最新北师大版高中数学选修4-4测试题全套及答案

合集下载

最新北师大版高中数学高中数学选修4-4第二章《参数方程》测试卷(含答案解析)

最新北师大版高中数学高中数学选修4-4第二章《参数方程》测试卷(含答案解析)

一、选择题1.设直线1l 的参数方程为113x ty t =+⎧⎨=+⎩(t 为参数),直线2l 的方程为34y x =+,则1l 与2l 的距离为( )A .1B .105C .3105D .22.P 是直线:40l x y +-=上的动点,Q 是曲线C :3cos sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)上的动点,则PQ 的最小值是( ) A .522B .22C .2D .3223.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1B .1-C .21-D .21--4.已知P 为曲线3cos 4sin x y θθ=⎧⎨=⎩(θ为参数,0θπ)上一点,O 为原点,直线PO 的倾斜角为4π,则P 点的坐标是( ) A .(3,4)B .32,222⎛⎫⎪⎪⎝⎭ C .(-3,-4)D .1212,55⎛⎫⎪⎝⎭5.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .6.在方程sin {cos 2x y θθ==(θ为参数)所表示的曲线上的点是 ( )A .(2,7)B .12(,)33C .(1,0)D .11(,)227.已知椭圆C 的参数方程为3cos 5sin x y θθ=⎧⎨=⎩(θ为参数),则C 的两个焦点坐标是( )A .(4,0)±B .(0,4)±C .(34,0)D .(0,34)8.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( ) A 7 B 7C 7 D 7 9.椭圆221164x y +=上的点到直线220x y +-=的最大距离是( )A .3B 11C .22D 1010.直线1sin 70{2cos70x t y t =+=+(t 为参数)的倾斜角为 ( )A .70°B .20°C .160°D .110°11.极坐标系中,由三条曲线围成的图形的面积是( )A .B .C .D .12.椭圆221169x y +=上的点到直线34132x y += )A .0B .25C .52D .241325- 二、填空题13.已知点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩,(θ为参数)上,则yx 的取值范围为_____.14.已知直线l 的普通方程为x+y+1=0,点P 是曲线3(x cos C y sin ααα⎧=⎪⎨=⎪⎩:为参数)上的任意一点,则点P 到直线l 的距离的最大值为______.15.已知直线参数方程为355435x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线与圆5ρ=交于B 、C 两点,则线段BC 中点直角坐标________.16.直线415{315x ty t=+=--(t 为参数)被曲线24πρθ⎛⎫=+ ⎪⎝⎭所截得的弦长为 .17.设点(),x y 是曲线C 2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且02θπ≤<)上的任意一点,则yx的最大值为________. 18.已知在极坐标系中,曲线C 的极坐标方程是2sin 4cos 0ρθθ+=,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,直线l 的参数方程是1123x t t y ⎧=-+⎪⎪⎨⎪=⎪⎩(为参数),M(03l 与曲线C 的公共点为P ,Q ,则11PM QM+=_______19.实数x ,y 满足223412x y +=,则2x +的最大值______.20.直线3,423x t y t =⎧⎪⎨=+⎪⎩(t 为参数),点C 在椭圆2214x y +=上运动,则椭圆上点C 到直线l 的最大距离为______.三、解答题21.将圆224x y +=上每一点的横坐标保持不变,纵坐标变为原来的12,得曲线C . (1)求出C 的参数方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设P 是曲线C 上的一个动点,求点P到直线:20l x y +-=距离的最小值. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x ty t =+⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,曲线2C 的极坐标方程为2sin ρθ=,曲线3C 的极坐标方程为(0)6πθρ=>.(1)求曲线1C 的普通方程和3C 的直角坐标方程; (2)设3C 分别交1C 、2C 于点P 、Q ,求1C PQ ∆的面积.23.已知直线l的参数方程为1222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在平面直角坐标系xOy 中,()1,2P ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线M 的极坐标方程为4cos ρθ=,直线l 与曲线M 交于A ,B 两点. (1)求曲线M 的直角坐标方程; (2)求PA PB ⋅的值.24.在平面直角坐标系xOy 中,直线l经过点(P -,其倾斜角为α,设曲线S 的参数方程为1x k y k ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=. (1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围.25.在平面直角坐标系xoy 中,直线1l 的参数方程为4x ty kt=-⎧⎨=⎩,(t 为参数),直线2l 的普通方程为1yx k,设1l 与2l 的交点为P ,当k 变化时,记点P 的轨迹为曲线1C . 在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,直线3l的方程为:sin()4πρθ-=(1)求曲线1C 的普通方程;(2)设点A 在3l 上,点B 在1C 上,若直线AB 与3l 的夹角为4π,求AB 的最大值. 26.在直角坐标系xOy 中,曲线1C 的参数方程为325425x t y t⎧=-+⎪⎪⎨⎪=-+⎪⎩,(t 是参数).以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为cos ρθ=4. (1)求1C 的普通方程和2C 的直角坐标方程; (2)若12,C C 交于,A B 两点,P 点坐标为()2,2--,求11PA PB+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】消掉参数t ,得出直线1l 的普通方程,再由两平行线的距离公式求解即可. 【详解】∵1:32l y x =-,234l x =+,∴d ===. 故选:C 【点睛】本题主要考查了参数方程化普通方程,求两平行线间的距离,属于中档题.2.C解析:C 【分析】设点,sin )Q θθ,利用点到直线的距离公式,结合三角函数的性质,即可求解.【详解】由曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数,设点,sin )Q θθ,则点Q 到直线:40l x y +-=的距离为d ==,当2,6k k Z πθπ=+∈时,min d ==故选:C. 【点睛】本题主要考查曲线的参数方程,点到直线的距离公式,以及三角函数的恒等变换和余弦函数的性质的应用,着重考查运算与求解能力,以及转换能力,属于基础题.3.C解析:C 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则231114x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤ ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值4.D解析:D 【解析】 【分析】根据两点斜率公式求出点P 的参数θ即可求解. 【详解】设点P 的坐标为(3cos ,4sin )θθ. 由题意知3cos 4sin θθ=,∴3tan 4θ=,又0θπ, ∴3sin 5θ=,4cos 5θ=,∴4123cos 355x θ==⨯=,3124sin 455y θ==⨯=, ∴点P 的坐标为1212,55⎛⎫⎪⎝⎭.故选D. 【点睛】本题考查椭圆的参数方程,直线的倾斜角.5.D解析:D 【分析】消参化简整理得221x y +=,即得方程对应的曲线. 【详解】将1t x =代入y =,化简整理得221x y +=,同时x 不为零,且x ,y 的符号一致, 故选D. 【点睛】本题主要考查参数方程与普通方程的互化,考查圆的方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D 【解析】分析:化参数方程2x sin y cos θθ=⎧⎨=⎩(θ为参数)为普通方程,将四个点代入验证即可.详解:方程2x sin y cos θθ=⎧⎨=⎩(θ为参数)消去参数得到212,y x =-将四个点代入验证只有D满足方程. 故选D.点睛:本题考查参数分析与普通方程的互化,属基础题 7.B解析:B 【解析】分析:将参数方程化为普通方程,判断出焦点在y 轴上,利用222c a b =-即可得结果.详解:椭圆的参数方程为3cos (5x y sin θθθ=⎧⎨=⎩为参数), ∴椭圆的标准方程是221925+=x y ,∴椭圆的焦点在y 轴上,且2225,9a b ==,22216c a b ∴=-=,4c ∴=, ∴椭圆的两个焦点坐标是()0,4±,故选B.点睛:本题主要考查椭圆的参数方程以及椭圆的简单性质,属于中档题. 参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程.8.A解析:A 【分析】先求出椭圆的普通方程,再求其离心率得解. 【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以.所以e=4. 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=9.D解析:D 【分析】设椭圆221164x y +=上的点P (4cosθ,2sinθ),由点到直线20x y +=的距离公式,计算可得答案. 【详解】设椭圆221164x y +=上的点P (4cosθ,2sinθ)则点P到直线20x y +=的距离=,max d ==D .【点睛】本题考查直线和椭圆的位置关系,解题时要认真审题,仔细求解.10.B解析:B 【解析】 由题设可知02cos 70sin 20tan 201sin 70cos 20y k x -====-,故依据直线的斜率与与倾斜角之间的关系可知该直线的倾斜角为020α=,应选答案B 。

新北师大版高中数学高中数学选修4-4第二章《参数方程》测试卷(答案解析)(1)

新北师大版高中数学高中数学选修4-4第二章《参数方程》测试卷(答案解析)(1)

