总结高考题中的天体运动模型,提高应对天体运动题型的能力
天体运动问题的基本模型和方法

天体运动问题的基本模型和方法天体运动问题的基本模型与方法天体运行问题的分析与求解,是牛顿第二定律与万有引力定律的综合运用,问题的分析与求解的关键是建模能力。
一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心,一天体绕另一天体的稳定运行视为匀速圆周运动,研究天体的自转运动时,将天体视为均匀球体。
二、基本规律1,天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。
所需向心力由中心天体对它的万有引力提供。
设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。
这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。
2,在天体表面,物体所受万有引力近似等于所受重力。
设天体质量为M,半径为R,其,由这一近似关系有:,即。
这一关系式的表面的重力加速度为g应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。
3,天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。
对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。
如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度,如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。
三、常见题型题型一:平抛运动与圆周运动相结合,例1,雨伞边缘半径为r,且离地面高为h。
现让雨伞以角速,度绕伞柄匀速旋转,使雨滴从边缘甩出并落在地面上形成一圆圈,试求此圆圈的半径为R。
,解析,所述情景如图所示,设伞柄在地面上的投影为O,雨滴从伞的O R rA s B12边缘甩出后将做平抛运动,其初速度为v=r,落地时间为t,故h,gt。
雨滴在这段,02时间内的水平位移为s= vt。
2025高考物理总复习天体运动的四大问题

=
2
。
1
二、多星模型
所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,
各星体的角速度或周期相同。常见的多星模型及规律:
①
Gm 2
(2R)2
+
Gm 0 m
=ma 向
R2
常见的三星模型
Gm 2
② L 2 ×cos
30°×2=ma 向
Gm 2
① L 2 ×cos
一、星球的瓦解问题
当星球自转越来越快时,星球对“赤道”上的物体的引力不足以提供向心力
时,物体将会“飘起来”,进一步导致星球瓦解,瓦解的临界条件是赤道上的
0
物体所受星球的引力恰好提供向心力,即 2 =mω2R,得
ω>
0
时,星球瓦解;当
3
ω<
ω=
0
。当
3
0
时,星球稳定运行。
2
=m
r
,
=m
1
1
2
1
2 r2。
2
2
(2)两星的周期、角速度相同,即T1=T2,ω1=ω2。
(3)两星的轨道半径与它们之间的距离关系为r1+r2=L。
(4)两星到圆心的距离
1
r1、r2 与星体质量成反比,即
2
(5)双星的运动周期 T=2π
(6)双星的总质量
3
。
( 1 + 2 )
4π 2 3
1
−
2
=
2-1
(n=1,2,3,…)。
2
典题6 (2023哈师大附中模拟)“海王星冲日”是指地球处在太阳与海王星之
浅析“天体运动”考题的破题技巧

浅析“天体运动”考题的破题技巧天体运动是物理学和天文学中一个非常重要的概念,也是考试中经常会涉及到的一个知识点。
在考试中,天体运动的题目往往是一些较为复杂和抽象的问题,需要考生具备一定的物理和数学知识,才能正确解答。
所以,掌握破解天体运动考题的技巧对于考生来说是非常重要的。
下面将从几个方面来浅析破解天体运动考题的技巧。
一、掌握天体运动的基本概念要想破解天体运动的考题,首先必须要掌握天体运动的基本概念。
天体运动是指天体在宇宙空间中的运动规律,包括行星的公转和自转、月球的公转和自转等。
