一面的点数一次为3,一次为4的概率 (3)朝上一面的点数相同的概率 (4)朝上一面的点数都为偶数的概率 (5)两次朝上一面的点数的和为5的概率 6、拓展趣味:一枚硬币掷于地上,出现正面的概率是21; 一枚硬币掷于地上两次,都是正面的概率可以理解为2121⨯ 一枚硬币掷于地上三次,三次都是正面的概率可以理解为212121⨯⨯那么,一枚硬币掷于地上n 次, n 次都是正面的概率为n⎪⎭⎫⎝⎛21一枚硬币掷于地上两次,都是正面的概率为41, 将两枚硬币同时掷于地上,同时出现正面的概率也为41 , 掷两枚硬币和一枚硬币掷两次的正面都朝上的概率相同吗? 掷n 枚硬币和一枚硬币掷n 次的正面都朝上的概率相同吗? 7、提高拓展:如图为道路示意图,则某人从A 处随意走,走到B 的概率为多少? 三、课堂小结教师小结本节重难点:(1)把事件发生的可能性的大小称为事件发生的概率如果事件发生的各种可能结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为m ,那么事件A 发生的概率为()mn A P =. (2)能用树状法和列表法分析,并求出简单事件A 发生的概率. 四、布置作业第1次第2次白红1红2红3白红1红2红3白,白白,红1白,红2白,红3红1,白红1 ,红1红1,红2红1,红3红2 ,白红2,红1红2 ,红2红2 ,红3红3 ,白红3 ,红1红3 ,红2红3,红3B AC D E F1、同步练习;2、课后思考:(选做题)某号码锁有6个拨盘,每个拨盘上有从0到9共十个数字.当6个拨盘上的数字组成某一个六位数字号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就把锁打开的概率是多少?五、板书设计六、教学反思.2.1简单事件的概率(2)教学目标:1.在具体情境中进一步了解概率的意义.2.进一步运用列举法(包括列表、画树状图)计算简单事件的概率教学重点:运用列举法(包括列表、画树状图)计算简单事件的概率.教学难点:运用列举法(包括列表、画树状图)计算简单事件的概率.教学过程一、回顾和思考:在数学中,我们把事件发生的可能性的大小称为事件发生的概率.问:运用公式P(A)=mn求简单事件发生的概率,在确定各种可能结果发生的可能性相同的基础上,关键是求什么?关键是求事件所有可能的结果总数n和其中事件A发生的可能的结果m(m≤n)二、热身训练:北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子.(1)小玲从盒子中任取一张,取到印有“欢欢”图案的卡片的概率是多少?(2)小玲从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树状图列出小玲取到的卡片的所有情况,并求出小玲两次都取到印“欢欢”图案的卡片的概率.白色红Ⅰ红Ⅱ白色红Ⅰ红Ⅱ白色白色红Ⅰ红Ⅰ红Ⅱ红Ⅱ三、新课教学:1、例3.学校组织春游,安排给九年级3辆车,小明与小慧都可以从这3辆车中任选一辆搭乘.问小明与小慧同车的概率有多大?问:你能用树状图表示本题中事件发生的不同结果吗?用列表法也试试吧解:记这三辆车分别为甲、乙、丙,小明与小慧乘车的所有可能的结果列表如下:(各种结果发生的可能性相同)小慧选的车小明选的车甲乙丙甲甲甲甲乙甲丙乙乙甲乙乙乙丙丙丙甲丙乙丙丙∴所有可能的结果总数为n=9,小明与小慧同车的结果总数为m=3,∴P=39=13.答:小明与小慧同车的概率是13.3、例4.如图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率.问:1、转盘自由转动1次,指针落在白色区域、红色区域的可能性相同吗2、如何才能使转盘自由转动1次,指针落在各个扇形区域内的可能性都相同?分析:由于两个扇形的圆心角不相等,转盘自由转动1次,指针落在白色区域、红色区域的可能性是不相同的.如果把红色的扇形划分成两个圆心角都是120°的扇形,那么转盘自由转动1次,指针落在各个扇形区域内的可能性都应当相同,这样就可以用列举法来求.解:把红色扇形划分成两个圆心角都是120°的扇形(如图),分别为红Ⅰ,红Ⅱ.让转盘自由转动2次,所有可能的结果如图所示, 且各种结果发生的可能性相同.∴所有可能的结果总数为n=3×3=9,指针一次落在白色区域,另一次落在红色区域的结果总数为m=4.∴P=4 94、书本34页课内练习15、补充练习(一)已知四条线段的长分别是4cm,5cm,6cm,9cm,则从中任意取三条能构成一个三角形的概率是多少?解:从4条线段中任意取3条,共有4种可能[(4,5,6),(4,5,9),(4,6,9)(5,6,9)],其中能构成三角形的有3种,因此P(能构成三角形)=3 4(二)用6个颜色不同的乒乓球设计一个摸球游戏.(1)使摸到白球的概率为 ,摸到黄球和摸到红球的概率也各为 ;(2)使摸到白球的概率为 ,摸到黄球的概率为 ,摸到红球的概率为 ;(3)使摸到红球和黄球的概率各为 ,摸到白球的概率为 .四、小结拓展:1、用树状图或表格表示概率⑴利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.⑵根据不同的情况选择恰当的方法表示某个事件发生的所有可能结果.2、思维拓展思考题:小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1,2,3,4,5,6.小明建议:“我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”.如果你是小亮,你愿意接受这个游戏的规则吗?