一、选择题1.过椭圆C :2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,则11m n+的值为() A .23B .43C .83D .不能确定2.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心3.已知直线3:2x tl y t⎧=⎪⎨=-⎪⎩(t 为参数),抛物线C 的方程22,y x l =与C 交于12,P P ,则点()0,2A 到12,P P 两点距离之和是( )A .43+B .2(23)+C .4(23)+D .83+4.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( ) A .74B .73C .72D .755.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线2:cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠6.圆C 的极坐标方程为ρ2cos θ=,则圆心C 极坐标为 ( ) A .()2,0B .()1,πC .()1,0D .()2,π7.直线(为参数)被曲线截得的弦长是( )A .B .2C .D .28.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为( )A .24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B .24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b9.椭圆221169x y +=上的点到直线34132x y +=上的点的最近距离是( )A .0B .25C .52D .241325- 10.已知圆()22:11M x y -+=,圆()22:11N x y ++=,直线12,l l 分别过圆心,M N ,且1l 与圆M 相交于,A B 两点,2l 与圆N 相交于,C D 两点,点P 是椭圆22149x y+=上任意一点,则PA PB PC PD ⋅+⋅的最小值为( ) A .7B .8C .9D .1011.已知两条曲线的参数方程1C :5cos 5sin x y θθ=⎧⎨=⎩(θ为参数)和2C :4cos 453sin 45x t y t =+︒⎧⎨=+︒⎩(t 为参数),则这两条曲线的交点为端点的线段的长度是( ) A .5B .52C .7D .7212.已知点A 是曲线2213x y +=上任意一点,则点A 到直线sin()66πρθ+=的距离的最大值是( )A .62B .6C .362D .26二、填空题13.在极坐标系中,曲线的方程为,以极点为直角坐标系的原点,极轴为轴的正半轴,建立直角坐标系,设为曲线上一动点,则的取值范围为_____________14.直线1{2x t y t =-=-(t 为参数)与曲线3{2x cos y sin θθ==(θ为参数)的交点个数是_______.15.已知曲线C :2cos sin x y θθ=⎧⎨=⎩(θ为参数).若点P 在曲线C 上运动,点Q 为直线:350l x y +=-上的动点,则PQ 的最小值为________.16.直线170{?270x tsin y tcos =+=+(t 为参数)的倾斜角为_________17.椭圆2219x y +=上的点P 到点(2,0)A 的最小距离为___________18.在平面直角坐标系xOy 中,点O 是坐标原点,点A(2,1),B(0,2),点P 在圆()2211x y -+=上运动,若OA xOB yOP =+,则2x y +的最小值为________.19.在直角坐标系中,曲线1C 的参数方程为cos ,sin ,x y θθ=⎧⎨=⎩[]0,πθ∈,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为sin cos bρθθ=-.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是_______.20.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的参数方程为1cos ,sin x t y t αα=-+⎧⎨=⎩(t 为参数),曲线C 的方程为4cos ρθ=(02πθ≤≤),()2,0C .直线l 与曲线C 相交于A ,B 两点,当ABC 的面积最大时,tan α=______. 三、解答题21.已知直线1l 过点()1,3M ,倾斜角是3π,直线2:sin cos 20l ρθρθ+-=. (1)写出直线1l 的参数方程;(2)直线1l 与直线2l 的交点为N ,求MN .22.在直角坐标系xOy 中,曲线1C 过点(0,1)P -,其参数方程为1231x t y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线2C :22(0)y px p =>过点(1,2). (1)求曲线2C 的方程; (2)若1C 和2C 交于,A B 两点,求11PA PB+的值. 23.在直角坐标系xOy 中,曲线C 的参数方程为2cos ,3x y αα=⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+=⎪⎝⎭(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于M ,N 两点,且设点(2,1)P ,求22||||PM PN +的值.24.在直角坐标系x y O 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρθ=.(1)写出圆C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的极坐标.25.在平面直角坐标系xOy 中,直线l经过点(P -,其倾斜角为α,设曲线S 的参数方程为1x k y k ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=. (1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围. 26.极坐标系中椭圆C 的方程为2222cos 2sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(Ⅰ)求该椭圆的直角标方程,若椭圆上任一点坐标为(),P x y,求x 的取值范围;(Ⅱ)若椭圆的两条弦AB ,CD 交于点Q ,且直线AB 与CD 的倾斜角互补,求证:QA QB QC QD ⋅=⋅.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】消去参数得到椭圆的普通方程,求得焦点坐标,写出直线l 的参数方程,代入椭圆的普通方程,写出韦达定理,由此求得11m n+的值. 【详解】消去参数得到椭圆的普通方程为22143x y +=,故焦点()1,0F ,设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(α为参数),代入椭圆方程并化简得()223sin 6cos 90t t αα++⋅-=.故1212226cos 9,03sin 3sin t t t t ααα+=-⋅=-<++(12,t t 异号).故11m n m n mn ++=1212t t t t -===⋅43.故选B. 【点睛】本小题主要考查椭圆的参数方程化为普通方程,考查直线和椭圆的位置关系,考查利用直线参数的几何意义解题,考查化归与转化的数学思想方法,属于中档题.2.D解析:D 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】 圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.3.C解析:C 【分析】先写出直线的标准参数方程,再代入y 2=2x ,利用直线参数方程t 的几何求解. 【详解】将直线l参数方程化为2122x t y t ''⎧=-⎪⎪⎨⎪=+⎪⎩(t′为参数),代入y 2=2x ,得t′2+4(2+16=0,设其两根为t 1′,t 2′,则t 1′+t 2′=-4(2, t 1′t 2′=16>0.由此知在l 上两点P 1,P 2都在A(0,2)的下方, 则|AP 1|+|AP 2|=|t 1′|+|t 2′|=|t 1′+t 2′|=4(2. 故答案为C 【点睛】(1)本题主要考查直线的参数方程和t 的几何意义,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 过定点()00,P x y 、倾斜角为α的直线的参数方程00x x tcos y y tsin αα=+⎧⎨=+⎩(t 为参数).当动点A 在定点()00,P x y 上方时,0,||t t PA >=且. 当动点B 在定点()00,P x y 下方时,0,|t t PB =-且.(3)解答本题不能直接把参数方程代入圆的方程,一定要化成标准形式,才能利用参数方程t 的几何意义解答.4.A解析:A 【分析】先求出椭圆的普通方程,再求其离心率得解. 【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以所以e故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=5.C解析:C 【解析】:2cos C ρθ=22222(1)1x y x x y ⇒+=⇒-+=314k <⇒<- ,选C.6.C解析:C 【解析】圆2222cos 0,(1)1,x y ρρθ-=-+=,圆心(1,0),所以圆心的极坐标为(1,0).选C.7.D解析:D 【解析】试题分析:首先将直线(为参数)代入曲线方程中得,,整理得,所以.设直线与双曲线的交点分别为A 、B ,由直线参数方程 的几何意义知,即为所求.考点:直线的参数方程;弦长公式.8.A解析:A 【分析】用参数表示出,x y ,由此化简22x y +,结合三角函数、二次函数的性质,求得22x y +的最大值. 【详解】记2cos x θ=,sin y b θ=,2224cos 2sin ()x y b f θθθ+=+=,222()4sin 2sin 44(sin )444b b f b θθθθ=-++=--++,[]sin 1,1θ∈-.若01044b b <⇒<,则当sin 4b θ=时()f θ取得最大值244b +; 若144bb >⇒>,则当sin 1θ=时()f θ取得最大值2b . 故选:A 【点睛】本题考查的是椭圆的性质及椭圆的参数方程,可以从不同角度寻求方法求解,本题用了椭圆的参数方程结合三角函数的最值进行求解.9.B解析:B 【分析】利用椭圆的参数方程设出椭圆上的点的坐标()4cos ,3sin P θθ,再由点到直线距离公式得到d =. 【详解】因为椭圆方程221169x y +=,所以椭圆的参数方程为:4cos 3sin x y θθ=⎧⎨=⎩,设P 为椭圆上任意一点,设()4cos ,3sin P θθ, 则P点到直线34x y +=的距离d ==当sin 14πθ⎛⎫+= ⎪⎝⎭时,d 有最小值,即min 5d = 故选:B 【点睛】本题考查了椭圆的参数方程,点到直线距离的最值,考查了学生的计算能力,属于一般题.10.B解析:B 【分析】根据圆和椭圆的参数方程可假设出,,A C P 点坐标;根据,A B 共线、,C D 共线可得,B D 坐标;写出向量后,根据向量数量积运算法则可求得210sin 8PA PB PC PD θ⋅+⋅=+,从而可知当2sin 0θ=时,取得最小值,代入求得结果. 【详解】由题意可设:()1cos ,sin A αα+,()1cos ,sin C ββ-+,()2cos 3sin P θθ,则()1cos ,sin B αα--,()1cos ,sin D ββ---()1cos 2cos ,sin 3sin PA αθαθ∴=+--,()1cos 2cos ,sin 3sin PB αθαθ=----()2222212cos cos 9sin sin 5sin 4cos 4PA PB θαθαθθ∴⋅=--+-=-+同理可得:25sin 4cos 4PC PD θθ⋅=++210sin 8PA PB PC PD θ∴⋅+⋅=+当2sin 0θ=时,()min8PA PB PC PD ⋅+⋅=故选:B 【点睛】本题考查向量数量积的最值的求解问题,关键是能够灵活应用圆和椭圆的参数方程的形式,表示出所需的点的坐标,从而将问题转化为三角函数最值的求解问题.属于中档题.11.D解析:D 【分析】利用直线参数方程参数的几何意义求解即可. 【详解】曲线1C 的直角坐标方程为2225x y +=,2C的参数方程为432x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数) 设这两条曲线的交点为,A B ,其对应的参数为,A B t t将423x y ⎧=+⎪⎪⎨⎪=⎪⎩代入2225x y +=中,整理得20t += 0A t ∴=,B t =-则A B t AB t =-=故选:D 【点睛】本题主要考查了直线参数方程参数的几何意义的应用,属于中档题.12.C解析:C 【分析】先将直线sin()6πρθ+=A 的坐标,利用点到直线的距离求解. 【详解】由直线sin()6πρθ+=1cos 2ρθθ⎫+=⎪⎪⎝⎭0x +-=. 又点A 是曲线2213x y +=上任意一点,设),sin Aαα则点A 到直线3260y x +-=的距离为:3sin 3cos 2631d αα+-=+6sin 2643622πα⎛⎫+- ⎪⎝⎭=≤ 当sin 14πα⎛⎫+=- ⎪⎝⎭时取得等号. 故选:C 【点睛】本题考查极坐标方程与直角坐标方程的互化、椭圆的参数方程和点到直线的距离,属于中档题.二、填空题13.-22【解析】【分析】将曲线的极坐标化成直角坐标得x23+y2=1设x=3cosαy=sinα则x+y=2sin(α+π3)再求函数的最值得解【详解】因为ρ2=31+2sin2θ所以化成直角坐标得x 解析:【解析】 【分析】将曲线的极坐标化成直角坐标得,设,则,再求函数的最值得解.【详解】 因为,所以化成直角坐标得,设,所以,所以x+y 的取值范围为[-2,2]. 故答案为:【点睛】本题主要考查极坐标和直角坐标的互化,考查曲线的参数方程的应用,考查三角函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.【解析】直线的普通方程:x+y=1曲线的普通方程:再消去y 得所以两个交点答案:2 解析:2【解析】直线的普通方程:x+y=1,曲线的普通方程:22194x y +=,再消去y ,得21318270x x --=,0>,所以两个交点。

(常考题)北师大版高中数学高中数学选修4-4第二章《参数方程》测试(含答案解析)

(常考题)北师大版高中数学高中数学选修4-4第二章《参数方程》测试(含答案解析)