还有一些特殊的天体运动现象,如日食、月食、日月飨交食等。
了解这些基本概念,对于解答天体运动的考题至关重要。
二、掌握一定的数学和物理知识天体运动考题往往伴随着一定的数学和物理知识,考生在破解这类考题时,必须要掌握一定的数学和物理知识。
比如要了解行星的轨道是椭圆形的,需要用到椭圆的相关知识;要分析行星的自转和公转,需要用到角度、速度、加速度等物理知识。
只有掌握了相关的数学和物理知识,才能更好地解答天体运动的考题。
三、善于运用逻辑思维解答天体运动的考题需要善于运用逻辑思维。
因为这类考题往往比较复杂,需要通过分析问题,找出其中的逻辑关系,然后运用相关的知识来解决。
比如在分析一个行星的轨道的时候,可以先根据已知的条件,推导出不同的结果,再根据不同的结果来分析行星的轨道特征。
只有善于运用逻辑思维,才能更加容易地解答这类考题。
四、多做题多练习五、了解常见的考题类型在解答天体运动的考题时,需要了解一些常见的考题类型。
比如有关行星轨道的计算、行星自转和公转的关系、天体运动的定律等。
只有了解了常见的考题类型,才能更好地有针对性地进行准备。
六、注意题目中的关键词解答天体运动的考题时,需要特别注意题目中的关键词。
因为这些关键词往往能够帮助我们更好地理解题目,从而更准确地进行解答。
比如有些题目中可能会出现“质点”、“轨道”、“角速度”等关键词,只有在理解了这些关键词的含义后,才能更好地解答问题。
高考秘籍之天体运动必备十大模型(下)

模型七:多星系模型 【例4】在天文学上把两个相距较近,由于彼此的引力作用而 沿轨道互相绕转的恒星系统称为双星。已知两颗恒星 轨道 相绕转的恒 系 称为 知 恒 质量分别为m1、m2,两星之间的距离为L ,两星分别 绕共同的中心做匀速圆周运动 求各个恒星的运转半 绕共同的中心做匀速圆周运动,求各个恒星的运转半 径和角速度。
2
【例2】 如图所 如图所示,有 有A、B两颗行星绕同一颗恒星 两 行星绕同 恒星M做圆周运动, 做圆周运动 旋转方向相同,A行星的周期为T1,B行星的周期为T2,在 某一时刻两行星相距最近 则: 某一时刻两行星相距最近,则 ⑴经过多长时间,两行星再次相距最近? ⑵ 过多长时间,两行星第 次相 最远 ⑵经过多长时间,两行星第一次相距最远?
【例10】 发射地球同步卫星要经过三个阶段:先将卫星发射至近地圆轨道1, 然后使其沿椭圆轨道2运行,最后将卫星送入同步圆轨道3。轨道1、2 相切 Q点,轨道 相切于 点 轨道2、3相切于 相切 P点,如图所示。当卫星分别在轨道 点 如图所 当 星分别在轨道1、 2、3上正常运行时,则以下说法正确的是( ) A.卫星在轨道 卫星在轨道3上的运行速率大于7.9km/s 7 9km/s B.卫星在轨道3上的机械能小于它在轨道1上的机械能 C.卫星在轨道 星在轨道3上的运行速率大于它在轨道 的运行速率大于它在轨道1上的运行速率 的运行速率 D.卫星分别沿轨道1和轨道2经过Q点时的加速度相等
1
模型八:同步卫星模型 【例6】如图所示, a为地球赤道上的物体,b为沿地球表面附近做匀速圆周运 动的 造 动的人造卫星, c为地球同步卫星。关于 为地球 步 关 a、b、c做匀速圆周运动的说 匀速 动的 法中正确的是( ) A.角速度的大小关系为 角速度的大小关系为ωa=ωc>ωb B.向心加速度的大小关系为aa>ab>ac C.线速度的大小关系为 线速度的大小关系为va=vb>vc D.周期关系为Ta=Tc>Tb 【例7】某颗地球同步卫星正下方的地球表面上有一观察者 ,他用天文望远镜观察被太阳光照射的此卫星。试 问,春分那天(太阳光直射赤道)在日落12h内有多长 时间该观察者看不见此卫星?已知地球半径为R ,地 地 球表面处的重力加速度为g,地球自转周期为T ,不考 虑大气对光的折射。同步卫星与地球同步转动 当同 虑大气对光的折射。同步卫星与地球同步转动,当同 步卫星进入地球挡住阳光的影子区域时,观察者将看 不见此卫星。
高考秘籍之天体运动必备十大模型(上)

【例14】一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被解体的 唯一作用力是万有引力,则此球的最小密度是多少?