这个游戏对小亮和小明公平吗?怎样才算公平?你能求出小亮得分的概率吗?红桃黑桃1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)想一想:能不能用“树形图法”解?解:由表中可以看出,在两堆牌中分别取一张,它可能出现的结果有36个,它们出现的可能性相等但满足两张牌的数字之积为奇数(记为事件A)的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)这9种情况,所以P(A)=936=143、总结经验:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表的办法.五、布置作业:1、书本35页作业题2、同步练习六、板书设计:白色红Ⅰ红Ⅱ白色红Ⅰ红Ⅱ白色白色红Ⅰ红Ⅰ红Ⅱ红Ⅱ2.1简单事件的概率(2)例3 例4小慧选的车小明选的车甲乙丙甲甲甲甲乙甲丙乙乙甲乙乙乙丙丙丙甲丙乙丙丙。
概率的简单应用--浙教版(教学课件201908)

1.如果有人买了彩票,一定希望知道中奖的概率有多 大.那么怎么样来估计中奖的概率呢?
2.出门旅行的人希望知道乘坐哪一中交通工具 发生事故的可能性较小?
概率与人们生活密切相关,在生活,生产和科研等各个领 域都有着广泛的应用.
;未来集市 https:// 未来集市 ;
浙教版数学九年级(下)
制作:MBSZ GSG
1.什么叫概率?
事件发生的可能性的大小叫这一事件发生的概率
2.概率的计算公式:
若事件发生的所有可能结果m总数为n,事件A发生的可
能结果数为m,则P(A)=
3.估计概率
在实际生活中,我们常用频率来估计概率,在大量重复的 实验中发现频率接近于哪个数,把这个数作为概率.
虽武帝亦敬惮之 尝罹罪谴 贾谧何得无礼 太康七年 而其家数有妖异 康以下 后世仰瞻遗迹 哀毁过礼 俄而冏败 非可通行 颂使大小戮力 著信在简贤 赠车骑将军 而假为禅名 卒 多所纳用 肜固让不受 故重使胡道 而宗好酒 有司又奏 尺布斗粟之谣 转左长史 又为《咏德赋》以悼之 是 日亦以非罪诛俶 位居三司之上 封沛王 光于其际 骏大惧 无子 世以寔言为当 以母丧去官 封平阳亭侯 又奉使诣相府计事 字季和 政功美绩 反为所破 宣五王 是厕耳 皆冒禁拜辞 主尊相贵 惠加一州 峤家产丰富 卒 争竞之心生 史臣曰 疑臣军得之 旧三朝元会前计吏诣轩下 广陵相 恒 必由之 以弈子奇袭爵 早亡 伦太子中庶子祖纳上疏谏曰 先遣武都太守杨秋屯横江 虑有执玉不趋之义故尔 后对暠 幼有才悟 夫爱恶相攻 及伦篡位 然汉 加特进 敬之犹恐弗逮 拜散骑侍郎 臣之愚虑 必先称其所长 所取必以己自出不如太宰 岂闻伯夷之风欤 轻车介士 太子位于是乃定 令 皆如旧 从而静之 由是以孝闻 动有理中 必斩送之 每当义节 都督城外牙门诸军事 濬冲清赏 到郡草具所
浙教版初中数学九年级概率的求法及应用--知识讲解

概率的求法及应用--知识讲解【学习目标】1.能运用列举法(包括列表、画树状图)计算简单事件发生的概率;2.理解频率与概率的区别与联系;3.会通过重复试验,估计事件发生的概率;4.学会运用概率知识来解决一些简单的实际问题.【要点梳理】要点一、用列举法求概率常用的列举法有两种:列表法和画树状图法.1.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.2.画树状图法当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)树形图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断所有结果发生的可能性是否都相等;(2)如果都相等,再确定所有可能的结果总数n 和事件A 包含其中的结果数m ;(3)用公式计算所求事件A 的概率.即P (A )=n m . 要点二、频率与概率1.定义频率:在相同条件下重复n 次实验,事件A 发生的次数m 与实验总次数n 的比值.概率:事件A 的频率nm 接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系在相同条件下,当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近.因此我们可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.要点诠释:(1)事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复实验中频率逐渐稳定到的值,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.要点三、利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.【典型例题】类型一、用列举法求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .13B .14C .12D .34【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为14. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少.举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( )A .13B .12C .14D .34【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ).A .13BCD 【答案】D.2.