一、选择题1.在直角坐标系xOy 中,曲线C:2x ty ⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l:30x +=的距离的最小值为( )A .23BCD2.已知直线l的参数方程为2x m t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上,若直线l 与曲线C 交于A 、B 两点,则FA FB ⋅的值等于( ) A .1BCD .23.在平面直角坐标系xOy 中,曲线3cos :sin x C y θθ=⎧⎨=⎩(θ为参数)上的点到直线84:1x tl y t =+⎧⎨=-⎩的距离的最大值为( )ABCD4.在平面直角坐标系xOy 中,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的方程为4x y +=,则曲线C 上的点到直线l 的距离的最小值是( ) A.2BC .1D .25.点(,)P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为( ) AB .22CD .46.直线30x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2212x y -+=上,则ABP ∆面积的取值范围是A .[]26,B .[]39,C. D.7.已知椭圆4cos :3sin x C y θθ=⎧⎨=⎩(θ为参数)与x 轴正半轴,y 轴正半轴的交点分别为,A B ,动点P 是椭圆上任一点,则PAB ∆面积的最大值为( )A .()621-B .()621+C .125D .2458.过()0,2P -,倾斜角为60︒的直线与曲线232y x x =-+交于A B 、两点,则PA PB ⋅= ( )A .623+B .16C .8D .623-9.参数方程22sin {12x y cos θθ=+=-+ (θ为参数)化成普通方程是( )A .240x y -+=B .240x y +-=C .[]240,2,3x y x -+=∈D .[]240,2,3x y x +-=∈10.直线(为参数)与圆(为参数)的位置关系是( )A .相离B .相切C .过圆心D .相交不过圆心11.已知在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线1C 的极坐标方程为4cos ρθ=,直线251:51x l y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).若曲线2C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),曲线1C 上点P 的极角为4π,Q 为曲线2C 上的动点,求PQ 的中点M 到直线l 距离的最大值为( )A .2B 63+C 31D 10 12.已知两条曲线的参数方程1C :5cos 5sin x y θθ=⎧⎨=⎩(θ为参数)和2C :4cos 453sin 45x t y t =+︒⎧⎨=+︒⎩(t 为参数),则这两条曲线的交点为端点的线段的长度是( ) A .5B .52C .7D .72二、填空题13.在直角坐标系xOy 中,若直线:x t l y t a =⎧⎨=-⎩(t 为参数)过椭圆4cos :5sin x C y θθ=⎧⎨=⎩(θ为参数)的左顶点,则a =__________. 14.直线1413x ty t=+⎧⎨=--⎩(t 为参数)的斜率为______.15.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的参数方程是1cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数,0θπ≤≤),直线l 的极坐标方程是sin 4πρθ⎛⎫-= ⎪⎝⎭,若曲线C 与直线l 有交点,则a 的取值范围是_______. 16.已知曲线C :2cos sin x y θθ=⎧⎨=⎩(θ为参数).若点P 在曲线C 上运动,点Q为直线:0l x y +=-上的动点,则PQ 的最小值为________.17.已知直线l :32,54.5x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)与x 轴交于点M ,点N 是圆2240x y y +-=上的任一点,则||MN 的最大值为_____.18.曲线4cos 2sin x y θθ=⎧⎨=⎩上的点到直线20x y +=的最大距离为__________.19.已知(,)P x y 是椭圆22143x y+=上的一个动点,则x y +的最大值是__________.20.已知抛物线的参数方程为244x t y t ⎧=⎨=⎩(t 为参数),若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为________.三、解答题21.在直角坐标系xOy 中,曲线C的参数方程为21x y θθ⎧=⎪⎨=-⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)若点P 的极坐标为()1,π,过P 的直线与曲线C 交于A ,B 两点,求11PA PB+的最大值.22.已知在极坐标系中曲线1C 的极坐标方程为:4cos ρθ=,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,曲线2C的参数方程为:132x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),点(3,0)A .(1)求出曲线1C 的直角坐标方程和曲线2C 的普通方程; (2)设曲线1C 与曲线2C 相交于,P Q 两点,求||||⋅AP AQ 的值.23.在平面直角坐标系xOy 中,直线l的参数方程为x m y ⎧=-⎪⎨=⎪⎩(其中t 为参数,0)m >.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρθ=,l 被C(1)求实数m 的值;(2)设l 与C 交于点A ,B ,若点P的坐标为(m ,求||||PA PB +的值. 24.在平面直角坐标系xOy 中,直线l经过点(P -,其倾斜角为α,设曲线S 的参数方程为1x k y k ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=. (1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围.25.在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t⎧=⎨=⎩(其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,圆2C 的极坐标方程为28sin 150ρρθ-+=.(1)求曲线1C 的方程普通方程和2C 的直角坐标方程; (2)过圆2C 的圆心2C ,倾斜角为34π的直线l 与曲线1C 交于,A B 两点,则22C A C B +的值.26.在直角坐标系xOy 中,曲线1C 的参数方程为325425x t y t⎧=-+⎪⎪⎨⎪=-+⎪⎩,(t 是参数).以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为cos ρθ=4. (1)求1C 的普通方程和2C 的直角坐标方程; (2)若12,C C 交于,A B 两点,P 点坐标为()2,2--,求11PA PB+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.D解析:D 【分析】根据题意,将曲线C 的极坐标方程变形为标准方程,由直线过的点的坐标可得m 的值,将直线的参数方程与曲线C 的方程联立,可得2220t t --=,由一元二次方程根与系数的关系计算可得答案; 【详解】解:根据题意,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,则其标准方程为221124x y +=,其左焦点为(-,直线l过点(-,其参数方程为(x m ty ⎧=⎪⎪⎨⎪=⎪⎩为参数),则m =-将直线l 的参数方程22x y ⎧=-⎪⎪⎨⎪=⎪⎩与曲线C 的方程221124x y +=联立,得2220t t --=, 则12||||||2FA FB t t ==. 故选:D本题考查椭圆的极坐标方程、参数方程,涉及椭圆与直线的位置关系,关键是求出椭圆、直线的普通方程,属于中档题.3.B解析:B【分析】将直线84:1x tly t=+⎧⎨=-⎩,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【详解】84:1x tly t=+⎧⎨=-⎩可得:4120x y+-=根据点到直线距离公式,可得C上的点到直线l的距离为=≤=【点睛】本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题. 4.B解析:B【分析】设曲线C上任意一点的坐标为),sinθθ,利用点到直线的距离公式结合辅助角公式可得出曲线C上的点到直线l的距离的最小值.【详解】设曲线C上任意一点的坐标为),sinθθ,所以,曲线C上的一点到直线l的距离为d==42sinπθ⎛⎫-+⎪=当()232k k Zππθπ+=+∈时,d取最小值,且mind== B.【点睛】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题. 5.A解析:A【分析】设,2sin )P θθ,由此24sin )x y θθθϕ++=+,根据三角函数的有界性可得结果. 【详解】椭圆方程为22164x y +=,设,2sin )P θθ,则24sin )x y θθθϕ++=+ (其中tan ϕ=),故2x y +≤2x y +A. 【点睛】本题主要考查椭圆参数方程的应用,辅助角公式的应用,属于中档题. 利用公式()sin cos )f x a x b x x ωωωϕ=+=+ 可以求出:①()f x 的周期2πω;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域⎡⎣;④对称轴及对称中心(由2x k πωϕπ+=+可得对称轴方程,由x k ωϕπ+=可得对称中心横坐标. 6.B解析:B 【解析】分析:求出A (﹣3,0),B (0,﹣3),=P (α,α),点P 到直线x+y+2=0的距离:=,∈,由此能求出△ABP 面积的取值范围.详解:∵直线x+y+3=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣3,令y=0,得x=﹣3,∴A (﹣3,0),B (0,﹣3),=,∵点P 在圆(x ﹣1)2+y 2=2上,∴设P (αα), ∴点P 到直线x+y+3=0的距离:=,∵sin ()4πα+∈[﹣1,1],∴, ∴△ABP面积的最小值为13,2⨯= △ABP面积的最大值为19,2⨯= 故答案为:B .点睛:(1)本题主要考查直线与圆的位置关系和三角形的面积,考查圆的参数方程和三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设点P (αα),利用圆的参数方程设点大大地提高了解题效率.7.B解析:B 【解析】分析:根据椭圆的方程算出A (4,0)、B (0,3),从而得到|AB|=5且直线AB :3x+4y ﹣12=0.设点P (4cosθ,3sinθ),由点到直线的距离公式算出P 到直线AB 距离为d=125()4πθ+﹣1|,结合三角函数的图象与性质算出d max =1251),由此结合三角形面积公式,即可得到△PAB 面积的最大值.详解:由题得椭圆C 方程为:221169x y +=,∴椭圆与x 正半轴交于点A (4,0),与y 正半轴的交于点B (0,3), ∵P 是椭圆上任一个动点,设点P (4cosθ,3sinθ)(θ∈[0,2π]) ∴点P 到直线AB :3x+4y ﹣12=0的距离为=125()4πθ+﹣1|, 由此可得:当θ=54π时,d max =1251)∴△PAB 面积的最大值为S=12|AB|×d max =61). 点睛:(1)本题主要考查椭圆的参数方程和三角函数的图像和性质,意在考查学生对这些知 识的掌握水平和分析推理能力计算能力.(2)对于()4πθ+﹣1|,不是sin ()4πθ+=1时,整个函数取最大值,而应该是sin ()4πθ+=-1,要看后面的“-1”.8.B解析:B 【解析】设直线参数方程12,()322x t t y t 为参数⎧=⎪⎪⎨⎪=-+⎪⎩代入曲线,得2122(33)160,16,t t t t -++==由参数t 的几何意义可知,PA PB ⋅1216t t ==.选B.【点睛】对于过定点P 且知道倾斜角(或斜率)的直线,与曲线交于两点A,B,求22,,PB PA PB PA PB PA +⋅+等式子的值时,我们常设直线的参数方程,再利用参数t 的几何意义解题.9.D解析:D 【解析】试题分析:2cos212sin θθ=-,22112sin 2sin y θθ∴=-+-=-,2sin 2y θ∴=-,代入22sin x θ=+可得22yx =-,整理可得240x y +-=.[]2sin 0,1θ∈,[]22sin 2,3θ∴+∈,即[]2,3x ∈.所以此参数方程化为普通方程为[]240,2,3x y x +-=∈.故D 正确. 考点:参数方程与普通方程间的互化.【易错点睛】本题主要考查参数方程与普通方程间的互化,属容易题.在参数方程与普通方程间的互化中一定要注意x 的取值范围,否则极易出错.10.A解析:A 【解析】试题分析:即3x-4y-36="0;"即,由圆心到直线的距离,所以,直线与圆相离,选A 。

新北师大版高中数学高中数学选修4-4第一章《坐标系》检测题(含答案解析)

新北师大版高中数学高中数学选修4-4第一章《坐标系》检测题(含答案解析)

一、选择题1.在同一平面直角坐标系中,经过伸缩变换22x xy y ''=⎧⎨=⎩后,曲线C 变为曲线()()22561x y -++=,则曲线C 的对称中心是( )A .()5,6-B .5,32⎛⎫-⎪⎝⎭C .()10,12-D .5,62⎛⎫-⎪⎝⎭2.在极坐标系中,圆cos()3πρ=θ+的圆心的极坐标为( ) A .1(,)23π-B .1(,)23πC .(1,)3π-D .(1,)3π3.极坐标方程2cos22cos 1ρθρθ-=表示的曲线是( ) A .圆B .椭圆C .抛物线D .双曲线4.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ=B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=5.在球坐标系中,点3,,46P ππ⎛⎫ ⎪⎝⎭和点33,,46Q ππ⎛⎫⎪⎝⎭之间的距离为( ) AB.C.D.26.若22,3P π⎛⎫⎪⎝⎭是极坐标系中的一点,则8552,,2,,2,,2,3333Q R M N ππππ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭四个点中与点P 重合的点有( )A .1个B .2个C .3个D .4个7.圆22cos 4sin 30ρρθρθ++-=上到直线cos sin 10ρθρθ++=点共有( ) A .1个B .2个C .3个D .4个8.在平面直角坐标系中,抛物线23x y =-经过伸缩变换1'21'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩后得到的曲线方程是( ) A .2''4y x =-B .2''4x y =-C .2'9'4y x =-D .2'9'4x y =-9.以π4⎛⎫⎪⎝⎭) A .ρ=-(sin θ+cosθ) B .ρ=sin θ+cosθ C .ρ=-2(sin θ+cosθ) D .ρ=2(sin θ+cosθ)10.圆心在(0,1)且过极点的圆的极坐标方程为( )A .1ρ=B .cos ρθ=C .2cos ρθ=D .2sin ρθ=11.极坐标方程2cos 3cos 30ρθρθρ-+-=表示的曲线是( ) A .一个圆B .两个圆C .两条直线D .一个圆和一条直线12.已知曲线C 的极坐标方程为2cos ρθ=,则曲线C 的直角坐标方程为A .22(1)4x y -+=B .22(1)4x y +-=C .22(1)1x y -+=D .22(1)1y x +-=二、填空题13.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________.14.已知极坐标系中的极点与平面直角坐标系中的原点重合,极轴与x 的正半轴重合,点A 在圆ρ=2cosθ+2sinθ上,点B 在直线31x ty t =+⎧⎨=-+⎩(t 为参数)上,则|AB|的最小值为________.15.在直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,点A 的极坐标为4,3π⎛⎫⎪⎝⎭,点B 的极坐标为4π⎛⎫⎪⎝⎭,曲线C 的直角坐标方程为:22(1)1y x +-=. (1)求曲线C 和直线AB 的极坐标方程;(2)过点O 的射线l 交曲线C 于M 点,交直线AB 于N 点,若||||4OM ON ⋅=,求射线l 所在直线的直角坐标方程. 16.在极坐标系中,曲线43sin πρθ⎛⎫=-⎪⎝⎭关于________对称. 17.在平面直角坐标系中,倾斜角为4π的直线l 与曲线C :2cos 1sin x y αα=+⎧⎨=+⎩(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.18.在极坐标系中0,02,ρθπ>≤<,曲线cos 1ρθ=-与曲线=2sin ρθ的交点的极坐标为_______________。

新北师大版高中数学高中数学选修4-4第二章《参数方程》测试(包含答案解析)

新北师大版高中数学高中数学选修4-4第二章《参数方程》测试(包含答案解析)

一、选择题1.椭圆22:1169x y C +=上的点P 到直线:34180l x y ++=的距离的最小值为( )ABCD2.在直角坐标系xOy 中,曲线C:2x ty ⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l:30x +=的距离的最小值为( )A .23BCD3.P 是直线:40l x y +-=上的动点,Q 是曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)上的动点,则PQ 的最小值是( ) ABCD4.直线2413x t y t =-+⎧⎨=--⎩(t 为参数)被圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为( ) A .6B .5C .8D .75.在极坐标系中,曲线C 的方程为22312sin ρθ,以极点O 为直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系xOy ,设(),P x y 为曲线C 上一动点,则1x y +-的取值范围为()A.1⎡⎤⎣⎦B .[]3,1-C .[]22-,D .[]2,1--6.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1B .1-C 1D .1-7.直线122x ty t=+⎧⎨=+⎩(t 是参数)被圆229x y +=截得的弦长等于( )A .125BC .5D8.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为212x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) ABCD9.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t为参数)与曲线ρ=B ,C 两点,则BC 的值为( ) A.BC.D10.把曲线12cos 2sin x C y θθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为原来的42C 为 A .221241x y +=B .224413y x +=C .2213y x +=D .22344x y +=11.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )AB.CD.12.已知曲线2cos :2sin x C y θθ=⎧⎨=⎩(θ为参数)和直线:x tl y t b=⎧⎨=+⎩(t 为参数,b 为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b 等于( ) AB.C .0D.二、填空题13.过椭圆C:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,则11m n+的值为______. 14.设点(),x y 是曲线C 2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且02θπ≤<)上的任意一点,则yx的最大值为________. 15.直线122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)被双曲线221x y -=截得的弦长为_________.16.无论k 取任何实数,直线2y kx =+与椭圆()2 θx cos y θθ=⎧⎪⎨=⎪⎩为参数恒有交点,则实数m 的取值范围是_____。