【例15】 一物体静置在平均密度为 体静 在平均密度 ρ的球形天体表面的赤道上。已知万有引 球形 体表面 赤道 有引 力常量G,若由于天体自转使物体对天体表面压力恰好为零,则天 体自转周期为( )
)
【 11】某人在一星球上以速度 【例 】某 在 速 v竖直上抛一物体,经时间 直 抛 物 t物体以速度 物 速 v落回手 落 中。已经该星球的半径为R,求这星球上的第一宇宙速度。
模型五:求密度模型 【例12】某研究小组用天文望远镜对一颗行星进行观测,发现该行星有一颗卫 星,卫星在行星的表面附近绕行,并测得其周期为 在 的表 绕 并测 其 期为T,已知引力常量 引 常 为G,根据这些数据可以估算出( ) A.行星的质量 行星的质量 B.行星的半径 行星的半径 C.行星的平均密度 D.行星表面的重力加速度 【例13】已知地球的半径 球 半径 R=6400Km, ,地面的重力加速度 面 重力 度g=9.8m/s2,求 ,求地 球的平均密度。
模型三:黄金代换模型 【例6】 质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速 圆周运动。已知月球质量为M,月球半径为R,月球表面重力加速度 为g,引力常量为G,不考虑月球自转的影响,则航天器的( ) GM A.线速度 v B.角速度 gR R C.运行周期 T 2 R g D.向心加速度 a
高考秘籍之天体运动必备十大模型(上)
天体运动 考察形式多样 每年高考必考 十大模型 模型八:同步卫星模型 模型九:能量模型 模型十:变轨模型
模型一:公转模型 模型二:自转模型 模型三:黄金代换模型 模型四:卫星发射模型 模型五:求密度模型 模型六:天体的追及相遇模型 模型七:多星系模型
浅析“天体运动”考题的破题技巧

浅析“天体运动”考题的破题技巧在物理学中,“天体运动”是一个重要的知识点,也是高考物理中的一个常见考点。
对于这一知识点的考查,常常涉及到天体的速度、加速度、轨道、能量、牛顿万有引力定律等概念。
考生在考场上应该如何准确、快速地破解这类考题呢?以下是笔者总结的几个破题技巧。
一、把握物理公式对于“天体运动”考题,优秀的考生必须熟练掌握其相关物理公式。
这一类型的考题常涉及到的公式有牛顿万有引力定律、开普勒三定律、圆周运动的速度和加速度公式等等。
熟练掌握这些公式,可以节省考生在解题过程中推导公式的时间,提高解题效率。
二、理解物理概念“天体运动”考题中涉及到的概念很多,如轨道、地心引力、卫星、行星等等。
考生需要理解这些概念的定义、意义和相互关系,才能更好地理解题目。
例如,考题中涉及到卫星的轨道,考生需要知道什么是卫星,什么是轨道,轨道的类型有哪些,不同轨道的特点和区别是什么等等。
只有通过理解这些概念,才能快速解题。
三、抓住问题关键词在“天体运动”考题中,关键词很多,例如“速度”、“能量”、“卫星轨道周期”、“天体间的距离”等等。
考生需要仔细阅读题干,抓住关键词,并结合题目信息进行分析、计算。
例如,在一道求行星轨道半径的题目中,题干中提到了行星的速度和轨道周期,考生可以结合开普勒第三定律公式进行计算。
而在另一道天体引力的计算题目中,需要结合牛顿万有引力定律公式进行计算。
四、建立物理模型在进行“天体运动”类型的物理考题时,考生需要建立清晰的物理模型。
物理模型是指将物理学概念和公式应用到具体的问题上,将问题转化为数学问题。
例如,在一道求卫星轨道速度的题目中,考生可以将卫星看作一个质点,计算其速度所需要的向心力大小,然后结合向心加速度公式计算。
总之,“天体运动”是一个需要深入掌握物理公式、理解物理概念、抓住关键词、建立物理模型的重要知识点。
希望考生在考前做好复习规划、掌握破题技巧,尽情展现自己的优异表现。
高中物理解题技巧知识点总结天体运动

高中物理解题技巧知识点总结天体运动一、处理天体问题的基本思路及规律1.天体问题的两步求解法.(1)建立一个模型:天体绕中心天体做匀速圆周运动,万有引力提供向心力,即:F万=F向.(2)写出两组式子②代换关系:天体表面空间轨道上2.人造卫星的向心加速度、线速度、角速度、周期与半径的关系.[例1] “嫦娥二号”环月飞行的高度为100 km,所探测到的有关月球的数据将比环月飞行高度为200 km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示.则()A.“嫦娥二号”环月运行的周期比“嫦娥一号”大B.“嫦娥二号”环月运行的线速度比“嫦娥一号”小C.“嫦娥二号”环月运行的向心加速度比“嫦娥一号”大D.“嫦娥二号”环月运行的向心力与“嫦娥一号”相等答案 C解析根据万有引力提供向心力又嫦娥一号的轨道半径大于嫦娥二号的,所以“嫦娥二号”环月运行的周期比“嫦娥一号”小,故A错误;“嫦娥二号”环月运行的线速度比“嫦娥一号”大,B错误;“嫦娥二号”环月运行的向心加速度比“嫦娥一号”大,C正确;因不知道两卫星的质量大小关系,故不能判断受向心力的大小,所以D错误.