高级人工智能 史忠植
史忠植 高级人工智能(中科院)第四章

• 依物理规律将微分方程转换成定性(代数)方程, 或直接依物理 规律建立定性模拟或给出定性进程描述。 11 史忠植 高级人工智能 • 2012-03-14 最后给出定性解释
定性模型推理
de Kleer研究解决经典物理问题需要哪些知识及如何 建立问题求解系统。他提出的定性模型方法所涉及 的物理系统是由管子、阀门、容器等装置组成, 约束 条件(定性方程)反映在这些装置的连接处, 依定性方 程给出定性解释。 为将代数方程、微分方程定性化, 首先需定义变 量的定性值集合以及相应的定性运算。
2012-03-14 史忠植 高级人工智能 26
定性进程推理
演绎过程 在进程定性推理中,其演绎过程如下: (1) 选进程。 对一组已知的个体来说, 在进程表中依各进程对个 体的说明找出可能出现的那些进程例PI。 (2) 确定激活的 PI。依前提条件、数量条件确定每个 PI的状态。 满足这些条件的为激活的 PI , 激活的 PI 叫进程结构。 (3) 确定量的变化。 个体的变化由相应量的 Ds 值来表示。量的 变化可由进程直接影响,也可由∝Q间接影响。 (4) 确定进程结构变化。量的变化将会引起进程结构的变化,确 定这种变化也叫限制分析, 这样对一个物理过程的描述便由 (1)建 立的 PI 进入了下一个 PI 。 重复(1)-(4) 的步骤便可给出一个物理过程的一串进程描述。
2012-03-14 史忠植 高级人工智能 20
定性进程推理
(3) 单一机制假设。物理进程被看作是产生变化的机制。 这样,任何变化必须解释为某些物理进程的直接或 间接的影响。进程本体论为定性物理理论的因果性 打下了基础。 (4) 组合的定性数学。人们进行复杂系统推理时,使用 部分信息并进行组合。 (5) 清晰的表示及关于模型化假设的推理。明确地表示 某些特定知识的适用条件,并从领域理论中为特定 系统建模成为定性物理的中心任务。
史忠植 高级人工智能(中科院)第三章

2012-03-08
史忠植 约束推理
7
线性规划问题
解:设 x1 , x 2 , x3 , x 4 , x5 分别是第一个月内电视台 a,电视台 b,每日晨报,星期日报,广播电台进行广告宣传的次数,则 其数学模型为: max 50 x1 + 80 x 2 + 30 x3 + 40 x 4 + 15x5 500 x1 + 1000 x 2 + 100 x3 + 300 x 4 + 80 x5 ≤ 20000, x1 + x 2 ≥ 8, x3 + x 4 ≥ 15, 500 x1 + 1000 x 2 ≤ 12000, s.t. x1 ≤ 16, x 2 ≤ 10, x3 ≤ 24, x 4 ≤ 4,15 ≤ x5 ≤ 25, x1 , x 2 , x3 , x 4 , x5 ≥ 0.