北师大版高中数学选修4-4模块综合测试.docx

北师大版高中数学选修4-4模块综合测试.docx

高中数学学习材料唐玲出品模块综合测试一、选择题(本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列有关坐标系的说法,错误的是( ) A .在直角坐标系中,通过伸缩变换圆可以变成椭圆 B .在直角坐标系中,平移变换不会改变图形的形状和大小 C .任何一个参数方程都可以转化为直角坐标方程和极坐标方程 D .同一条曲线可以有不同的参数方程解析: 直角坐标系是最基本的坐标系,在直角坐标系中,伸缩变形可以改变图形的形状,但是必须是相近的图形可以进行伸缩变化得到,例如圆可以变成椭圆;而平移变换不改变图形和大小而只改变图形的位置;对于参数方程,有些比较复杂的是不能化成普通方程的,同一条曲线根据参数选取的不同可以有不同的参数方程.答案: C2.把函数y =12sin2x 的图象经过________变化,可以得到函数y =14sin x 的图象.( )A .横坐标缩短为原来的12倍,纵坐标伸长为原来的2倍B .横坐标伸长为原来的2倍,纵坐标伸长为原来的2倍C .横坐标缩短为原来的12倍,纵坐标缩短为原来的12倍D .横坐标伸长为原来的2倍,纵坐标缩短为原来的12解析: 本题主要考查直角坐标系的伸缩变换,根据变换的方法和步骤可知,把函数y =12sin2x 的图象的横坐标伸长为原来的2倍可得y =12sin x 的图象,再把纵坐标缩短为原来的12,得到y =14sin x 的图象.答案: D3.极坐标方程ρ2-ρ(2+sin θ)+2sin θ=0表示的图形是( ) A .一个圆与一条直线 B .一个圆 C .两个圆D .两条直线解析: 所给方程可以化为(ρ-2)(ρ-sin θ)=0,即ρ=2或ρ=sin θ.化成直角坐标方程分别为x 2+y 2=4和x 2+y 2-y =0,可知分别表示两个圆.答案: C4.在极坐标系中,如果一个圆方程是ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是( )A .ρsin θ=3B .ρsin θ=-3C .ρcos θ=2D .ρcos θ=-2答案: A5.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θy =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)解析: 由⎩⎪⎨⎪⎧x =2+sin 2θy =sin 2θ知x =2+y (2≤x ≤3) 所以y =x -2 (2≤x ≤3). 答案: C6.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎩⎨⎧ x =1+12ty =5-32tB .⎩⎨⎧ x =1-12ty =5+32tC .⎩⎨⎧x =1-12ty =5-32tD .⎩⎨⎧ x =1+12ty =5+32t解析: 根据直线参数方程的定义,易得⎩⎨⎧x =1+t ·cos π3y =5+t ·sin π3,即⎩⎨⎧x =1+12ty =5+32t .答案: D7.x 2+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=2xy ′=3x ,后所得图形的焦距( )A .4B .213C .2 5D .6解析: 变换后方程变为:x 24+y 29=1,故c 2=a 2-b 2=9-4=5,c =5, 所以焦距为2 5. 答案: C8.已知直线⎩⎪⎨⎪⎧x =2-t sin30°y =-1+t sin30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,则|BC |的值为( )A .27B .30C .7 2D .302解析: ⎩⎪⎨⎪⎧x =2-t sin30°y =-1+t sin30°⇒⎩⎨⎧x =2-12t =2-22t ′y =-1+12t =-1+22t (t ′为参数).代入x 2+y 2=8,得t ′2-32t ′-3=0, ∴|BC |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2 =(32)2+4×3=30,故选B . 答案: B9.已知P 点的柱坐标是⎝⎛⎭⎫2,π4,1,点Q 的球面坐标为⎝⎛⎭⎫1,π2,π4,根据空间坐标系中两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)之间的距离公式|AB |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2,可知P 、Q 之间的距离为( )A . 3B . 2C . 5D .22解析: 首先根据柱坐标和空间直角坐标之间的关系,把P 点的柱坐标转化为空间直角坐标(2,2,1),再根据球面坐标与空间直角坐标之间的关系把Q 点的球坐标转化为空间直角坐标⎝⎛⎭⎫22,22,0,代入两点之间的距离公式即可得到距离为 2. 答案: B10.如果直线ρ=1cos θ-2sin θ与直线l 关于极轴对称,则直线l 的极坐标方程是( )A .ρ=1cos θ+2sin θB .ρ=12sin θ-con θC .ρ=12cos θ+sin θD .ρ=12cos θ-sin θ解析: 由ρ=1cos θ+2sin θ知ρcos θ+2ρsin θ=1,∴x +2y =1. 答案: C11.圆心在原点,半径为2的圆的渐开线的参数方程是( )A .⎩⎪⎨⎪⎧x =2(cos φ+4sin φ),y =2(sin φ-4cos φ).(φ为参数)B .⎩⎪⎨⎪⎧x =4(cos θ+θsin θ),y =4(sin θ-θcos θ).(θ为参数)C .⎩⎪⎨⎪⎧ x =2(φ-sin φ),y =2(1-cos φ).(φ为参数)D .⎩⎪⎨⎪⎧x =4(θ-sin θ),y =4(1-cos θ).(θ为参数)解析: 圆心在原点,半径为2的圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ).(φ为参数). 答案: A12.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′,且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其他点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A .AB B .BC C .CDD .DA解析: ∵x ≤x ′且y ≥y ′,∴点P (x ,y )在点P ′(x ′,y ′)的左上方. ∵Ω中不存在优于Q 的点,∴点Q 组成的集合是劣弧AD ,故选D . 答案: D二、填空题(本大题共4小题,每小题4分,共16分.把正确答案填在题中横线上) 13.已知直线的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=22,则极点到该直线的距离是________ 解析: 对于求一点到一条直线的距离问题,我们联想到的是直角坐标系中的距离公式,因此应首选把极坐标平面内的问题化为直角坐标问题的解决方法,这需把极点、直线的方程化为直角坐标系内的点的坐标、直线的方程.极点的直角坐标为O (0,0),ρsin ⎝⎛⎭⎫θ+π4=ρ⎝⎛⎭⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,化为直角坐标方程为x +y -1=0. ∴点O (0,0)到直线x +y -1=0的距离为d =12=22, 即极点到直线ρsin ⎝⎛⎭⎫θ+π4=22的距离为22. 答案:2214.直线⎩⎪⎨⎪⎧ x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,则此直线的倾斜角α=________.解析: 直线:y =x ·tan α,圆:(x -4)2+y 2=4,如图,sin α=24=12,∴α=π6或56π.答案: π6或56π.15.已知直线l 的参数方程⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数),若以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎫θ+π4.则圆的直角坐标方程为__________,直线l 和圆C 的位置关系为__________(填相交、相切、相离).解析: (1)消去参数t ,得直线l 的普通方程为y =2x +1.ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),消去参数θ,得⊙C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和⊙C 相交.答案: (x -1)2+(y -1)2=2;相交16.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +3,y =3-t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =2sin θ+2(参数θ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______.解析: 直线和圆的方程分别是x +y -6=0,x 2+(y -2)2=22,所以圆心为(0,2),其到直线的距离为d =|0+2-6|1+1=2 2.答案: (0,2) 2 2三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)(1)化ρ=cos θ-2sin θ.为直角坐标形式并说明曲线的形状; (2)化曲线F 的直角坐标方程:x 2+y 2-5x 2+y 2-5x =0为极坐标方程. 解析: (1)ρ=cos θ-2sin θ两边同乘以ρ得 ρ2=ρcos θ-2ρsin θ ∴x 2+y 2=x -2y 即x 2+y 2-x +2y =0 即⎝⎛⎭⎫x -122+(y +1)2=⎝⎛⎭⎫522 表示的是以⎝⎛⎭⎫12,-1为圆心,半径为52的圆.(2)由x =ρcos θ,y =ρsin θ得x 2+y 2-5x 2+y 2-5x =0的极坐标方程为: ρ2-5ρ-5ρcos θ=0.18.(12分)在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎫3,π9,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足OQ QP =23,求动点P 的轨迹方程.解析: (1)设M (ρ,θ)为圆C 上任意一点,如图,在△OCM 中,|OC |=3,|OM |=ρ,|CM |=1,∠COM =⎪⎪⎪⎪θ-π6,根据余弦定理,得1=ρ2+9-2·ρ·3·cos ⎪⎪⎪⎪θ-π6,化简整理,得ρ2-6· ρcos ⎝⎛⎭⎫θ-π6+8=0为圆C 的轨迹方程. (2)设Q (ρ1,θ1),则有ρ21-6·ρ1cos ⎝⎛⎭⎫θ1-π6+8=0① 设P (ρ,θ),则OQ ∶QP =ρ1∶(ρ-ρ1) =2∶3⇒ρ1=25ρ,又θ1=θ,即⎩⎪⎨⎪⎧ρ1=25ρ,θ1=θ,代入①得425ρ2-6·25ρcos(θ-π6)+8=0,整理得ρ2-15ρcos ⎝⎛⎭⎫θ-5π6+50=0为P 点的轨迹方程. 19.(12分)已知椭圆C 的极坐标方程为ρ2=123cos 2θ+4sin 2θ,点F 1,F 2为其左,右焦点,直线l 的参数方程为⎩⎨⎧x =2+22t ,y =22t(t 为参数,t ∈R ).(1)求直线l 和曲线C 的普通方程; (2)求点F 1,F 2到直线l 的距离之和. 解析: (1)直线l 的普通方程为y =x -2; 曲线C 的普通方程为x 24+y 23=1.(2)∵F 1(-1,0),F 2(1,0), ∴点F 1到直线l 的距离d 1=|-1-0-2|2=322.点F 2到直线l 的距离d 2=|1-0-2|2=22,∴d 1+d 2=2 2.20.(12分)已知直线l 过点P (2,0),斜率为43,直线l 与抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M .(1)求P 、M 两点间的距离; (2)求M 点的坐标; (3)求线段AB 的长|AB |.解析: (1)∵直线l 过点P (2,0),斜率为43,设倾斜角为α,tan α=43,cos α=35,sin α=45,∴直线l 的参数方程为⎩⎨⎧x =2+35ty =45t(t 为参数),∵直线l 与抛物线相交,把直线l 的参数方程代入抛物线方程y 2=2x ,整理得8t 2-15t -50=0,设这个方程的两个根为t 1、t 2,则t 1+t 2=158,t 1·t 2=-254.由M 为线段AB 的中点,根据t 的几何意义, 得|PM |=⎪⎪⎪⎪t 1+t 22=1516.(2)由(1)知,中点M 所对参数为t M =1516,代入直线的参数方程,M 点的坐标为⎩⎨⎧x =2+35×1516=4116y =45×1516=34,即M ⎝⎛⎭⎫4116,34.(3)由参数t 的几何意义,|AB |=|t 2-t 1|=(t 2+t 1)2-4t 1t 2=5873.21.(12分)如图,自双曲线x 2-y 2=1上一动点Q 引直线l :x +y =2的垂线,垂足为N ,求线段QN 中点P 的轨迹方程.解析: 设点Q 的坐标为(sec φ,tan φ),(φ为参数). ∵QN ⊥l ,∴可设直线QN 的方程为x -y =λ ①将点Q 的坐标代入①得:λ=sec φ-tan φ 所以线段QN 的方程为x -y =sec φ-tna φ ② 又直线l 的方程为x +y =2.③由②③解得点N 的横坐标x N =2+sec φ-tan φ2设线段QN 中点P 的坐标为(x ,y ), 则x =x N +x Q 2=2+3sec φ-tan φ4,④4×④-②得 3x +y -2=2sec φ. ⑤4×④-3×②得 x +3y -2=2tan φ.⑥⑤2-⑥2化简即得所求的轨迹方程为 2x 2-2y 2-2x +2y -1=0.22.(14分)已知椭圆的中心在原点,焦点在y 轴上且长轴长为4,短轴长为2,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =m +2t (t 为参数).当m 为何值时,直线l 被椭圆截得的弦长为6?解析: 椭圆方程为y 24+x 2=1,化直线参数方程⎩⎪⎨⎪⎧x =t ,y =m +2t为⎩⎨⎧x =55t ′y =m +255t ′(t ′为参数).代入椭圆方程得(m +255t ′)2+4⎝⎛⎭⎫55t ′2=4⇔8t ′2+45mt ′+5m 2-20=0当Δ=80m 2-160m 2+640=640-80m 2>0, 即-22<m <2 2.方程有两不等实根t ′1,t ′2,则弦长为|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=640-80m 28依题意知=640-80m 28=6,解得m =±455.。

最新北师大版高中数学高中数学选修4-4第一章《坐标系》测试题(答案解析)

最新北师大版高中数学高中数学选修4-4第一章《坐标系》测试题(答案解析)