二、人造卫星的有关问题1.发射速度与环绕速度.(1)人造卫星的最小的发射速度为即第一宇宙速度.发射速度越大,卫星环绕地球运转时的高度越大.(2)由可知,人造地球卫星的轨道半径越大,环绕速度越小,所以第一宇宙速度v=7.9 km/s是最小的发射速度也是最大的环绕速度.2.两类运动——稳定运行和变轨运行.卫星绕天体稳定运行时,当卫星速度v突然变化时,F万和不再相等.当时,卫星做近心运动;当时,卫星做离心运动.3.两种特殊卫星.(1)近地卫星:卫星轨道半径约为地球半径,受到的万有引力近似为重力,故有(2)地球同步卫星:相对于地面静止,它的周期T=24h,所以它只能位于赤道正上方某一确定高度h,故地球上所有同步卫星的轨道均相同,因而也具有相同的线速度、相同的角速度、相同的向心加速度,但它们的质量可以不同.[例2]“静止”在赤道上空的地球同步气象卫星把广阔视野内的气象数据发回地面,为天气预报提供准确、全面和及时的气象资料.设地球同步卫星的轨道半径是地球半径的n倍,下列说法中正确的是( ).A.同步卫星的运行速度是第一宇宙速度的倍B.同步卫星的运行速度是地球赤道上物体随地球自转获得的速度的倍C.同步卫星的运行速度是第一宇宙倍速度的D.同步卫星的向心加速度是地球表面重力加速度的倍答案 C解析同步卫星绕地球做圆周运动,由万有引力提供向心力,则,得同步卫星的运行速度又第一宇宙速度所以故A错误,C正确,所以故D错误;同步卫星与地球自转的角速度相同,则v=ωr,v 自=ωR,所以,故B错误.。
漫谈天体运动问题的十种物理模型

漫谈天体运动问题的十种物理模型闫俊仁(山西省忻州市第一中学 034000)航空航天与宇宙探测是现代科技中的重点内容,也是高考理综物理命题的热点内容,所涉及到的知识内容比较抽象,习题类型较多,不少学生普遍感觉到建模困难,导致解题时找不到切入点.下面就本模块不同类型习题的建模与解题方法做一归类分析。
一、“椭圆轨道”模型指行星(卫星)的运动轨道为椭圆,恒星(或行星)位于该椭圆轨道的一个焦点上. 由于受数学知识的限制,此类模型适宜高中生做的题目不多,所用知识为开普勒第三定律及椭圆轨道的对称性。
例1 天文学家观察到哈雷彗星的周期约是75年,离太阳最近的距离是8.9X1010m ,但它离太阳的最远距离不能测出。
试根据开普勒定律计算这个最远距离,已知太阳系的开普勒常量k =3.354X1018m 3/s 2。
解析 设哈雷彗星离太阳的最近距离为,最远距离为R 2,则椭圆轨道半长 轴为221R R R += 根据开普勒第三定律k TR =23,得 13222R kT R -==m m 103218109.83600243657510354.38⨯-⨯⨯⨯⨯⨯)(=5.224⨯1012m二、“中心天体——圆周轨道”模型指一个天体(中心天体)位于中心位置不动(自转除外),另一个天体(环绕天体)以它为圆心做匀速圆周运动,环绕天体只受中心天体对它的万有引力作用。
解答思路 由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律,得r Tm r mw r v m ma r Mm G n 2222)2(π==== 式中M 为中心天体的质量,m 为环绕天体的质量, a n 、v 、w 和T 分别表示环绕天体做圆周运动的向心加速度、线速度、角速度和周期.根据问题的特点条件,灵活选用的相应的公式进行分析求解。
此类模型所能求出的物理量也是最多的。
(1)对中心天体而言,可求量有两个:①质量M=2324GT r π,②密度ρ=3233R GT r π,特殊地,当环绕天体为近地卫星时(r =R),有ρ=23GT π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结高考题中的天体运动模型,提高应对天体运动题型的能力运用万有引力定律求解天体运动问题,是高考每年必考的重要内容,通过对近几年全国及各地高考试题的研究,发现天体问题可归纳为以下四种模型。
一、重力与万有引力关系模型1.考虑地球(或某星球)自转影响,地表或地表附近的随地球转的物体所受重力实质是万有引力的一个分力由于地球的自转,因而地球表面的物体随地球自转时需要向心力,向心力必来源于地球对物体的万有引力,重力实际上是万有引力的一个分力,由于纬度的变化,物体作圆周运动的向心力也不断变化,因而地球表面的物体重力将随纬度的变化而变化,即重力加速度的值g随纬度变化而变化;从赤道到两极逐渐增大.在赤道上,在两极处,。
