天体运动相关问题处理

合集下载

天体运动问题的解析与解决技巧

天体运动问题的解析与解决技巧

天体运动问题的解析与解决技巧一、引言天体运动是天文学的重要研究领域之一,涉及天体的运行轨迹、相互作用等诸多问题。

本文将对天体运动问题进行解析和解决技巧的介绍,以帮助读者更好地理解和应用天体运动的知识。

二、开普勒运动定律1. 第一定律:行星绕太阳运动的轨道为椭圆,太阳位于椭圆的一个焦点上。

2. 第二定律:行星和太阳连线在相等的时间内扫过相等的面积。

3. 第三定律:行星绕太阳的公转周期的平方与其椭圆轨道长半轴的立方成正比。

三、牛顿引力定律与开普勒定律的关系开普勒定律是基于行星运动的观测得出的经验定律,而牛顿引力定律则给出了这种运动的物理解释。

牛顿引力定律表明,两个物体之间的引力与它们的质量成正比,与它们之间的距离平方成反比。

应用牛顿引力定律可以推导出开普勒定律中的第三定律。

四、太阳系中的行星运动问题1. 行星轨道的计算:根据开普勒的第一定律,行星轨道可以用椭圆方程来表示。

根据已知的观测数据和开普勒定律,可以计算出行星轨道的要素,如长半轴、离心率等。

2. 行星运动的周期:应用开普勒第三定律,可以根据行星轨道的长半轴计算其公转周期。

这对于了解行星的运动规律以及天文观测具有重要的意义。

五、重力势能和动能在天体运动中的应用1. 重力势能:在天体运动中,行星与星体之间的引力势能是一个重要的物理量。

计算行星在不同位置的重力势能可以帮助我们理解行星运动过程中的能量转化。

2. 动能:行星的质量、速度以及位置都与其动能有关。

通过计算行星在不同位置的动能,可以研究行星在运动过程中的机械能守恒、轨道变化等问题。

六、数值模拟与计算机模型随着计算机技术的进步,数值模拟和计算机模型在解决天体运动问题中发挥了重要的作用。

通过建立数值模型和计算机模拟,可以模拟天体之间的相互作用,预测行星轨道的演化情况,以及解决一些复杂的天体运动问题。

七、误差分析与实际观测在天体运动的研究中,误差分析是一个不可忽视的问题。

由于观测条件等各种因素的限制,观测数据中常常存在一定的误差。

秘籍06 天体运动中的五类热点问题和三大概念理解应用(教师版)-备战2024年高考物理抢分秘籍

秘籍06 天体运动中的五类热点问题和三大概念理解应用(教师版)-备战2024年高考物理抢分秘籍

秘籍06天体运动中的五类热点问题和三大概念理解一、开普勒行星运动定律k ,k 是一个与行星无关的常量注意:(1)行星绕太阳运动的轨道通常按圆轨道处理.(2)由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.(3)开普勒第三定律a 3T2=k 中,k 值只与中心天体质量有关二、万有引力定律的理解1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力GMmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR 2=mg .2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R2.3.万有引力的“两点理解”和“两个推论”(1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力.②地球上的物体受到的重力只是万有引力的一个分力.(2)两个推论:①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =GM ′mr 2.三、宇宙速度的理解与计算1.第一宇宙速度的推导方法一:由G Mm R 2=m v 21R ,得v 1=GM R= 6.67×10-11×5.98×10246.4×106m/s =7.9×103m/s.方法二:由mg =m v 21R得v 1=gR =9.8×6.4×106m/s =7.9×103m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5078s≈85min.2.宇宙速度与运动轨迹的关系(1)v 发=7.9km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9km/s<v 发<11.2km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2km/s≤v 发<16.7km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.3.对第一宇宙速度的理解1.第一宇宙速度是人造地球卫星的最小发射速度,也是卫星贴近地面运行的速度,即人造地球卫星的最大运行速度.2.当卫星的发射速度v 满足7.9km/s<v <11.2km/s 时,卫星绕地球运行的轨道是椭圆,地球位于椭圆的一个焦点上.四、赤道上的物体与近地卫星、同步卫星的比较1.分析人造卫星运动的两条思路(1)万有引力提供向心力即G Mmr2=ma 。

(精)解决天体运动问题的方法

(精)解决天体运动问题的方法

解决天体运动问题的方法一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。

二、基本规律1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。

所需向心力由中心天体对它的万有引力提供。

设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。

这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。

2.在天体表面,物体所受万有引力近似等于所受重力。

设天体质量为M,半径为R,其表面的重力加速度为g,由这一近似关系有:,即。

这一关系式的应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。

3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。

对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。

如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。

三、常见题型1.估算天体质量问题由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周期,可估算出被绕天体的质量。