一、选择题1.在极坐标系中,点P 在圆1ρ=上,则点P 到直线()cos 2sin 5ρθθ+=的距离的最小值为( ) A .5B .3C .31-D .51-2.方程sin cos k ρθθ=++ 的曲线不经过极点,则k 的取值范围是( ) A .0k ≠B .k R ∈C .2k >D .2k3.已知三个不同的点,,E F G 在圆22(1)9x y -+=上运动,且GE GF ⊥,若点Q 的坐标为()4,4,则QE QF QG ++的取值范围是( ) A .[23,32]B .[]1,6C .[]2,9D .[]12,184.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为23cos ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1B .3C .2D .23 5.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .6.在极坐标系中,已知A (1,π3),B (2,2π3)两点,则|AB|=( ) A 2B 3C .1D 57.在极坐标系中,直线sin cos 1ρθρθ-=被曲线2ρ截得的线段长为( ) A 3B .62C 6D .28.在极坐标系中,曲线1:2cos C ρθ=,曲线2:4C πθ=,若曲线1C 与2C 交于,A B 两点,则线段AB 的长度为( ) A .2B 2C .22D .19.在极坐标系中,曲线46sin πρθ⎛⎫=+ ⎪⎝⎭关于( ) A .直线23πθ=对称 B .直线56πθ=对称C .点2,3π⎛⎫⎪⎝⎭中心对称 D .极点中心对称10.在同一平面直角坐标系中,将直线22x y -=按124x xy y⎧=⎪⎨⎪='⎩'变换后得到的直线l 的方程,若以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线l 的极坐标方程为( )A .4cos sin 4ρθρθ-=B .cos 16sin 4ρθρθ-=C .cos 4sin 4ρθρθ-=D .cos 8sin 4ρθρθ-=11.已知点P的直角坐标(2,--,则它的一个极坐标为( ) A .(4,3π) B .(4,43π) C .(-4,6π) D .(4,76π) 12.点M的直角坐标为(1)-化为极坐标为( ) A .(2,56π) B .(2,76π) C .(2,116π) D .(2,6π) 二、填空题13.已知点1,0A ,()3,4 B ,O 为坐标原点,点C 在AOB ∠的平分线上,且2OC =,则点C 的坐标为_______________.14.在平面直角坐标系xOy 中,圆22:(1)(1)1C x y -+-=,以坐标原点O 为极点,x 轴正半轴为极轴,直线l 的极坐标方程为(0)2πθαα=<<,直线l 交圆C 于,A B 两点,P 为,A B 中点.若||||AB OP ⋅,则α=________.15.已知极坐标系中的极点与平面直角坐标系中的原点重合,极轴与x 的正半轴重合,点A 在圆ρ=2cosθ+2sinθ上,点B 在直线31x ty t =+⎧⎨=-+⎩(t 为参数)上,则|AB|的最小值为________.16.球坐标2,,63ππ⎛⎫⎪⎝⎭对应点的直角坐标为________. 17.在同一平面直角坐标系中,将曲线22368120x y x --+=变成曲线22''4'30x y x --+=,则满足上述图形变换的伸缩变换是________.18.直线θα=与cos()1ρθα-=的位置关系是________. 19.在极坐标系中,曲线43sin πρθ⎛⎫=-⎪⎝⎭关于________对称. 20.对于函数y =f (x )(x ∈R)而言,下列说法中正确的是________.(填序号) ①函数y =f (x +1)的图象和函数y =f (1-x )的图象关于x =1对称. ②若恒有f (x +1)=f (1-x ),则函数y =f (x )的图象关于x =1对称.③函数y =f (2x +1)的图象可以由y =f (2x )向左移一个单位得到. ④函数y =f (x )和函数y =-f (-x )图象关于原点对称.三、解答题21.在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的极坐标方程是()θαρ∈R =,l 与C 交于A B ,两点,||AB l 的斜率.22.在直角坐标系xOy 中,圆1C 和2C 的参数方程分别是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数)和cos 1sin x y ββ=⎧⎨=+⎩(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求圆1C 和2C 的极坐标方程;(Ⅱ)射线OM :θα=与圆1C 交于点O 、P ,与圆2C 交于点O 、Q ,求2226100,x y x y x y ++-+=+=则的最大值.23.在平面直角坐标系xOy 中,已知点()4,0M ,A 是圆22:4O x y +=上一个动点,AOM ∠的平分线交MA 于点P .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求点P 的轨迹C 的极坐标方程; (2)若射线()π06θρ=>与圆O 和曲线C 分别交于S ,T 两点(其中T 异于原点O ),求ST .24.在直角坐标系xOy 中,已知点()6,2Q ,曲线1C 的参数方程为28682x t y t =-⎧⎨=-⎩(t 为参数),点P 是曲线1C 上的任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求点M 的轨迹2C 的极坐标方程;(2)已知直线l :y kx =与曲线2C 交于点O ,A ,射线OA 逆时针旋转90︒交曲线2C 于点B ,且3OA OB ⋅=,求k . 25.在直角坐标系xOy 中,曲线()221:24C x y -+=,曲线22cos :sin x C y φφ=⎧⎨=⎩(ϕ为参数).以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)射线l 的极坐标方程为004πθααρ⎛⎫=≤≤> ⎪⎝⎭,,若l 分别与1C ,2C 交于异于极点的M ,N 两点.求OM ON ⋅的取值范围. 26.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线1l 的极坐标方程为π02θαα⎛⎫=<< ⎪⎝⎭,将直线1l 绕极点O 逆时针旋转π3个单位得到直线2l . (1)求C 和2l 的极坐标方程;(2)设直线1l 和曲线C 交于,O A 两点,直线2l 和曲线C 交于,O B 两点,求OA OB +的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将极坐标方程转化为普通方程,将圆上点到直线距离问题转化为圆心到直线的距离再减半径,即可求出其最小值. 【详解】由1ρ=得221x y +=,∴圆心(0,0),r = 由()cos 2sin 5ρθθ+=,得25x y +=, 又圆心(0,0)到直线的距离为d r ==>,∴直线和圆相离,所以点P 到直线250x y +-=1r =, 故选:D. 【点睛】本题考查了极坐标方程和普通方程的转化,考查直线和圆的关系,考查了转化思想,属于中档题.2.C解析:C 【分析】由题意可知,极点不在方程表示的sin cos k ρθθ=++曲线上,可知sin cos k θθ+=-无解,利用辅助角公式得出24sin cos sin πθθθ⎛⎫+=+ ⎪⎝⎭,结合正弦函数的性质,即可得出k 的取值范围. 【详解】当0ρ=时,sin cos k θθ+=-,则此方程无解 由224sin cos sin πθθθ⎛⎫+=+≤ ⎪⎝⎭,所以当2k >时,方程无解.故选:C 【点睛】本题主要考查了点与直线的位置关系,涉及了正弦函数的性质,属于中档题.3.D解析:D 【分析】利用数形结合,采用建系的方法,根据向量的坐标表示以及运算,结合辅助角公式,可得结果. 【详解】 如图:由GE GF ⊥,可知EF 为直径 可设()()13cos ,3sin ,13cos ,3sin E F ϕϕϕϕ+--, ()13cos ,3sin G θθ+所以()33cos ,3sin 4QE ϕϕ=-+-,()33cos ,3sin 4QF ϕϕ=---- ()3cos 3,3sin 4QG θθ=--则()3cos 9,3sin 12QE QF QG θθ++=--所以(3cos QE QF QG ++=化简可得234QE QF QG ++=即3234tan 4QE QF QG ϕ++==所以当()sin 1θϕ+=时,min12QE QF QG++=当()sin 1θϕ+=-时,max18QE QF QG++=所以||QE QF QG ++的取值范围为[]12,18 故选:D 【点睛】本题主要考查向量的坐标表示,对这种几何问题,常会采用建系,将几何问题代数化,化繁为简,属中档题.4.B解析:B 【分析】由题意可知曲线1C 与2C 交于原点和另外一点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出AB ρ=,即可得出AB 的值. 【详解】易知,曲线1C 与2C均过原点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C 与2C 的坐标方程2sin ρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,AB ρ== 故选:B. 【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.5.C解析:C 【解析】【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。