约束推理
• 约束搜索 约束搜索主要研究有限域上的约束满足。对有限域而言, 约束满足问题一般情况下 是 一个 NP 问题。 • 约束语言
2012-03-08
史忠植 约束推理
16
约束搜索
• 回溯法。 • 约束传播。 • 智能回溯与真值维护。 • 可变次序例示。 • 局部修正法。
2012-03-08 史忠植 约束推理 17
2012-03-08 史忠植 约束推理 21
要的。
面向对象约束语言COPS
COPS系统利用面向对象技术,将说明性约束表达与类型层次 结合起来。在形式上吸收了常规语言,主要是面向对象的程序设 计语言的基本形式。内部求解时采用约束推理机制,使说明性约 束表达式与类型层次相结合,实现知识的结构化封装,充分发挥 两者的优点,力图实现一个具有较强表达能力和较高求解效率的 约束满足系统。
史忠植 高级人工智能(中科院)第二章

可靠性和完备性
可靠性(reliable)
一个逻辑是可靠的,如果它的证明保持真假值, 即在任何解释I下,如果I是Ψ 的模型,且ϕ可由Ψ推导 出,则I也是ϕ的一个模型。即,一个逻辑是可靠的, 如果对任何语句集合Ψ和语句ϕ , Ψ ⊢ϕ蕴涵Ψ ⊨ϕ 。
完备性(complete)
2012-03-08 史忠植 逻辑基础 8
解
释(语义)
语言的解释是在某个论域(domain)中定义非逻辑 符号。语句的语义是在解释下定义出语言L的真假值。 如果I是L的一个解释,且ϕ在I中为真,则记为 I ⊨ϕ ,称作I满足ϕ ,或者I 是ϕ的一个模型。 类似地,给定一个语句Ψ和一个语句ϕ ,如果对 每个解释I ,有I ⊨Ψ 蕴含I ⊨ϕ ,换言之,如果I 是Ψ 的一个模型则I也是ϕ的一个模型,则记为Ψ ⊨ϕ ,我 们称ϕ为Ψ的一个逻辑结果。
2012-03-08
史忠植 逻辑基础
15
逻辑程序设计
消解原理(归结原理) Horn逻辑 Prolog逻辑程序设计语言
2012-03-08
史忠植 逻辑基础
16
归结原理
P,P → Q Q
P , ¬P ∨ Q Q
例: C2 = P∨Q C1 = ¬P∨Q∨R 则C1与C2归结后的结果为:Q∨R 若子句集S能导出空子句⊓(有否证),则称S 是不可满足的。 反证法: S ⊢ A iff S ∪ ¬A ⊢ ⊓
史忠植 逻辑基础
22
Prolog语言的基本文法
Prolog语言的最基本语言成分是项(term),一个 项或者是常量,或者是变量,或者是一个结构。 • 常量:是指对象和对象之间的特定关系的名;
整数,如0,22,1586等; 原子,如John,student,likes,sister-of
AAI06归纳学习 高级人工智能 史忠植

选择型泛化规则
(5) 爬山泛化树规则 CTX & [L = a] ::> K CTX & [L = b] ::> K … CTX & [L = i] ::> K |< CTX & [L = S] ::> K 其中L是结构描述符,在L的泛化树域中,S表示后继为 a,b,…, i的最低的父节点。
史忠植 高级人工智能
29
变型空间
变型空间方法的初始 G 集是最上面的一个点 (最一般的概念),初 始 S集是最下面的直线 上的点(训练正例), 初始 H集是整 个规则空间。在搜索过 程中,G 集逐步下移 (进行特化),S 集逐 步上移(进行泛化), H 逐步缩小。最后 H收 敛为只含一个要求的概 念。
(sm
y)
(l y) g
(x squ)
(x ci r)
(x t ) ri
(sm
squ)
2013-8-4
(l squ) g
(sm
ci r)
(l ci g r)
(sm
t ) ri
(l t ) g ri
33
史忠植 高级人工智能
第三个训练实例(lg cir)
(x y)
(sm
y)
(l y) g
(x squ)
概述
给定关于某个概念的一系列已知的正例和反例,其任 务是从中归纳出一个一般的概念描述。归纳学习能够获得 新的概念,创立新的规则,发现新的理论。