例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。

若还知道引力常量和月球半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月运行的速度D.卫星绕月运行的加速度解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。

高中物理天体运动问题的解题策略

高中物理天体运动问题的解题策略

高中物理天体运动问题的解题策略
高中物理中,天体运动问题是一个非常重要的问题,需要一定的解题策略。

以下是几个解题策略:
1. 明确问题要求:在解题之前,首先要明确问题要求,知道要求解什么。

例如,是求两星体之间的距离,还是求它们的速度等等。

2. 确定参考系:在天体运动问题中,确定参考系是非常重要的。

通常情况下,我们会选择一个惯性参考系作为参考系,这可以简化问题的分析。

3. 确定坐标轴:确定坐标轴是解题的关键之一。

通常情况下,我们会选择一个星体为原点,建立一个笛卡尔坐标系。

这样我们可以很方便地描述两星体之间的相对位置和运动方向。

4. 应用牛顿运动定律:在解题过程中,我们需要应用牛顿运动定律来分析天体运动。

牛顿第二定律可以帮助我们计算天体所受的合力和加速度。

5. 应用牛顿引力定律:天体之间的运动是由引力相互作用而产生的。

因此,我们还需要应用牛顿引力定律,计算两个星体之间的引力大小和方向。

6. 考虑角动量守恒:在某些情况下,我们还需要考虑角动量守恒。

这可以帮助我们计算星体的轨道和轨道速度。

以上是高中物理天体运动问题的解题策略,希望可以对您有所帮助。

- 1 -。

高中物理天体运动问题的解题策略

高中物理天体运动问题的解题策略

高中物理天体运动问题的解题策略
高中物理天体运动问题通常涉及到行星、卫星、彗星等天体的运动轨迹、速度、加速度、引力等方面的计算。

针对这类问题,以下是一些解题策略:
1. 确定问题类型:首先需要确定问题是关于天体运动中的何种问题,比如行星绕太阳的轨迹、卫星绕地球的轨迹等。

不同类型的问题涉及到的物理量和计算方法也有所不同。

2. 绘制示意图:在解决天体运动问题时,绘制示意图是非常重要的。

示意图可以帮助我们更好地理解问题,确定物理量的方向和大小,以及引力的作用方向等。

3. 应用牛顿第二定律:天体运动问题通常涉及到引力、质量、速度和加速度等物理量。

根据牛顿第二定律,可以利用物体的质量、速度和加速度之间的关系来解决问题。

4. 应用万有引力定律:天体运动问题中,引力是一个非常重要的物理量。

根据万有引力定律,可以计算出天体之间的引力大小和方向,从而确定其运动轨迹。

5. 应用牛顿万有引力定律:牛顿万有引力定律是一个非常重要的公式,可以用来计算两个天体之间的引力大小。

在解决天体运动问题时,应该熟练掌握该公式的应用。

总之,解决天体运动问题需要具备扎实的物理基础和良好的问题分析能力。

只有掌握了正确的解题策略,才能顺利地解决这类问题。

- 1 -。

天体问题解题思路

天体问题解题思路

天体问题解题思路
解决天体运动问题,有两条思路:
1、“地上一式”:地面附近万有引力近似等于物体的重力,既G(Mm/R²)=mg 整理得:GM=gR²
2、“天上一式”:天体运动都可以近似地看成匀速圆周运动,其向心力由万有引力提供。

F引=F向,一般有以下几个表述公式:G(Mm/r²)=m(v²/r)=mω²r=m(2π/T)²r。

人造地球卫星绕地球做圆周运动,要用“天上一式”解决。

假如卫星的线速度减小到原来的1/2,卫星仍做圆周运动,但卫星要变轨。

由于线速度减小,向心力mv²/r 减小,万有引力大于卫星所需的向心力,卫星将做向心运动,轨道半径将变小,卫星进入新的轨道运行时,由v=√(GM/r)运行速度将增大。