北师大版高中数学选修4-4章末综合测评(一).docx

北师大版高中数学选修4-4章末综合测评(一).docx

章末综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后得到的曲线方程为( )A.y =3sin xB.y =3sin 2xC.y =3sin 12xD.y =13sin 2x【解析】 由伸缩变换,得x =x ′2,y =y ′3. 代入y =sin 2x ,有y ′3=sin x ′,即y ′=3sin x ′. ∴变换后的曲线方程为y =3sin x . 【答案】 A2.极坐标方程sin θ=12(ρ∈R ,ρ≥0)表示的曲线是( )A.两条相交直线B.两条射线C.一条直线D.一条射线【解析】 ∵sin θ=12,所以θ=π6(ρ≥0)和θ=56π(ρ≥0),故其表示两条射线. 【答案】 B3.极坐标方程ρ=cos θ化为直角坐标方程为( )A.⎝ ⎛⎭⎪⎫x +122+y 2=14B.x 2+⎝ ⎛⎭⎪⎫y +122=14C.x 2+⎝ ⎛⎭⎪⎫y -122=14D.⎝ ⎛⎭⎪⎫x -122+y 2=14 【解析】 由ρ=cos θ,得ρ2=ρcos θ,所以x 2+y 2=x ,即⎝ ⎛⎭⎪⎫x -122+y 2=14.故选D.【答案】 D4.点A 的球坐标为⎝ ⎛⎭⎪⎫2,34π,34π,则它的直角坐标为( )【导学号:12990019】A.(-1,1,-2)B.(-1,1,2)C.(-1,-1,2)D.(1,1,-2)【解析】 x =r sin φcos θ=2sin 34πcos 34π=-1, y =r sin φsin θ=2sin 34πsin 34π=1, z =r cos φ=2cos 34π=- 2.所以直角坐标为(-1,1,-2),故选A. 【答案】 A5.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( )A.x 2+y 2=3B.x 2+2xy =1(x ≠±1)C.y =1-x 2D.x 2+y 2=9(x ≠0)【解析】 设P (x ,y ),则k P A =y x +1(x ≠-1),k PB =y x -1(x ≠1). 又k P A +k PB =-1,即y x +1+y x -1=-1,得 x 2+2xy =1(x ≠±1),故选B. 【答案】 B6.如图1,已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线的极坐标方程是( )图1A.ρ=1B.ρ=cos θC.ρ=-1cos θD.ρ=1cos θ【解析】 由题图可知ρcos(π-θ)=1, 即ρ=-1cos θ,故选C. 【答案】 C7.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22 B. 2 C.2D.2 2【解析】 圆ρ=4cos θ的圆心C (2,0),如图,|OC |=2, 在Rt △COD 中, ∠ODC =π2,∠COD =π4, ∴|CD |= 2.即圆ρ=4cos θ的圆心到直线tan θ=1的距离为 2. 【答案】 B8.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3 B.⎝ ⎛⎭⎪⎫1,2π3 C.⎝ ⎛⎭⎪⎫1,π3 D.⎝ ⎛⎭⎪⎫1,-7π6 【解析】 点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝ ⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R ),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标,即⎝ ⎛⎭⎪⎫1,4π3. 【答案】 A9.极坐标方程ρcos θ=2sin 2θ表示的曲线为( ) A.一条射线和一个圆 B.两条直线C.一条直线和一个圆D.一个圆【解析】 方程ρcos θ=2sin 2θ可化为ρcos θ=4sin θcos θ,即cos θ=0或ρ=4sin θ,方程cos θ=0即θ=k π+π2,表示y 轴,方程ρ=4sin θ即x 2+y 2=4y ,表示圆,故选C.【答案】 C10.圆ρ=r 与圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.2ρ(sin θ+cos θ)=rD.2ρ(sin θ+cos θ)=-r【解析】 圆ρ=r 的直角坐标方程为 x 2+y 2=r 2,① 圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4=-2r ⎝ ⎛⎭⎪⎫sin θcos π4+cos θsin π4=-2r (sin θ+cos θ).两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ).∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0.②①-②整理得2(x +y )=-r ,即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r .【答案】 D11.圆ρ=2a sin θ关于极轴对称的圆的方程为( ) A.ρ=2a cos θ B.ρ=-2a cos θ C.ρ=-2a sin θD.ρ=2a sin θ【解析】 法一:根据对称规律,把⎩⎨⎧θ′=-θ,ρ′=ρ代入原方程,可得原方程表示的曲线关于极轴对称的曲线方程.∴ρ=2a sin θ关于极轴对称的曲线方程为ρ′=2a sin (-θ),即ρ=-2a sin θ. 法二:因为圆ρ=2a sin θ的圆心是⎝ ⎛⎭⎪⎫a ,π2,半径为a ,该圆关于极轴对称的圆的圆心应为⎝ ⎛⎭⎪⎫a ,3π2,半径仍为a ,其方程应为:ρ=2a cos ⎝ ⎛⎭⎪⎫θ-3π2,即ρ=-2a sin θ. 【答案】 C12.直线θ=α和直线ρsin (θ-α)=1的位置关系是( ) A.垂直 B.平行 C.相交但不垂直D.重合【解析】 直线θ=α化为直角坐标方程为y =x tan α,ρsin (θ-α)=1化为ρsin θcos α-ρcos θsin α=1,即y =x tan α+1cos α.所以两直线平行. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.点M 的直角坐标为(-1,3,2),那么它的柱坐标为________.【解析】 设柱坐标为(r ,θ,z ),则r =(-1)2+(3)2=2,又tan θ=-3,∴θ=2π3,故柱坐标为⎝ ⎛⎭⎪⎫2,2π3,2.【答案】 ⎝ ⎛⎭⎪⎫2,2π3,2 14.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.【解析】 点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=1,32y -12x =1,12x -32y +1=0,点(3,1)到直线12x -32y +1=0的距离为⎪⎪⎪⎪⎪⎪12×3-32×1+1⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-322=1.【答案】 115.已知点M 的柱坐标为⎝ ⎛⎭⎪⎫2π3,2π3,2π3,则点M 的直角坐标为________,球坐标为________.【解析】 设点M 的直角坐标为(x ,y ,z ),柱坐标为(r ,θ,z ),球坐标为(r ,φ,θ),由⎩⎨⎧x =r cos θ,y =r sin θ,z =z得⎩⎪⎨⎪⎧x =2π3cos 2π3=-π3,y =2π3sin 2π3=33π,z =2π3.由⎩⎪⎨⎪⎧r =x 2+y 2+z 2,cos φ=z r ,得⎩⎪⎨⎪⎧r =22π3,cos φ=22,即⎩⎪⎨⎪⎧r =22π3,φ=π4.所以点M 的直角坐标为⎝ ⎛⎭⎪⎫-π3,3π3,2π3,球坐标为⎝ ⎛⎭⎪⎫22π3,π4,2π3.【答案】 ⎝ ⎛⎭⎪⎫-π3,33π,23π ⎝ ⎛⎭⎪⎫223π,π4,23π 16.已知极坐标系中,极点为O ,将点A ⎝ ⎛⎭⎪⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.【导学号:12990020】【解析】 依题意,点B 的极坐标为⎝ ⎛⎭⎪⎫4,5π12,∵cos 5π12=cos ⎝ ⎛⎭⎪⎫π4+π6=cos π4cos π6-sin π4sin π6=22·32-22·12=6-24, sin 5π12=sin ⎝ ⎛⎭⎪⎫π4+π6=sin π4cos π6+cos π4sin π6=22·32+22·12=6+24, ∴x =ρcos θ=4×6-24=6-2, ∴y =ρsin θ=4×6+24=6+2,∴点B 的直角坐标为(6-2,6+2). 【答案】 (6-2,6+2)三、解答题(本大题共6小题,共70分.解答应写出文字说明.证明过程或演算步骤)17.(本小题满分10分)如图2建立球坐标系,正四面体ABCD 的棱长为1,求A ,B ,C ,D 的球坐标(其中O 是△BCD 的中心).图2【解】 ∵O 是△BCD 的中心,∴OC =OD =OB =33,AO =63,∴A ⎝ ⎛⎭⎪⎫63,0,0,B ⎝ ⎛⎭⎪⎫33,π2,4π3,C ⎝ ⎛⎭⎪⎫33,π2,0,D ⎝ ⎛⎭⎪⎫33,π2,2π3.18.(本小题满分12分)在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.【解】 将⎩⎨⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1,得(2x -5)2+(2y +6)2=1, 即⎝ ⎛⎭⎪⎫x -522+(y +3)2=14, 故曲线C 是以⎝ ⎛⎭⎪⎫52,-3为圆心,半径为12的圆.19.(本小题满分12分)已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.【解】 ⊙C 的直角坐标方程是x 2+y 2-x -y =0, 即⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=12. 又直线l 的极坐标方程为ρ(cos θ-sin θ)=4, 所以直线l 的直角坐标方程为x -y -4=0.设M ⎝ ⎛⎭⎪⎫12+22cos θ,12+22sin θ为⊙C 上任意一点,M 点到直线l 的距离d =⎪⎪⎪⎪⎪⎪12+22cos θ-⎝ ⎛⎭⎪⎫12+22sin θ-42=4-cos ⎝ ⎛⎭⎪⎫θ+π42,当θ=7π4时,d min =32=322.20.(本小题满分12分)如图3,花坛水池中央有一喷泉,水管O ′P =1 m ,水从喷头P 喷出后呈抛物线状,先向上至最高点后落下,若最高点距水面2 m ,P 距抛物线的对称轴1 m ,则水池的直径至少应设计为多少米(精确到整数位)?图3【解】 如图建立平面直角坐标系,设抛物线方程为x 2=-2py (p >0).依题意,有P (-1,-1),∴p =12,故抛物线的方程为 x 2=-y .设B (x ,-2),则x =2,∴|O ′B |=1+ 2. 所以水池的直径为2(1+2)≈5(m). 即水池的直径至少应设计为5 m.21.(本小题满分12分)(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程;(2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程. 【解】 (1)设M (ρ,θ)为圆上任意一点,如图,圆C 过极点O ,∠COM =θ-1,作CK ⊥OM 于K , 则|OM |=2|OK |=2cos(θ-1), 故圆C 的极坐标为ρ=2cos(θ-1).(2)将圆C :ρ=2cos(θ-1)按逆时针旋转π2得到圆D :ρ=2cos ⎝ ⎛⎭⎪⎫θ-1-π2,即ρ=-2sin(1-θ),故ρ=2sin(θ-1)为所求.22.(本小题满分12分)在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程. 【解】 (1)法一:∵ρ=2,∴x 2+y 2=4. 又∵ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,∴y =x +2. ∴|AB |=2r 2-d 2=24-⎝ ⎛⎭⎪⎫222=2 2. 法二:设A (ρ,θ1),B (ρ,θ2),θ1,θ2∈[0,2π), 则sin ⎝ ⎛⎭⎪⎫θ1-π4=22,sin ⎝ ⎛⎭⎪⎫θ2-π4=22.∵θ1,θ2∈[0,2π),∴|θ1-θ2|=π2,即∠AOB =π2, 又|OA |=|OB |=2, ∴|AB |=2 2.(2)法一:∵曲线C 2的斜率为1,∴过点(1,0)且与曲线C 2平行的直线l 的直角坐标方程为y =x -1,∴直线l 的极坐标为ρsin θ=ρcos θ-1, 即ρcos ⎝ ⎛⎭⎪⎫θ+π4=22.法二:设点P (ρ,θ)为直线l 上任一点,因为直线AB 与极轴成π4的角, 则∠PCO =3π4或∠PCO =π4, 当∠PCO =3π4时,在△POC 中,|OP |=ρ,|OC |=1,∠POC =θ,∠PCO =3π4,∠OPC =π4-θ, 由正弦定理可知:1sin ⎝ ⎛⎭⎪⎫π4-θ=ρsin 34π, 即ρsin ⎝ ⎛⎭⎪⎫π4-θ=22,即直线l 的极坐标方程为:ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 同理,当∠PCO =π4时,极坐标方程也为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22. 当P 为点C 时显然满足ρsin ⎝ ⎛⎭⎪⎫π4-θ=22. 综上,所求直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新北师大版高中数学选修4-4测试题全套及答案第一讲一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四小选项中,只有一项是符合题目要求的).1.原点与极点重合,x 轴正半轴与极轴重合,则点(-2,-23)的极坐标是( ) A .⎝⎛⎭⎫4,π3 B .⎝⎛⎭⎫4,4π3 C .⎝⎛⎭⎫-4,-2π3 D .⎝⎛⎭⎫4,2π3 解析: 由直角坐标与极坐标互化公式: ρ2=x 2+y 2,tan θ=yx(x ≠0).把点(-2,-23)代入即可得ρ=4,tan θ=3, 因为点(-2,-23)在第三象限,所以θ=4π3.答案: B2.在极坐标系中有如下三个结论:①点P 在曲线C 上,则点P 的极坐标满足曲线C 的极坐标方程;②tan θ=1与θ=π4表示同一条曲线;③ρ=3与ρ=-3表示同一条曲线.在这三个结论中正确的是( )A .①③B .①C .②③D .③ 解析: 在直角坐标系内,曲线上每一点的坐标一定适合它的方程,但在极坐标系内,曲线上一点的所有坐标不一定都适合方程,故①是错误的;tan θ=1不仅表示θ=π4这条射线,还表示θ=5π4这条射线,故②亦不对;ρ=3与ρ=-3差别仅在于方向不同,但都表示一个半径为3的圆,故③正确.答案: D3.可以将椭圆x 210+y 28=1变为圆x 2+y 2=4的伸缩变换( )A .⎩⎨⎧5x ′=2x 2y ′=yB .⎩⎨⎧2x ′=5x y ′=2yC .⎩⎨⎧2x ′=x5y ′=2xD .⎩⎨⎧5x ′=2x2y ′=y解析: 方法一:将椭圆方程x 210+y 28=1化为2x 25+y 22=4,∴⎝⎛⎭⎪⎫2x 52+⎝⎛⎭⎫y 22=4, 令⎩⎪⎨⎪⎧x ′=25x ,y ′=y2,得x ′2+y ′2=4,即x 2+y 2=4,∴伸缩变换⎩⎪⎨⎪⎧5x ′=2x ,2y ′=y 为所求.