泛化(generalization)用来扩展一假设的语义信息, 以使其能够包含更多的正例,应用于更多的情况。 特化(specialization)是泛化的相反的操作,用于限 制概念描述的应用范围。
aai10-1_分布式人工智能 高级人工智能 史忠植

10.4.3 RAO逻辑框架
目标:以一种自然的方式描述多主体系 统中关于别的主体的状态的推理过程。 系统的分类:由于多主体系统太复杂, 建立一种通用的推理模式的想法是不 现实的,有必要对系统分类以便区别 对待。 常识的获得:和单个主体情形一样,常 识问题是阻碍推理的大难题。
2013-8-4 史忠植 高级人工智能 4
分布式人工智能系统的主要优点
1) 2) 3) 4) 提高问题求解能力。 提高问题求解效率。 扩大应用范围。 降低软件的复杂性。
2013-8-4
史忠植 高级人工智能
5
10.2 分布式问题求解
特点: 数据、知识、控制均分布在系统的各节 点上,既无全局控制,也无全局数据和 知识存储。
2013-8-4 史忠植 高级人工智能 17
BDI解释器
BDI-Interpreter initialize-state(); do options := option-generator(event-queue, B, G, I); selected-options := deliberate(options, B, G, I); update-intentions(selected-options, I); execute(I); get-new-external-events(); drop-successful-attitudes(B,G,I); drop-impossible-attitudes(B,G,I); until quit
2013-8-4 史忠植 高级人工智能 38
主体间的消息传递
目标G
Agent i
消息M
意图I 言语行为 消息M
Agent i
人工智能之智能科学高级人工智能史忠植

统的有效控制,提高了生产效率和安全性。
史忠植对人工智能发展的贡献
推动人工智能技术进步
培养优秀人才
史忠植教授在人工智能领域的研究成 果不仅提高了技术水平,还为该领域 的发展提供了新的思路和方法。
史忠植教授在人工智能领域培养了一 大批优秀人才,这些人才在国内外学 术界和工业界都取得了杰出成就。
促进人工智能应用普及
史忠植教授的研究成果在实际应用中 取得了显著效果,推动了人工智能技 术的普及和应用。
史忠植对智能科学的推动与影响
引领智能科学研究方向
史忠植教授的研究成果为智能科学的发展指明了方向,引领了该领域的研究潮流。
促进智能科学与多学科交叉融合
史忠植教授的研究成果将智能科学与计算机科学、控制科学、心理学等学科进行了深度融 合,推动了多学科交叉研究的进展。
自主智能系统
具备自主感知、决策、执行和学习能力,能 够独立完成复杂任务的系统。
智能机器人
结合传感器、控制器和执行器等硬件设备, 实现人机交互和自主行动的机器人系统。
04
史忠植的贡献与影响
史忠植的主要研究成果
01
提出基于知识的智能系统框架
史忠植教授在人工智能领域最早提出基于知识的智能系统框架,将知识
专家系统
利用专家知识和推理规则进行问题求 解的系统,能够提供专业领域的咨询 和服务。
知识工程
研究如何获取、表示、存储、检索和 应用知识的科学,是人工智能领域的 重要分支。
人工神经网络与深度学习
人工神经网络
模拟生物神经网络结构和功能的计算模型,通过训练不断优化网络参数,实现复杂的数据处理和模式识别。
获取、推理、学习和问题求解等智能活动统一于一体,为后续的智能系
AAI06归纳学习 高级人工智能 史忠植PPT课件

12.11.2020
史忠植 高级人工智能
18
选择型泛化规则
(7) 将合取转换为析取规则 F1 & F2 ::> K |< F1 F2 ::> K 其中F1,F2为任意描述。
12.11.2020
史忠植 高级人工智能
19