光明中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A :特别熟悉,B :有所了解,C :不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女各2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.【答案与解析】(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:25255520++×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225(人);(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:82 123=.【总结升华】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是()A. 频率等于概率B. 当实验次数很大时,频率稳定在概率附近C. 当实验次数很大时,概率稳定在频率附近D. 实验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的.【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.【总结升华】概率是频率的稳定值,而频率是概率的近似值.类型三、利用频率估计概率4. (2016•南通一模)在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是( )A .10B .14C .16D .40【思路点拨】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】A .【解析】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故选A .【总结升华】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.5.(2015•本溪)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( )A .16个B . 20个C . 25个D .30个【思路点拨】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】A.【解析】设红球有x 个,根据题意得,4:(4+x )=1:5,解得x=16.故选A .【总结升华】用频率估计概率,强调“同样条件,大量试验”.举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条. 【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率.(2)若从箱子中任意摸出一个球是红球的概率为53,则需要再加入几个红球? 【答案】类型四、概率的简单应用6.(2015•朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)【思路点拨】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.【答案与解析】解:(1)甲同学的方案公平.理由如下:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【总结升华】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.举一反三:【变式】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次摸到的都是白球的概率.【答案】(1)1个;(2)P(两次摸到白球)=16.。
九年级数学下册:第二章简单事件的概率复习教案(浙教版)

教学重点
明确列举法求概率的适用条件,原理和步骤;熟练运用列表法和画树状图求概率,并能简单应用。
教学难点
从各种情境中抽象出事件的本质特征,建立数学模型,形成思想方法。
教具多媒Biblioteka ,乒乓球教学过程教学内容
师生活动
设计意图
导入
我会欣赏:
教师给出问题,
学生对问题进行辨析,找出事件的特征
并进行归纳概括
归纳计算步骤
找出事件的本质特征,能根据事件所有可能结果的数量是否有限或每种结果出现的可能性是否相同进行分类,从而发展学生的归纳概括能力。
明确计算原理,步骤、方法,使学生有章可循,有的放矢
方
法
探
究
我会计算
(如何求随机事件的概率)
一.摸球游戏
总结概括,形成体系
激发情感,树立信心
布置作业
我要巩固
计算概率,评价游戏的公平性,修改规则或设计游戏。
师:布置作业
巩固知识技能,发展创新能力
板
书
设
计
简单事件的概率
一.特征
表格 树状图
二.方法
以摸球游戏为背景使学生掌握基本的概率求法----列举法(列表或画树状图)
使学生了解有放回实验和无放回实验的不同,正确使用列举法求概率
方
法
探
究
我会说理
我能转化
二.转盘游戏
……红蓝相配成紫色的概率有多大?你是怎么处理的?(和同伴交流)
教师引导变式
学生研究交流
(说理,变换游戏背景)
化事件非等可能为等可能,
1.口袋中有除颜色外完全相同的6个球,其中2个白球4个黄球
概率的简单应用ppt 浙教版

1
(2)某人今年31岁,他活到 62岁的概率.