例1如图1所示,P、Q为质量均为m的两个质点,分别置于地球表面不同纬度上,如果把地球看成是一个均匀球体,P、Q两质点随地球自转做匀速圆周运动,则以下说法中正确的是:()A.P、Q做圆周运动的向心力大小相等 B.P、Q受地球重力相等C.P、Q做圆周运动的角速度大小相等 D.P、Q做圆周运动的周期相等解析:随地球自转的物体必与地球有相同的周期、角速度;质量一样的物体在地表不同纬度处所受地球万有引力一般大,但重力和向心力不一般大.正确选项是CD。
2.忽略地球(星球)自转影响,则地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力.例2荡秋千是大家喜爱的一项体育活动.随着科技的迅速发展,将来的某一天,同学们也许会在其它星球上享受荡秋千的乐趣。
假设你当时所在星球的质量是、半径为,可将人视为质点,秋千质量不计、摆长不变、摆角小于90°,万有引力常量为。
那么,(1)该星球表面附近的重力加速度等于多少?(2)若经过最低位置的速度为,你能上升的最大高度是多少?解析:(1)设人的质量为,在星球表面附近的重力等于万有引力,有解得(2)设人能上升的最大高度为,由功能关系得解得二、卫星(行星)模型卫星(行星)模型的特征是卫星(行星)绕中心天体做匀速圆周运动,如图2所示。
1.卫星(行星)的动力学特征中心天体对卫星(行星)的万有引力提供卫星(行星)做匀速圆周运动的向心力,即有:。
2.卫星(行星)轨道特征由于卫星(行星)正常运行时只受中心天体的万有引力作用,所以卫星(行星)平面必定经过中心天体中心。
3.卫星(行星)模型题型设计1)讨论卫星(行星)的向心加速度、绕行速度、角速度、周期与半径的关系问题。
由得,故越大,越小。
由得,故越大,越小。
由得,故越大,越小。
得,故越大,越长。
例3我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面.已知月球的质量约为地球质量的,月球的半径约为地球半径的,地球上的第一宇宙速度约为7.9km/s,则该探月卫星绕月运行的速率约为()A.0.4km/s B.1.8km/s C.11km/s D.36km/s解析:由得,当卫星半径时,称之为该中心天体的第一宇宙速度.所以有,解得,所以正确答案为B。
2)求中心天体的质量或密度(设中心天体的半径)若已知卫星绕中心天体做匀速圆周运动的周期与半径根据得,则若已知卫星绕中心天体做匀速圆周运动的线速度与半径由得,则若已知卫星绕中心天体做匀速圆周运动的线速度与周期由和得,则若已知中心天体表面的重力加速度及中心天体的球半径由得,则例4一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量()A.飞船的轨道半径 B.飞船的运行速度C.飞船的运行周期D.行星的质量解析:根据得,则由于飞船在某行星表面附近沿圆轨道绕该行星飞行,所以上式中,即。
所以正确答案为C。
3)卫星的变轨问题卫星绕中心天体稳定运动时万有引力提供了卫星做匀速圆周运动的向心力,有.当卫星由于某种原因速度突然增大时,,卫星将做离心运动;当突然减小时,,卫星做向心运动。
例5“神舟六号”飞行到第5圈时,在地面指挥控制中心的控制下,由近地点250km圆形轨道1经椭圆轨道2转变到远地点350km的圆轨道3。
设轨道2与1相切于Q点,与轨道3相切于P点,如图3所示,则飞船分别在1、2、轨道上运行时()A.飞船在轨道3上的速率大于在轨道1上的速率B.飞船在轨道3上的角速度小于在轨道1上的角速度C.飞船在轨道1上经过Q点时的加速度大于在轨道2上经过Q点的加速度D.飞船在轨道2上经过P点时的加速度等于在轨道3上经过P点的加速度解析:设地球质量为M,地球半径为R,飞船质量为m,轨道半径为r,由牛顿第二定律得和,即,,可见在r增大时,V和ω都将减小,故A错B对。
飞船在同一点受到地球的万有引力相同,其加速度必相同,与其在哪个轨道上运动无关,所以C错D对。
正确选项为BD。
4)地球同步卫星问题地球同步卫星是指相对地面静止的、运行周期与地球的自转周期相等的卫星,这种卫星一般用于通讯,又叫做同步通信卫星,其特点可概括为“五个一定”即位置一定(必须位于地球赤道的上空);周期一定();高度一定();速率一定();运行方向一定(自西向东运行)。
例6在地球上(看做质量均匀分布的球体)上空有许多同步卫星,下面说法中正确的是()A.它们的质量可能不同B.它们的速度可能不同C.它们的角速度可能不同D.它们离地心的距离可能不同解析:由同步卫星的“五个一定”可知BCD错误,正确答案为A。
5)卫星的追及与相遇问题两卫星在同一轨道绕中心天体同向运动,要使后一卫星追上前一卫星,我们称之为追及问题。
两卫星在不同轨道绕中心天体在同一平面内做匀速圆周运动,当两星某时相距最近时我们称之为两卫星相遇问题。