选择型泛化规则
(8) 扩充量词范围规则 x,F[x] ::> k |< x, F[x] ::> k (I1)x,F[x] ::> K |< (I2)x, F[x]::> K 其中I1,I2是量词的域(整数集合), 且I1 I2
15
选择型泛化规则
(3) 扩大引用范围规则
CTX & [L = R1] ::> K |< CTX \& [L = R_2] ::> K 其中R1 R2 DOM(L), DOM(L) 为L的域,L是一个项, Ri是L取值的一个集合。
(4) 闭区间规则
CTX & [L = a] ::> K
CTX & [L = b] ::> K
12.11.2020
史忠植 高级人工智能
17
选择型泛化规则
(6) 将常量转换为变量规则
F[F[x]
其中F[x]是依赖于变量x的描述符,a,b, …, i是常量。
对于描述F[x], 若x的某些值(a,b, … , i)使F[x]成立,
则可得到假设:对于x的所有值,F[x]成立。
第六章 归纳学习
中科院计算所
12.11.2020
史忠植 高级人工智能
1
内容提要
6.1 归纳学习的逻辑基础 6.2 偏置变换 6.3 变型空间方法 6.4 AQ归纳学习算法 6.5 产生与测试方法 6.6 决策树学习 6.7 归纳学习的计算理论 6.8 支持下向量机
aai02人工智能逻辑 高级人工智能 史忠植

逻辑的历史
• Aristotle——逻辑学 • Leibnitz——数理逻辑 • Gottlob Frege (1848-1925)——一阶谓词演 算系统,《符号论》 • 20世纪30年代,数理逻辑广泛发展
2013-8-4
史忠植 高级人工智能
3
重要的形式工具──逻辑
在本世纪30年代以后,数学方法广泛渗透与运 用于数理逻辑,使得数理逻辑成为数学领域中与代 数、几何等并列的学科之一。现代数理逻辑可以分 为逻辑运算、证明论、公理集合论、递归论和模型 论。
逻辑系统
一个逻辑系统是定义语言和它的含义的方法。 逻辑系统中的一个逻辑理论是该逻辑的语言的一 个语句集合,它包括: • 逻辑符号集合:在所有该逻辑的逻辑理论中均出现的符号; • 非逻辑符号集合:不同的逻辑理论中出现的不同的符号; • 语句规则:定义什么样的符号串是有意义的; • 证明:什么样的符号串是一个合理的证明; • 语义规则:定义符号串的语义。
逻辑简介逻辑程序设计非单调逻辑缺省逻辑限定逻辑真值维护系统情景演算逻辑的历史逻辑系统命题逻辑谓词逻辑11逻辑的历史aristotle逻辑学leibnitz数理逻辑gottlobfrege18481925一阶谓词演算系统符号论20世纪30年代数理逻辑广泛发展12逻辑系统一个逻辑系统是定义语言和它的含义的方法
史忠植 高级人工智能
2013-8-4
4
关于知识的表示与推理
智能行为的基础是知识,尤其是所谓的常识性知识。 人类的智能行为对于知识的依赖主要表现在对于知识的 利用,即利用已经具有的知识进行分析、猜测、判断、 预测等等。人类利用知识可以预测未来,由已知的情况 推测未知的情况、由发生的事件预测还未发生的事件等 等。但是,当人们希望计算机具有智能行为时,除了告 诉计算机如何像人一样地利用知识以外(对于知识进行 推理),一个更为基础和先行的工作是如何使计算机具 有知识(对于知识进行表示),即在计算机上如何表达 人类的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:8106
高级人工智能
ADVANCED ARTIFICIAL INTELLIGENCE
类型:AB 学时/学分:60/3, 机时:20
预修课程
数理逻辑、人工智能原理
教学目的和要求
(1) 了解人工智能前沿研究领域
(2) 了解人工智能最新研究成果
(3) 掌握基本思想和关键技术
(4) 培养人工智能研究能力
内容提要和简要目录
本课讲授和讨论人工智能前沿研究领域的主要思想和关键技术。
主要内容有