卫星的发射回收就是用的这一原理。

2024届高考物理一轮复习:天体运动热点问题

2024届高考物理一轮复习:天体运动热点问题

第四章曲线运动天体运动热点问题【考点预测】1.卫星的变轨问题2. 星球稳定自转的临界问题3. 双星、多星模型4. 天体的“追及”问题5.万有引力定律与几何知识的结合【方法技巧与总结】卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,从轨道Ⅰ到轨道Ⅱ,从轨道Ⅱ到轨道Ⅲ,都需要点火加速,则E1<E2<E3. 【题型归纳目录】题型一:卫星的变轨问题题型二:星球稳定自转的临界问题题型三:双星模型题型四:天体的“追及”问题【题型一】卫星的变轨问题【典型例题】例1.(2023·安徽·校联考模拟预测)《天问》是中国战国时期诗人屈原创作的一首长诗,全诗问天问地问自然,表现了作者对传统的质疑和对真理的探索精神,我国探测飞船天问一号发射成功飞向火星,屈原的“天问”梦想成为现实,也标志着我国深空探测迈向一个新台阶,如图所示,轨道1是圆轨道,轨道2是椭圆轨道,轨道3是近火圆轨道,天问一号经过变轨成功进入近火圆轨道3,已知引力常量G,以下选项中正确的是()A.天问一号在B点需要点火加速才能从轨道2进入轨道3B.天问一号在轨道2上经过B点时的加速度大于在轨道3上经过B点时的加速度C.天问一号进入近火轨道3后,测出其近火环绕周期T,可计算出火星的平均密度D.天问一号进入近火轨道3后,测出其近火环绕周期T,可计算出火星的质量【方法技巧与总结】卫星的变轨问题卫星变轨的实质卫星速度突然增大卫星速度突然减小练1.(2023·广东·广州市第二中学校联考三模)天问一号火星探测器搭乘长征五号遥四运载火箭成功发射意味着中国航天开启了走向深空的新旅程。

运用万有引力定律解决天体运动问题的技巧

运用万有引力定律解决天体运动问题的技巧

运用万有引力定律解决天体运动问题的技巧天体运动一直是人类研究的焦点之一,而万有引力定律无疑是解决天体运动问题的重要工具。

本文将探讨运用万有引力定律解决天体运动问题的一些技巧,并展示相关的实例。

首先,我们需要了解万有引力定律的基本原理。

根据牛顿的万有引力定律,任何两个物体之间都存在着相互吸引的力,该力与两个物体的质量成正比,与它们之间的距离的平方成反比。

这一定律的数学表达式为 F = G × (m1 × m2) / r^2,其中 F 表示两个物体之间的引力,G为引力常数,m1 和m2 分别为两个物体的质量,r 为它们之间的距离。

在解决天体运动问题时,一个重要的技巧是将天体视为质点。

这意味着我们可以忽略天体的大小和形状,只关注其质量和位置的变化。

这样简化后的问题更容易处理,因为只需考虑质心的运动即可。

另一个技巧是利用万有引力定律来计算天体之间的引力。

考虑两个天体 A 和 B,它们之间的引力可以根据万有引力定律计算得到。

如果我们已知 A 和 B 的质量以及它们之间的距离,那么我们就可以通过代入公式来求解引力的大小。

如果我们想计算 B 受到的引力,我们可以将 A 和 B 的质量互换位置再代入公式中即可。

除了计算引力的大小,我们还可以利用万有引力定律来研究天体的运动轨迹。

在这种情况下,我们需要运用牛顿的第二定律,即力等于质量乘以加速度。

对于天体 A,它受到来自天体 B 的引力,根据牛顿第二定律,我们可以设立以下公式:m1 × a1 = G × (m1 × m2) / r^2,其中 a1 表示天体 A 的加速度。

同样地,对于天体 B,我们可以得到 m2× a2 = G × (m1 × m2) / r^2,其中 a2 表示天体 B 的加速度。

通过求解这两个方程组,我们可以得出天体的加速度,进而推导出其运动轨迹。

举个例子来说明这些技巧的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天体运动
开普勒行星运动三定律
引力势能
机械能守恒定律
动量守恒
1.根据行星绕日做椭圆运动(开普勒第一定律)的面积速度为恒量(开普勒第二定律),试证明各行星绕日
运行的周期T 与椭圆轨道的半长轴a 之间的关系为C T a =23
(开普勒第三定律),并求出常量C 的表达式。

2.要发射一颗人造地球卫星,使它在半径为2r 的预定轨道上绕地球做匀速圆
周运动,为此先将卫星发射到半径为1r 的近地暂行轨道上绕地球做匀速圆周运动,如图所示,在A 点,实际上使卫星速度增加,从而使卫星进入一个椭圆的转移轨道上,当卫星到达转移轨道的远地点B 时,再次改变卫星速度,使它进入预定轨道运行,试求卫星从A 点到达B 点所需的
时间,设万有引力恒量为G ,地球质量为M 。

3.质量为m 的飞船在半径为R 的某行星表面上空高R 处绕行星作圆周运动,飞船在A 点短时间向前喷气,使飞船与行星表面相切地到达B 点,如图所示。

设喷气相对飞船的速度大小
为Rg u =,其中g 为该行星表面处的重力加速度。

(1)试求飞船在A 点短时
间喷气后的速度;(2)求所喷燃料(即气体)的质量。

4.天文学家在16世纪就观测到了哈雷彗星,天文资料显示:哈雷彗星的近日距为0.59天文单位,远日距为3
5.31天文单位(1天文单位 = 地日距离R ,),地球公转速率为km/s 30。