方法二:将x 2+y 2=4改写为x ′2+y ′2=4,设满足题意的伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入x ′2+y ′2=4得λ2x 2+μ2y 2=4, 即λ2x 24+μ2y 24=1,与椭圆x 210+y 28=1比较系数得⎩⎨⎧ λ24=110,μ24=18,解得⎩⎪⎨⎪⎧ λ=25,μ=12,∴伸缩变换为⎩⎪⎨⎪⎧x ′=25x ,y ′=12y ,即⎩⎪⎨⎪⎧5x ′=2x ,2y ′=y. 答案: D4.极坐标方程4ρsin 2θ2=5表示的曲线是( )A .圆B .椭圆C .双曲线的一支D .抛物线解析: 若直接由所给方程很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.4ρ·sin 2θ2=4ρ·1-cos θ2=2ρ-2ρcos θ=5,化为直角坐标方程:2x 2+y 2-2x =5,化简,得y 2=5x +254.故该方程表示抛物线. 答案: D5.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点⎝⎛⎭⎫4,π6作曲线C 的切线,则切线长为( )A .4B .7C .2 2D .23解析: ρ=4sin θ化为普通方程为x 2+(y -2)2=4,点⎝⎛⎭⎫4,π6化为直角坐标为(23,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为(23)2+(2-2)2-22=2 2. 答案: C6.已知点P 的坐标为(1,π),则过点P 且垂直极轴的直线方程是( ) A .ρ=1 B .ρ=cos θ C .ρ=-1cos θD .ρ=1cos θ解析: 由点P 的坐标可知,过点P 且垂直极轴的直线方程在直角坐标系中为x =-1,即ρcos θ=-1,故选C .答案: C7.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A .22B .2C .2D .22解析: 圆ρ=4cos θ的圆心C (2,0),如图所示,|OC |=2,在Rt △COD 中,∠ODC =π2,∠COD =π4,∴|CD |= 2. 答案: B8.在极坐标中,与圆ρ=4sin θ相切的一条直线方程为( ) A .ρsin θ=2 B .ρcos θ=2 C .ρcos θ=4D .ρcos θ=-4解析: 圆ρ=4sin θ的圆心为⎝⎛⎭⎫2,π2,半径为r =2, 对于选项A ,方程ρsin θ=2对应的直线y =2,与圆相交; 对于选项B ,方程ρcos θ=2对应的直线x =2,与圆相切; 选项C ,D 对应的直线与圆相离. 答案: B9.圆ρ=r 与圆ρ=-2r sin ⎝⎛⎭⎫θ+π4(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-r C .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r解析: 圆ρ=r 的直角坐标方程为x 2+y 2=r 2① 圆ρ=-2r sin ⎝⎛⎭⎫θ+π4 =-2r ⎝⎛⎭⎫sin θcos π4+cos θsin π4=-2r (sin θ+cos θ). 两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ), ∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0② ①-②整理得2(x +y )=-r , 即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r . 答案: D10.极坐标系内曲线ρ=2cos θ上的动点P 与定点Q ⎝⎛⎭⎫1,π2的最近距离等于( )A .2-1B .5-1C .1D .2解析: 将曲线ρ=2cos θ化成直角坐标方程为(x -1)2+y 2=1,点Q 的直角坐标为(0,1),则P 到Q 的最短距离为点Q 与圆心的距离减去半径,即2-1.答案: A二、填空题(每小题5分,共20分.把正确答案填在题中的横线上)11.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成图形的面积是________.解析: 三条直线在直角坐标系下的方程依次为y =0,y =3x ,x +y =1.如图可知, S △POQ =12×|OQ |×|y p |=12×1×33+1=3-34. 答案:3-3412.已知极坐标系中,极点为O ,将点A ⎝⎛⎭⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标 ________.解析: 依题意,点B 的极坐标为⎝⎛⎭⎫4,5π12, ∵cos5π12=cos ⎝⎛⎭⎫π4+π6 =cos π4cos π6-sin π4sin π6=22×32-22×12=6-24,sin5π12=sin ⎝⎛⎭⎫π4+π6 =sin π4cos π6+cos π4sin π6=22×32+22×12=6+24, ∴x =ρcos θ=4×6-24=6-2,y =ρsin θ=4×6+24=6+ 2. ∴点B 的直角坐标为(6-2,6+2). 答案: (6-2,6+2)13.从极点作圆ρ=2a cos θ的弦,则各条弦中点的轨迹方程为 ________.解析: 数形结合,易知所求轨迹是以⎝⎛⎭⎫a 2,0为圆心,a2为半径的圆.求得方程是ρ=a cos θ⎝⎛⎭⎫-π2≤θ≤π2. 答案: ρ=a cos θ⎝⎛⎭⎫-π2≤θ≤π2 14.点A 的直角坐标为⎝⎛⎭⎫-332,92,3,则它的球坐标为 ________.解析: r =⎝⎛⎭⎫3322+⎝⎛⎭⎫922+32=6. cos φ=36=12,∴φ=π3.tan θ=92332=3,∴θ=π3,∴它的球坐标为⎝⎛⎭⎫6,π3,π3. 答案: ⎝⎛⎭⎫6,π3,π3 三、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤) 15.(12分)设极点O 到直线l 的距离为d ,由点O 向直线l 作垂线,由极轴到垂线OA 的角度为α(如图所示).求直线l 的极坐标方程.解析: 在直线l 上任取一点M (ρ,θ).在直角三角形OMA 中, 由三角知识得ρcos(α-θ)=d ,即ρ=dcos (α-θ).这就是直线l 的极坐标方程.16.(12分)在平面直角坐标系中,已知点A (3,0),P 是圆x 2+y 2=1上的一个动点,且∠AOP 的平分线交P A 于Q 点,求Q 点的轨迹的极坐标方程.解析: 以圆心O 为极点,x 轴正半轴为轴建立坐标系, 设Q (ρ,θ),P (1,2θ). 因为S △OAQ +S △OQP =S △OAP ,所以12·3ρ·sin θ+12ρ·sin θ=12×3×1×sin2θ.整理得ρ=32cos θ.17.(12分)已知⊙C :ρ=cos θ+sin θ,直线l :ρ=22cos ⎝⎛⎭⎫θ+π4.求⊙C 上点到直线l 距离的最小值.解析: ⊙C 的直角坐标方程是x 2+y 2-x -y =0, 即⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12. 又直线l 的极坐标方程为ρ(cos θ-sin θ)=4, 所以直线l 的直角坐标方程为x -y -4=0.设M ⎝⎛⎭⎫12+22cos θ,12+22sin θ为⊙C 上任意一点,M 点到直线l 的距离d =⎪⎪⎪⎪12+22cos θ-⎝⎛⎭⎫12+22sin θ-42=4-cos ⎝⎛⎭⎫θ+π42,当θ=7π4时,d min =32=322.18.(14分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析: (1)由ρcos ⎝⎛⎭⎫θ-π3=1, 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,得M (2,0); 当θ=π2时,ρ=233,得N ⎝⎛⎭⎫233,π2.(2)M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6.所以直线OP 的极坐标方程为θ=π6,ρ∈R .第二讲一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-ty =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线解析: ∵ρ=cos θ,∴x 2+y 2=x ,∴表示一个圆.由⎩⎪⎨⎪⎧x =-1-ty =2+3t得到直线3x +y =-1. 答案: A2.直线⎩⎪⎨⎪⎧x =-2+t ,y =1-t(t 为参数)被圆(x -3)2+(y +1)2=25所截得的弦长为( )A .7 2B .4014C .82D .93+43解析: ⎩⎪⎨⎪⎧x =-2+t ,y =1-t⇒⎩⎨⎧x =-2+22·2t ,y =1-22·2t ,令t ′=2t ,把⎩⎨⎧x =-2+22t ′,y =1-22t ′代入(x -3)2+(y +1)2=25. 整理,得t ′2-72t ′+4=0, |t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=82. 答案: C3.点集M =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧x =3cos θy =3sin θ(θ是参数,0<θ<π),N ={(x ,y )|y =x +b },若M ∩N ≠∅,则b 满足( )A .-32≤b ≤3 2B .-3<b <32C .0≤b ≤3 2D .-3<b ≤32解析: 用数形结合法解. 答案: D4.已知直线⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)上的两点A 、B 所对应的参数分别为t 1、t 2,且AP→=λPB →(λ≠-1),则点P 所对应的参数为( )A .t 1+t 22B .t 1+t 21+λC .t 1+λt 21+λD .t 2+λt 11+λ答案: C5.已知集合A ={(x ,y )|(x -1)2+y 2=1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪y x ·y x -2=-1, C =⎩⎨⎧⎭⎬⎫(ρ,θ)⎪⎪ρ=2cos θ,θ≠k π4,k ∈Z , D =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x =1+cos θy =sin θ,θ≠k π,k ∈Z , 下列等式成立的是( ) A .A =B B .B =D C .A =CD .B =C解析: 集合B 与D 都是曲线(x -1)2+y 2=1(x ≠0,x ≠2). 答案: B6.已知圆的渐开线⎩⎪⎨⎪⎧x =r (cos φ+φsin φ)y =r (sin φ-φcos φ)(φ为参数)上有一点的坐标为(3,0),则渐开线对应的基圆的面积为( )A .πB .3πC .4πD .9π解析: 把已知点(3,0)代入参数方程得⎩⎪⎨⎪⎧3=r (cos φ+φsin φ), ①0=r (sin φ-φcos φ). ② ①×cos φ+②×sin φ得r =3, 所以基圆的面积为9π. 答案: D7.过抛物线⎩⎨⎧x =2t 2,y =3t(t 为参数)的焦点的弦长为2,则弦长所在直线的倾斜角为( )A .π3B .π3或2π3C .π6D .π6或5π6解析: 将抛物线的参数方程化成普通方程为y 2=32x ,它的焦点为⎝⎛⎭⎫38,0.设弦所在直线的方程为y =k ⎝⎛⎭⎫x -38,由⎩⎨⎧y 2=32x ,y =k ⎝⎛⎭⎫x -38,消去y ,得64k 2x 2-48(k 2+2)x +9k 2=0,设弦的两端点坐标为(x 1,y 1),(x 2,y 2), 则|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫34·k 2+2k 22-916=2 解得k =± 3.故倾斜角为π3或2π3答案: B8.下列双曲线中,与双曲线⎩⎨⎧x =3sec θy =tan θ(θ为参数)的离心率和渐近线都相同的是( )A .y 23-x 29=1B .y 23-x 29=-1C .y 23-x 2=1D .y 23-x 2=-1解析: 双曲线的普通方程为x 23-y 21=1离心率为23=233,渐近线为y =±33xB 中y 23-x 29=-1即x 29-y 23=1其离心率为233,渐近线为y =33x , 故与原双曲线的离心率及渐近线相同. 答案: B9.已知点P 在椭圆x 2+8y 2=8上,且P 到直线l :x -y +4=0的距离最小,则P 点坐标是( )A .⎝⎛⎭⎫-83,13 B .⎝⎛⎭⎫13,83C .(0,±1)D .(±22,0)解析: 设⎩⎪⎨⎪⎧x =1+5cos θy =-2+5sin θ(θ为参数)取x -2y =1+5cos θ+4-25sin θ =5+5cos θ-25sin θ =5+5sin(θ-φ). 故最大值为10. 答案: B10.已知直线l :⎩⎨⎧x =3t ,y =2-t(t 为参数),抛物线C 的方程y 2=2x ,l 与C 交于P 1,P 2,则点A (0,2)到P 1,P 2两点距离之和是( )A .4+ 3B .2(2+3)C .4(2+3)D .8+3解析:把直线参数方程化为⎩⎨⎧x =-32t ′,y =2+12t ′(t ′为参数),代入y 2=2x ,求得t ′1+t ′2=-4(2+3),t ′1t ′2=16>0,知在l 上两点P 1,P 2都在A (0,2)的下方, 则|AP 1|+|AP 2|=|t ′1|+|t ′2| =|t ′1+t ′2|=4(2+3). 答案: C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 11.如图所示,齿轮的廓线AB 为圆的渐开线的一段弧.已知此渐开线的基圆的直径为225 mm ,则此渐开线的参数方程为________.答案: ⎩⎨⎧x =2252(cos t +t sin t )y =2252(sin t -t cos t )(t 为参数)12.在直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ+1,x =cos θ(θ是参数),以O为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为________.解析: 由题意知,曲线C : x 2+(y -1)2=1, 即x 2+y 2-2y =0,所以(ρcos θ)2+(ρsin θ)2-2ρsin θ=0, 化简得ρ=2sin θ. 答案: ρ=2sin θ13.点M (x ,y )在椭圆x 212+y 24=1上,则点M 到直线x +y -4=0的距离的最大值为________,此时点M 的坐标是________.解析: 椭圆的参数方程为⎩⎪⎨⎪⎧x =23cos θ,y =2sin θ(θ为参数),则点M (23cos θ,2sin θ)到直线 x +y -4=0的距离 d =|23cos θ+2sin θ-4|2=⎪⎪⎪⎪4sin ⎝⎛⎭⎫θ+π3-42.当θ+π3=32π时,d max =42,此时M (-3,-1). 答案: 42 (-3,-1)14.若曲线y 2=4x 与直线⎩⎪⎨⎪⎧x =2+2t cos αy =-4+t cos β(t 为参数)相切,则cos αcos β=________.解析: ∵⎩⎪⎨⎪⎧x =2+2t cos αy =-4+t cos β,∴x -2y +4=2cos αcos β=2m ,其中m =cos αcos β,∴x =2+2my +8m ,代入y 2=4x , 得y 2=4(2+2my +8m ), y 2-8my -8-32m =0. ∵直线与曲线相切,∴Δ=(-8m )2-4×(-8-32m ) =64m 2+4×8(1+4m )=0, 2m 2+4m +1=0,∴(m +1)2=12,m =-1±22,∴cos αcos β=-1±22. 答案: -1±22三、解答题(本大题共4题,共50分,解答应写出文字说明、证明过程或演算步骤) 15.