非单调逻辑、自动推理、机器学习、分布式人工智能、人工思维、人工生命、大规模并行人工智能等。
简要目录
第一章绪论
1.1 人工智能的认知问题
1.2 思维的层次模型
1.3 符号智能
1.4 人工智能的发展概况
1.5 人工智能的研究方法
1.5.1 认知学派
1.5.2 逻辑学派
1.5.3 行为学派
1.6 自动推理
1.7 机器学习
1.8 分布式人工智能
1.9 人工思维模型
1.10 知识系统
第二章人工智能逻辑
2.1 逻辑-----重要的形式工具
2.1.1 逻辑程序设计
2.1.2 关于知识的表示与推理
2.2 非单调逻辑
2.3 默认逻辑
2.4 限定逻辑
2.5 自认知逻辑
2.5.1 Moore系统${\cal L}_{B}$
2.5.2 $\cal O \cal L$ 逻辑
2.5.3 标准型定理
2.5.4 $\diamondsuit-$ 记号以及稳定扩张的一种判定过程2.6 真值维护系统
2.7 情景演算的逻辑基础
2.7.1 刻划情景演算的多类逻辑$\bf LR$
2.7.2 $\bf LR$中的基本动作理论
2.7.3 多类逻辑$\bf LR$的改进
第三章约束推理
3.1 概述
3.2 回溯法
3.3 约束传播
3.4 约束传播在树搜索中的作用
3.5 智能回溯与真值维护
3.6 变量例示次序与赋值次序
3.7 局部修正搜索法
3.8 基于图的回跳法
3.9 基于影响的回跳法
3.10 约束关系运算的处理
3.10.1 恒等关系的单元共享策略
3.10.2 区间传播
3.10.3 不等式图
3.10.4 不等式推理
3.11 约束推理系统COPS
第四章定性推理
4.1 概述
4.2 定性推理的基本方法
4.3 定性模型推理
4.4 定性进程推理
4.5 定性仿真推理
4.5.1 定性状态转换
4.5.2 QSIM算法
4.6 代数方法
4.7 几何空间定性推理
4.7.1 空间逻辑
4.7.2 空间时间关系描述
4.7.3 空间和时间逻辑的应用
4.7.4 Randell算法
第五章基于范例推理
5.1 概述
5.2 基于范例学习的一般过程
5.3 范例的表示
5.3.1 语义记忆单元
5.3.2 记忆网
5.4 基于记忆网的范例检索
5.4.1 检索问题
5.4.2 语义记忆单元和范例检索
5.4.3 检索信息集与源范例的对应
5.4.4 单概念的范例检索算法AS
5.4.5 多概念的范例检索算法AM
5.5 相似性关系
5.5.1 语义相似性
5.5.2 结构相似性
5.5.3 目标特征
5.5.4 个体相似性
5.5.5 相似性计算
5.5.6 优选过程
5.5.7 约束满足理论
5.6 范例复用
5.6.1 类比映射
5.6.2 类比转换
5.7 范例保存
5.8 基于范例的规划设计程序
5.9 范例库维护
5.10 基于范例推理的洪水预报系统FOREZ 第六章归纳学习
6.1 概述
6.2 归纳学习的逻辑基础
6.2.1 归纳学习的一般模式
6.2.2 概念获取的条件
6.2.3 问题背景知识
6.2.4 选择型和构造型泛化规则
6.3 偏置变换
6.4 变型空间方法
6.4.1 消除候选元素算法
6.4.2 两种改进算法
6.5 AQ归纳学习算法
6.6 产生与测试方法
6.7 决策树学习
6.7.1 CLS学习算法
6.7.2 ID3学习算法
6.7.3 ID4学习算法
6.7.4 ID5学习算法
6.8 归纳学习的计算理论
6.8.1 Gold学习理论
6.8.2 模型推理系统
6.8.3 Valiant 学习理论
第七章类比学习
7.1 什么是类比学习
7.2 类比的形式定义
7.3 基于抽象的有用类比推理
7.4 转换类比
7.4.1 手段--目的分析的问题求解模型 7.4.2 类比求解问题计算模型
7.4.3 问题求解状态变换
7.4.4 转换类比学习系统
7.4.5 类比学习的泛化规则
7.5 派生类比
7.6 因果关系型类比学习