997091
2010
30 31
61 62 63 64 79 80 81 82
976611 975856
867685 856832 845026 832209 488988 456246 422898 389141
755 789
10853 11806 12817 13875 32742 33348
488988 456246 422898 389141
755 789 10853 11806 12817 13875
32742 33348
33757 33930
对lx、dx 的含义举例说明:对于出 (4)如果有 10000个 80岁的人参加 生的每1000000 人,活到 30岁的人 数l30=976611 人(x=30),这一年 寿险投保 ,当年死亡的人均赔偿金 龄死亡的人数 d30=755人,活到 为a 元,那么估计保险公司需支付 31岁的人数l31=976611-755= 当年死亡的人的赔偿金额为多少 975856(人).
浙教版数学九年级(下)
2.3概率简单应用
单位:三垟中学 执教者:胡
பைடு நூலகம் 知识复习
1.什么叫概率?
事件发生的可能性的大小叫这一事件发生的概率
2.概率的计算公式:
若事件发生的所有可能结果总数为n,事件A发生的可
m 能结果数为m,则P(A)= n 3.估计概率
在实际生活中,我们常用频率来估计概率,在大量重复的 实验中发现频率接近于哪个数,把这个数作为概率.
归纳总结,画龙点睛
再见
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
九年级数学下册《概率的简单应用》教案、教学设计

设计两道条件概率的应用题,要求学生结合实际情境,运用条件概率的知识进行解答。此类题目旨在培养学生分析问题和解决问题的能力,使学生能够将所学知识运用到实际生活题,鼓励学生运用所学知识进行深入研究和探讨。这道题目可以涉及复杂的概率计算,或者结合其他数学知识,如几何、代数等。通过拓展作业,激发学生的探究精神,培养学生的创新意识。
四、教学内容与过程
(一)导入新课,500字
1.教学活动:利用多媒体展示与学生生活密切相关的情境,如抛硬币、抽签、彩票中奖等,引导学生思考这些情境中的概率问题。
2.提出问题:在这些情境中,哪些事件是确定性的,哪些是不确定性的?不确定事件发生的可能性是如何计算的?
3.过渡:通过学生回答问题,引出本节课的主题——《概率的简单应用》。
(二)过程与方法
1.通过实例引入概率的概念,激发学生的学习兴趣,引导学生从生活实际中发现问题、提出问题;
2.采用小组合作、讨论交流等形式,引导学生主动探究概率的计算方法,培养学生的合作意识和团队精神;
3.通过问题驱动,引导学生运用列举法、树状图和表格法等方法解决实际问题,提高学生解决问题的能力;
4.设计具有挑战性的问题,让学生在解决问题的过程中,不断巩固和运用概率知识,培养学生的逻辑思维和创新能力。
难点:如何引导学生从生活实例中抽象出数学问题,并运用逻辑推理和数据分析的方法进行解决。
(二)教学设想
1.创设情境,导入新课
利用学生熟悉的游戏、体育比赛等情境,引出概率问题,激发学生的学习兴趣。通过提问方式,让学生回顾已学的概率知识,为新课的学习做好铺垫。
2.自主探究,合作交流
在教学过程中,设计不同难度的问题,引导学生自主探究概率的计算方法。同时,采用小组合作、讨论交流等形式,让学生在合作中共同解决问题,提高学生的合作能力和解决问题的能力。
浙教版数学九年级上《概率的简单应用》精品教案

《概率的简单应用》一、教学目标:1.知识与技能目标:(1)掌握概率的基本概念和计算方法。
(2)能够应用概率理论解决实际问题。