例7如图4所示,a、b、c是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是()A.b、c的线速度大小相等,且大于a的线速度B.b、c的向心加速度大小相等,且大于a的向心加速度C.c加速可追上同一轨道上的b,b减速可等候同一轨道上的cD.a卫星由于某原因,轨道半径缓慢减小,其线速度将增大解析:因为b、c在同一轨道上运行,故其线速度大小、加速度大小均相等。
又b、c轨道半径大于a的轨道半径,由知,,故A选项错;由加速度可知,故B选项错。
当c加速时,c受到的万有引力,故它将做离心运动;当b减速时,b受到的万有引力, 故它将做向心运动。
所以无论如何c也追不上b,b也等不到c,故C选项错。
对a卫星,当它的轨道半径缓慢减小时,在转动一段较短时间内,可近似认为它的轨道半径未变,视为稳定运行,由知,r减小时v逐渐增大,故D选项正确。
例8如图5所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h。
已知地球半径为R,地球自转角速度为,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期。
(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,他们再一次相距最近?解析:(1)由万有引力定律和向心力公式得忽略地球自转影响有解得(2)设A、B两卫星经时间再次相距最近,由题意得,又有解得6)卫星的发射能量问题发射卫星过程中,火箭带着卫星克服地球引力做功,将消耗大量能量,所以发射轨道越高的卫星,耗能越多,难度越大。
同步卫星必须自西向东运行,才可以与地球保持相对静止,故发射阶段,火箭在合适之时应尽量靠近赤道且自西向东输送,以便利用地球自转动能,节省火箭能量。
例9我中已经拥有甘肃酒泉、山西太原和四川西昌三个卫星发射中心,又计划在海南建设一个航天发射场,预计2010年前投入使用.关于我国在2010年用运载火箭发射一颗同步卫星,下列说法正确的是()A.在海南发射同步卫星可以充分利用地球自转的能量,从而节省能源B.在酒泉发射同步卫星可以充分利用地球自转的能量,从而节省能源C.海南和太原相比,在海南的重力加速度略微小一点,同样的运载火箭在海南可以发射质量更大的同步卫星D.海南和太原相比,在太原的重力加速度略微小一点,同样的运载火箭在太原可以发射质量更大的同步卫星解析:我国海南离赤道较近,火箭随地球自转线速度较大,具有的动能较大,若沿自转方向发射可以节省能源。
离赤道越近,所需随地球自转的向心力越大,则重力加速度越小,发射时克服引力越容易,故在海南处可以发射质量较大的卫星。
正确选项为AC。
三、双星模型宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。
在这种情况下,它们将各自围绕它们连线上的某一固定点O做同周期的匀速圆周运动。
如图6所示,这种结构叫做双星.双星问题具有以下两个特点:⑴由于双星和该固定点O总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。
⑵由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,由可得,可得,,即固定点O离质量大的星较近。
列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆。
例10神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。
两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图7所示。
引力常量为G,由观测能够得到可见星A的速率v和运行周期T。
(1)可见星A所受暗星B的引力F A可等效为位于O点处质量为m’的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m’(用m1、m2表示);(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞。
若可见星A的速率v =2.7×105m/s,运行周期T=4.7π×104s,质量m1=6m s,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,m s=2.0×1030kg)解析:设A、B的圆轨道半径分别为,由题意知,A、B做匀速圆周运动的角速度相同,设其为。
由牛顿运动定律,有,,设A、B间距离为,则由以上各式解得由万有引力定律,有,代入得令,通过比较得(2)由牛顿第二定律,有而可见星A的轨道半径将代入上式解得(3)将代入上式得代入数据得设,将其代入上式得可见,的值随的增大而增大,试令,得可见,若使以上等式成立,则必大于2,即暗星B的质量必大于,由此可得出结论:暗星B有可能是黑洞。