7.6.1 类比匹配技术与相似性度量概述 7.6.2 知识表示
7.6.3 类比匹配
7.6.4 抽取问题的特征
7.6.5 相似度的计算方法
7.6.6 最佳对应关系匹配
7.7 联想类比学习
7.7.1 联想类比
7.7.2 联想类比条件
7.8 约束满足类比
7.8.1 三类约束
7.8.2 约束满足理论
7.8.3 ACME 第八章解释学习
8.1 概述
8.2 解释学习模型
8.3 解释泛化学习方法
8.3.1 基本原理
8.3.2 解释与泛化交替进行
8.4 全局取代解释泛化方法
8.5 解释特化学习方法
8.6 解释泛化的逻辑程序
8.6.1 工作原理
8.6.2 元解释器
8.6.3 实验例子
8.7 基于知识块的SOAR系统
8.8 可操作性标准
8.8.1 PRODIGY 的效用问题
8.8.2 SOAR系统的可操作性
8.8.3 MRS-EBG的可操作性
8.8.4 META-LEX的处理方法
8.9 不完全领域知识下的解释学习
8.9.1 不完全领域知识
8.9.2 逆归结方法
8.9.3 基于深层知识方法
第九章知识发现和数据开采
9.1 概述
9.2 数据驱动知识发现------BACON 9.3 模型躯动知识发现------COPER 9.4 理论驱动式发现方法
9.4.1 知识表示
9.4.2 学习实现
9.4.3 学习发现
9.5 概念聚类
9.5.1 概念内聚
9.5.2 聚类方法
9.6 数据开采
9.7 数据开采的数学工具------粗糙集 9.7.1 粗糙集理论
9.7.2 粗糙分类
9.7.3 渔网算法
9.8 广义粗糙集
9.9 基于粗糙集的数据约简
9.10 以数据仓库为基础的数据开采
9.10.1 数据仓库
9.10.2 联想规则发现算法
9.11 知识发现工具KDT
9.11.1 系统结构
9.11.2 知识发现算法
第十章分布式人工智能
10.1 概述
10.2 分布式问题求解
10.2.1 分布式问题求解系统分类
10.2.2 分布式问题求解过程
10.3 主体
10.4 主体理论
10.4.1 理性主体
10.4.2 BDI主体模型
10.4.3 RAO逻辑框架
10.4.4 关于对别人进行推理的一个模式---换位推理 10.4.5 动作理论
10.4.6 次协调机制的引进
10.5 主体结构
10.5.1 反应主体
10.5.2 认知主体
10.5.3 复合式主体
10.6 主体通信
10.6.1 KQML
10.6.2 主体通信语言SACL
10.6.3 SACL语法结构
10.6.4 SACL保留关键字
10.7 主体的协调与协作
10.7.1 计算生态学
10.7.2 基于对策论的协调与协作
10.7.3 协商
10.8 多主体处理环境MAPE
10.8.1 主体的逻辑结构
10.8.2 主体虚拟层
10.8.3 主体逻辑层
10.8.4 主体概念层
10.8.5 多主体系统的总体结构
10.8.6 主体创建
10.8.7 多主体系统构建
第十一章进化计算
11.1 概述
11.2 进化系统理论的形式模型
11.3 达尔文进化算法
11.4 分类器系统
11.5 桶链算法
11.6 遗传算法
11.6.1 遗传算法的主要步骤
11.6.2 表示模式
11.6.3 杂交操作
11.6.4 变异操作
11.6.5 反转操作
11.7 并行遗传算法
11.8 分类器系统 Boole
11.9 规则发现系统
11.10 进化策略
11.11 进化程序设计
第十二章人工生命
12.1 引言
12.2 研究人工生命的原因
12.3 人工生命的探索
12.4 人工生命模型
12.5 人工生命的研究方法和战略
12.6 计算机生命
12.7 细胞自动机
12.8 形态形成理论
12.9 混沌理论
四、教材
1. 史忠植:高级人工智能, 科学出版社,1998
五、参考书
六、教学方式
课堂讲授和讨论
七、考查方式
课程设计 40%
闭卷考试 60%
撰写人:史忠植。