(12分)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的非负半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =22t +m y =22t(t 是参数).(1)将曲线C 的极坐标方程和直线l 的参数方程转化为普通方程;(2)若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,试求实数m 的值. 解析: (1)曲线C 的直角坐标方程为x 2+y 2-4x =0, 直线l 的直角坐标方程为y =x -m (2)m =1或m =316.(12分)求椭圆4x 2+y 2-8x cos θ-4y sin 2θ-sin 22θ=0中心的轨迹方程(θ为参数),并证明无论θ取何值,椭圆的大小、形状保持不变.解析: 椭圆方程可化为4(x -cos θ)2+(y -2sin 2θ)2=4, 即(x -cos θ)2+(y -2sin 2θ)24=1, 故椭圆中心的轨迹方程为⎩⎪⎨⎪⎧x =cos θy =2sin 2θ,消去θ得y =2-2x 2(|x |≤1). 对于所给椭圆无论θ如何变化,它的长轴长始终为4,短轴长为2,离心率32. 因此椭圆的大小形状保持不变.17.(12分)已知曲线C 的极坐标方程为ρ2=364cos 2θ+9sin 2θ;(1)若以极点为原点,极轴所在的直线为x 轴,求曲线C 的直角坐标方程; (2)若P (x ,y )是曲线C 上的一个动点,求x +2y 的最大值. 解析: (1)曲线的极坐标方程ρ2=364cos 2θ+9sin 2θ, 即4ρ2cos 2θ+9ρ2sin 2θ=36, ∴4x 2+9y 2=36, ∴x 29+y 24=1. (2)设P (3cos θ,2sin θ),则x +2y =3cos θ+4sin θ=5sin(θ+φ), ∵θ∈R ,∴当sin(θ+φ)=1时,x +2y 的最大值为5.18. (14分)如图所示,设矩形ABCD 的顶点C ,坐标为(4,4),点A 在圆x 2+y 2=9(x ≥0,y ≥0)上移动,且AB ,AD 两边分别平行于x 轴,y 轴,求矩形ABCD 面积的最小值及对应点A 的坐标.解析: 设A (3cos θ,3sin θ)(0<θ<90°) 则|AB |=4-3cos θ,|AD |=4-3sin θ S =|AB |·|AD |=(4-3cos θ)(4-3sin θ) =16-12(cos θ+sin θ)+9cos θ·sin θ. 令t =cos θ+sin θ(1≤t ≤2), 则2cos θ·sin θ=t 2-1∴S =16-12t +92(t 2-1)=92t 2-12t +232=92⎝⎛⎭⎫t -432+72∴t =43时,矩形ABCD 的面积S 取得最小值72.此时⎩⎨⎧ cos θ+sin θ=43,cos θ·sin θ=718,解得⎩⎪⎨⎪⎧cos θ=4±26sin θ=4∓26∴对应A 坐标为⎝⎛⎭⎫2+22,2+22或⎝⎛⎭⎫2-22,2+22.模块综合测试一、选择题(本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列有关坐标系的说法,错误的是() A .在直角坐标系中,通过伸缩变换圆可以变成椭圆 B .在直角坐标系中,平移变换不会改变图形的形状和大小 C .任何一个参数方程都可以转化为直角坐标方程和极坐标方程 D .同一条曲线可以有不同的参数方程解析: 直角坐标系是最基本的坐标系,在直角坐标系中,伸缩变形可以改变图形的形状,但是必须是相近的图形可以进行伸缩变化得到,例如圆可以变成椭圆;而平移变换不改变图形和大小而只改变图形的位置;对于参数方程,有些比较复杂的是不能化成普通方程的,同一条曲线根据参数选取的不同可以有不同的参数方程.答案: C2.把函数y =12sin2x 的图象经过________变化,可以得到函数y =14sin x 的图象.( )A .横坐标缩短为原来的12倍,纵坐标伸长为原来的2倍B .横坐标伸长为原来的2倍,纵坐标伸长为原来的2倍C .横坐标缩短为原来的12倍,纵坐标缩短为原来的12倍D .横坐标伸长为原来的2倍,纵坐标缩短为原来的12解析: 本题主要考查直角坐标系的伸缩变换,根据变换的方法和步骤可知,把函数y =12sin2x 的图象的横坐标伸长为原来的2倍可得y =12sin x 的图象,再把纵坐标缩短为原来的12,得到y =14sin x 的图象. 答案: D3.极坐标方程ρ2-ρ(2+sin θ)+2sin θ=0表示的图形是( ) A .一个圆与一条直线 B .一个圆 C .两个圆D .两条直线解析: 所给方程可以化为(ρ-2)(ρ-sin θ)=0,即ρ=2或ρ=sin θ.化成直角坐标方程分别为x 2+y 2=4和x 2+y 2-y =0,可知分别表示两个圆.答案: C4.在极坐标系中,如果一个圆方程是ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是( )A .ρsin θ=3B .ρsin θ=-3C .ρcos θ=2D .ρcos θ=-2答案: A5.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θy =sin 2θ(θ为参数)化为普通方程为( )A .y =x -2B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)解析: 由⎩⎪⎨⎪⎧x =2+sin 2θy =sin 2θ知x =2+y (2≤x ≤3)所以y =x -2 (2≤x ≤3). 答案: C6.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎩⎨⎧ x =1+12t y =5-32tB .⎩⎨⎧ x =1-12t y =5+32tC .⎩⎨⎧x =1-12ty =5-32tD .⎩⎨⎧ x =1+12ty =5+32t解析: 根据直线参数方程的定义,易得⎩⎨⎧x =1+t ·cosπ3y =5+t ·sin π3,即⎩⎨⎧x =1+12ty =5+32t .答案: D 7.x 2+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=2xy ′=3x ,后所得图形的焦距( )A .4B .213C .2 5D .6解析: 变换后方程变为:x 24+y 29=1,故c 2=a 2-b 2=9-4=5,c =5, 所以焦距为2 5. 答案: C8.已知直线⎩⎪⎨⎪⎧x =2-t sin30°y =-1+t sin30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,则|BC |的值为( )A .27B .30C .7 2D .302解析: ⎩⎪⎨⎪⎧x =2-t sin30°y =-1+t sin30°⇒⎩⎨⎧x =2-12t =2-22t ′y =-1+12t =-1+22t (t ′为参数).代入x 2+y 2=8,得t ′2-32t ′-3=0, ∴|BC |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=(32)2+4×3=30,故选B .答案: B9.已知P 点的柱坐标是⎝⎛⎭⎫2,π4,1,点Q 的球面坐标为⎝⎛⎭⎫1,π2,π4,根据空间坐标系中两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)之间的距离公式|AB |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2,可知P 、Q 之间的距离为( )A . 3B .2C . 5D .22解析: 首先根据柱坐标和空间直角坐标之间的关系,把P 点的柱坐标转化为空间直角坐标(2,2,1),再根据球面坐标与空间直角坐标之间的关系把Q 点的球坐标转化为空间直角坐标⎝⎛⎭⎫22,22,0,代入两点之间的距离公式即可得到距离为 2. 答案: B10.如果直线ρ=1cos θ-2sin θ与直线l 关于极轴对称,则直线l 的极坐标方程是( )A .ρ=1cos θ+2sin θB .ρ=12sin θ-con θC .ρ=12cos θ+sin θD .ρ=12cos θ-sin θ解析: 由ρ=1cos θ+2sin θ知ρcos θ+2ρsin θ=1,∴x +2y =1. 答案: C11.圆心在原点,半径为2的圆的渐开线的参数方程是( )A .⎩⎪⎨⎪⎧x =2(cos φ+4sin φ),y =2(sin φ-4cos φ).(φ为参数)B .⎩⎪⎨⎪⎧x =4(cos θ+θsin θ),y =4(sin θ-θcos θ).(θ为参数)C .⎩⎪⎨⎪⎧ x =2(φ-sin φ),y =2(1-cos φ).(φ为参数)D .⎩⎪⎨⎪⎧x =4(θ-sin θ),y =4(1-cos θ).(θ为参数)解析: 圆心在原点,半径为2的圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ).(φ为参数).答案: A12.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′,且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其他点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A .AB B .BC C .CDD .DA解析: ∵x ≤x ′且y ≥y ′,∴点P (x ,y )在点P ′(x ′,y ′)的左上方. ∵Ω中不存在优于Q 的点,∴点Q 组成的集合是劣弧AD ,故选D . 答案: D二、填空题(本大题共4小题,每小题4分,共16分.把正确答案填在题中横线上)13.已知直线的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=22,则极点到该直线的距离是________ 解析: 对于求一点到一条直线的距离问题,我们联想到的是直角坐标系中的距离公式,因此应首选把极坐标平面内的问题化为直角坐标问题的解决方法,这需把极点、直线的方程化为直角坐标系内的点的坐标、直线的方程.极点的直角坐标为O (0,0),ρsin ⎝⎛⎭⎫θ+π4=ρ⎝⎛⎭⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,化为直角坐标方程为x +y -1=0. ∴点O (0,0)到直线x +y -1=0的距离为d =12=22, 即极点到直线ρsin ⎝⎛⎭⎫θ+π4=22的距离为22. 答案:2214.直线⎩⎪⎨⎪⎧ x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,则此直线的倾斜角α=________.解析: 直线:y =x ·tan α,圆:(x -4)2+y 2=4,如图,sin α=24=12,∴α=π6或56π.答案: π6或56π.15.已知直线l 的参数方程⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数),若以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎫θ+π4.则圆的直角坐标方程为__________,直线l 和圆C 的位置关系为__________(填相交、相切、相离).解析: (1)消去参数t ,得直线l 的普通方程为y =2x +1.ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),消去参数θ,得⊙C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和⊙C 相交.答案: (x -1)2+(y -1)2=2;相交16.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +3,y =3-t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =2sin θ+2(参数θ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______.解析: 直线和圆的方程分别是x +y -6=0,x 2+(y -2)2=22,所以圆心为(0,2),其到直线的距离为d =|0+2-6|1+1=2 2.答案: (0,2) 22三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)(1)化ρ=cos θ-2sin θ.为直角坐标形式并说明曲线的形状; (2)化曲线F 的直角坐标方程:x 2+y 2-5x 2+y 2-5x =0为极坐标方程. 解析: (1)ρ=cos θ-2sin θ两边同乘以ρ得 ρ2=ρcos θ-2ρsin θ ∴x 2+y 2=x -2y 即x 2+y 2-x +2y =0 即⎝⎛⎭⎫x -122+(y +1)2=⎝⎛⎭⎫522 表示的是以⎝⎛⎭⎫12,-1为圆心,半径为52的圆. (2)由x =ρcos θ,y =ρsin θ得 x 2+y 2-5x 2+y 2-5x =0的极坐标方程为:ρ2-5ρ-5ρcos θ=0.18.(12分)在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎫3,π9,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足OQ QP =23,求动点P 的轨迹方程.解析: (1)设M (ρ,θ)为圆C 上任意一点,如图,在△OCM 中,|OC |=3,|OM |=ρ,|CM |=1,∠COM =⎪⎪⎪⎪θ-π6,根据余弦定理,得1=ρ2+9-2·ρ·3·cos ⎪⎪⎪⎪θ-π6,化简整理,得ρ2-6· ρcos ⎝⎛⎭⎫θ-π6+8=0为圆C 的轨迹方程. (2)设Q (ρ1,θ1),则有ρ21-6·ρ1cos ⎝⎛⎭⎫θ1-π6+8=0① 设P (ρ,θ),则OQ ∶QP =ρ1∶(ρ-ρ1) =2∶3⇒ρ1=25ρ,又θ1=θ,即⎩⎪⎨⎪⎧ρ1=25ρ,θ1=θ,代入①得425ρ2-6·25ρcos(θ-π6)+8=0,整理得ρ2-15ρcos ⎝⎛⎭⎫θ-5π6+50=0为P 点的轨迹方程. 19.(12分)已知椭圆C 的极坐标方程为ρ2=123cos 2θ+4sin 2θ,点F 1,F 2为其左,右焦点,直线l 的参数方程为⎩⎨⎧x =2+22t ,y =22t(t 为参数,t ∈R ).(1)求直线l 和曲线C 的普通方程; (2)求点F 1,F 2到直线l 的距离之和. 解析: (1)直线l 的普通方程为y =x -2;曲线C 的普通方程为x 24+y 23=1.(2)∵F 1(-1,0),F 2(1,0),∴点F 1到直线l 的距离d 1=|-1-0-2|2=322.点F 2到直线l 的距离d 2=|1-0-2|2=22,∴d 1+d 2=2 2.20.(12分)已知直线l 过点P (2,0),斜率为43,直线l 与抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M .(1)求P 、M 两点间的距离; (2)求M 点的坐标; (3)求线段AB 的长|AB |.解析: (1)∵直线l 过点P (2,0),斜率为43,设倾斜角为α,tan α=43,cos α=35,sin α=45,∴直线l 的参数方程为⎩⎨⎧x =2+35ty =45t(t 为参数),∵直线l 与抛物线相交,把直线l 的参数方程代入抛物线方程y 2=2x ,整理得8t 2-15t -50=0,设这个方程的两个根为t 1、t 2,则t 1+t 2=158,t 1·t 2=-254.由M 为线段AB 的中点,根据t 的几何意义, 得|PM |=⎪⎪⎪⎪⎪⎪t 1+t 22=1516. (2)由(1)知,中点M 所对参数为t M =1516,代入直线的参数方程,M 点的坐标为⎩⎨⎧x =2+35×1516=4116y =45×1516=34,即M ⎝⎛⎭⎫4116,34.。

相关文档
最新文档