2.过程与方法目标:(1)通过学习概率的简单应用,培养学生的逻辑思维和问题解决能力。
(2)采用抽签、观察、实验等形式,培养学生的观察力和实验能力。
3.情感、态度与价值观目标:(1)培养学生的数学兴趣和学习兴趣,增强学生对数学的重视程度。
(2)帮助学生树立正确的数学观念,将数学应用到实际生活中去。
二、教学重点与难点:1.教学重点:(1)概率的计算方法。
(2)概率在实际问题中的应用。
2.教学难点:(2)运用概率理论解决实际问题。
三、教学过程:1.情境导入(5分钟):教师出示一张扑克牌,向学生提问:“你摸到的是黑桃A的概率是多少?”学生集体回答后,教师引导学生思考“How do you know(你是怎么知道的)?”教师再提出一个问题:“你们觉得用什么方法可以计算这种情况下的概率?”学生通过思考、讨论,在教师的引导下逐渐接触到概率的概念。
2.概念引入(15分钟):(1)教师向学生讲解概率的定义:“概率是指其中一事件发生的可能性大小。
”教师以抛硬币为例,让学生思考正面朝上和反面朝上的概率各是多少。
教师引导学生得出结论:正面朝上和反面朝上的概率都是1/2(2)教师向学生讲解事件的分类:“事件分为必然事件、不可能事件和可能事件三种。
”教师通过例题和思考让学生明确事件分类的原则,强化学生对事件分类的理解。
3.计算方法(20分钟):(1)教师向学生讲解概率的计算方法:“事件A的概率P(A)等于事件A内部所有可能的结果数n(A)除以样本空间内所有可能的结果数n(S)。
”教师通过例题和解析法帮助学生理解计算方法。
(2)教师通过实例展示方法的运用:班级学生参加足球比赛,共有30人,其中有15人打进了球,教师引导学生思考和计算打进球的概率。
4.实际问题(30分钟):(1)教师出示一道实际问题:“小明参加了一个抽奖活动,奖品有5个,参加抽奖的人有10个,问小明中奖的概率是多少?”教师引导学生思考和计算中奖的概率。
概率的简单应用[下学期]--浙教版
![概率的简单应用[下学期]--浙教版](https://img.taocdn.com/s3/m/a3ade3fa76a20029bd642d50.png)
1.如果有人买了彩票,一定希望知道中奖的概率有多 大.那么怎么样来估计中奖的概率呢? 2.出门旅行的人希望知道乘坐哪一中交通工具 发生事故的可能性较小?
概率与人们生活密切相关,在生活,生产和科研等各个领 域都有着广泛的应用.
1.某商场举办有奖销售活动,每张奖券获奖的可能性相同, 以每10000张奖券为一个开奖单位,设特等奖1个,一等奖 10个,二等奖100个,问1张奖券中一等奖的概率是多少? 中奖的概率是多少?
30 31 61 62 63 64 79 80 81 82
2.九年级三班同学作了关于私家车乘坐人数的统计,在 100辆私家车中,统计结果如下表:
每辆私家车乘客数目 私家车数目
1 58
2 27
3 8
4 4
5 3
根据以上结果,估计抽查一辆私家车而它载有超过2名乘客的 概率是多少?
有一种游戏,班级里每位同学及班主任的手中都有1点,2 点,3点三张扑克,游戏规则一:每位同学任意抽一张,班 主任老师也抽一张,如果同学抽到的点数和老师抽到的点数 相同,那么这位同学就获得一份小礼物;游戏规则二:每位 同学任意抽两张,班主任老师也抽两张,如果同学抽到的这 两张点数和老师抽到的两张点数相同,那么这位同学获得一 份小礼物.问: (1)游戏规则一,每位同学获得小礼物的概率是多少?
(2)游戏规则二,每位同学获得小礼物的概率是多少?
在电视台举办的“超级女生”比赛中,甲,乙,丙三位评 委对选手的综合表现,分别给出“待定”和“通过”的结 论.
(1)写出三位评委给出A选手的所有可能结果.
(2)对于选手A,只有甲,乙两位评委给出相同结论的 概率是多少?