试根据以上资料求:
(1)哈雷彗星的回归周期为多少年;
(2)哈雷彗星的最大速率v 是多少。

5.卫星沿圆周轨道绕地球运行,轨道半径R r 3=,其中地球半径km 6400=R 。

由于制动装置短时间作用,卫星的速度减慢,使它开始沿着与地球表面相切的椭圆轨道运动,如图所示。

问:制动后经过多少时间卫星落回到地球上?
6.宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R ,今设飞船在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原速度的a 倍,因a 量很小,所以飞船新轨道不会与火星表面交会,如图所示,飞船喷气质量可忽略不计。

(1)试求飞船新轨道的近火星点的高度近h 和远火星点高度远h ;
(2)设飞船原来的运动速度为0v ,试计算新轨道的运行周期T 。

7.地球m 绕太阳M (固定)做椭圆运动,已知轨道半长轴为a ,半短轴
为b ,如图所示,试求地球在椭圆各顶点1,2,3的运动速度的大小及其曲
率半径。

8.从地球上看太阳时,对太阳直径的张角θ=0.53°.取地球表面上纬度为1°的长度l=110km ,地球表面处的重力加速度g=10m/s 2,地球公转的周期T=365天.试仅用以上数据计算地球和太阳密度之比.假设太阳和地球都是质量均匀分布的球体.
9.一个质量为m 1的废弃人造地球卫星在离地面h=800km 高空作圆周运动,在某处和一个质量为m 2=91m 1的太空碎片发生迎头正碰,碰撞时间极短,碰后二者结合成一个物体并作椭圆运动。

碰撞前太空碎片作椭圆运动,椭圆轨道的半长轴为7500km ,其轨道和卫星轨道在同一平面内。

已知质量为m 的物体绕地球作
椭圆运动时,其总能量即动能与引力势能之和E=—G a
Mm 2,式中G 是引力常量,M 是地球的质量,a 为椭圆轨道的半长轴。

设地球是半径R=6371km 的质量均匀分布的球体,不计空气阻力。

(1)试定量论证碰后二者结合成的物体会不会落在地球上。

(2)如果此事件是发生在北极上空(地心和北极的连线方向上),碰后二者结合成的物体与地球相碰处的纬度是多少?
9.假定月球绕地球作圆周运动,地球绕太阳也作圆周运动,且轨道都在同一平面内。

已知地球表面处的重力加速度g =9.80m/s 2,地球半径R 0=6.37×106m ,月球质量m m =7.3×1022kg ,月球半径R m =1.7×106m ,引力恒量G =6.67×10−11N·m 2/kg 2,月心地心间的距离约为r em =3.84×108m
(i)月球的球心绕地球的球心运动一周需多少天?
(ii)地球上的观察者相继两次看到满月需多少天?
(iii)若忽略月球绕地球的运动,设想从地球表面发射一枚火箭直接射向月球,试估算火箭到达月球表面时的速度至少为多少(结果要求两位数字)?
10.质量为m 的人造卫星在绕地球(质量为M e )的飞行过程中,由于受到微弱的摩擦阻力f (常量),不能严格按圆周轨道运动,而是缓慢地沿一螺旋形轨道接近地球.因f 很小,轨道半径变化十分缓慢,每一周均可近似处理为半径为r 的圆周轨道,但r 将逐周缩短. 试求在r 轨道上旋转一周,r 的改变量及卫星动能E K 的改变量.
11.一质量为m =12×103kg 的太空飞船在围绕月球的圆轨道上运动,其高度
h =100km. 为使飞船落到月球表面,喷气发动机在图中P 点作一短时间发动. 从
喷口喷出的热气流相对飞船的速度为u =10km/s ,月球半径为R =170km ,月球表
面的落体加速度g =1.7m/s 2. 飞船可用两种不同方式到达月球(如图所示):
(1)向前喷射气流,使飞船到达月球背面的A 点(与P 点相对),并相切.
(2)向外喷射气流,使飞船得到一指向月球中心的动量,飞船轨道与月球表面
B 点相切.
试计算上述两种情况下所需要的燃料量.
12.若不考虑太阳和其他星体的作用,则地球-月球系统可看成孤立系统。

若把地球和月球都看作是质量均匀分布的球体,它们的质量分别为M 和m ,月心-地心间的距离为R ,万有引力恒量为G 。

学生甲以地心为参考系,利用牛顿第二定律和万有引力定律,得到月球相对于地心参考系的加速度为2R M G a m =;学生乙以月心为参考系,同样利用牛顿第二定律和万有引力定律,得到地球相对于月心参考系的加速度为2R
m G a e =。

这二位学生求出的地-月间的相对加速度明显矛盾,请指出其中的错误,并分别以地心参考系(以地心速度作平动的参考系)和月心参考系(以月心速度作平动的参考系)求出正确结果。

相关文档
最新文档