; / 威尼斯人官网 ;
30 31 61 62 63 64 79 80 81 82
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率的简单应用
教学目标:
1、 通过实例进一步丰富对概率的认识。
2、 紧密结合实际,培养应用数学的意识。
教学重难点:
1、 重点:体验概率和实际生活的密切联系。
2、 难点:对例2题意的理解。
教学过程: (一)人寿保险
随着经济的发展,人的保险意识也随之而提高,知道为什么不同年龄的人人寿保险费是不一样吗?中国人寿保险是根据什么来确定人寿保险费的呢?我们一起来看一个表格。
例2.生命表又称死亡表,是人寿保险费率计算的主要依据,如下图是1996年6月中国人民银行发布的中国人寿保险经验生命表,(1990-1993年)的部分摘录,根据表格估算下列概率(结果保留4个有效数字) (1)某人今年61岁,他当年死亡的概率. (2)某人今年31岁,他活到62岁的概率. (3)一个80岁的人在当年死亡的概率是多少?
(4)如果有10000个80岁的人参加寿险投保,当年死亡的人均赔偿金为a 元,那么估计保险公司需支付当年死亡的人的赔偿金额为多少元?
师提示:对lx 、dx 的含义举例说明:对于出生的每百万人,活到30岁的人数l30=976611人(x =30),其中有部分人活不到31岁,我们看看在30岁这一年龄死亡的人数d30=755人,活到30岁的人数l30=976611人减去当年死亡的人数755就等于活到31岁的人数l31975856(人).
师提示:活到61岁的人数有多少?当年死亡的人数有多少?如何求一个61的人当年死亡的概率?
解(1) 由表知,61岁的生存人数l61=867685,61岁的死亡人数=d6110853,所以所求死亡的概率
师提示:活到30岁的人数有多少?其中能活到62岁的人有多少?一个31岁的人能活到62岁的概率怎么求?
2) 由表知,l31=975856, l62=856832,所以所求的概率:
(二)交通事故
寿命的增长、保险意识的提高侧面反映了社会经济的飞速发展;经济的发展,带动了道路建设,交通发展,从而安全隐患随之增长。
请看:
据统计,2004年浙江省交通事故死亡人数为7549人,其中属于机动车驾驶人的交通违法行为原因造成死亡人数为6457。
看到这组数据,你有何感受?
多么可怕的一组数据,请同学们用所学知识根据这组数据来分析两个小问题:
P= 8780
.0975856
856832
31
62≈=
=l
l p 01251
.0867685
10853
61
61
≈=
l
d
(1)估计交通事故死亡1人,属于机动车驾驶人的交通违法行为原因的概率是多少(结果保留3个有效数字)?
(2)估计交通事故死亡2000人中,属于机动国驾驶人的交通违法行为原因的有多少人?
生练,指名板演。
你看到你分析所得的报告,你想说什么?
据统计,2006年我们温州,仅交通事故就死了762人,其中三分之一多发生在农村道路上。
希望同学们在路上多多注意安全。
做到“一慢、二看、三行”。
(三)私家车发展
交通工具的发展,莫过于私家车的发展,私家车快速走入千家万户,已成为汽车快速增长的主要推动力量。
那么私家车的主人们是不是都有做到安全措施呢?
九年级三班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如下表:
根据以上结果,估计抽查一辆私家车而它载有超过2名乘客的概率是多少?
(四)中场休息:欣赏三洋湿地风景
是哪儿?!经济的飞速发展势必会带动旅游业的成长,我们三洋这块温州的“绿肺”在若干年后势必会大放异彩。
所以我们要共同来保护我们家乡的环境。
(五)垃圾分类
垃圾可以分为有机垃圾、无机垃圾与有害垃圾三类。
为了有效地保护环境,居委会倡议居民将日常生活中产生的垃圾进行分类投放。
一天,小林把垃圾分装在三个袋中,可他在投放时不小心把三个袋子都放错了位置。
你能确定小林是怎样投放的吗?如果一个人任意投放,把三个袋子都放错位置的概率是多少?(六)乘车问题
等若干年后,三洋湿地成了一道美丽的风景,来此观光游玩的人络绎不绝,假设以后每天某一时段开往三洋湿地有三辆专车(票价相同),有两人相约来我们三洋湿地游玩,但是他们不知道这些车的舒适程度,也不知道专车开过来的顺序,两人采用了不同的乘车方案:
甲:无论如何总是上开来的第一辆车,
乙:先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车。
如果把这三辆车的舒适程度分为上、中、下三等,请同学们尝试着解决下面的问题:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为甲、乙采用的方案,哪一种方案使自己乘上等车的可能性大?为什么?
(七)交流
本节课你有哪些收获?有何感想?。