3.4 第5课时 行程问题
人教版七年级上册数学教案:3.4实际问题与一元一次方程-行程问题

-解决含有两个未知数的问题时,如何选择合适的方程进行求解。
-在实际问题中,对时间和速度进行合理的赋值,以简化计算过程。
举例:在追及问题中,难点是让学生理解追及者与被追及者的速度差,即相对速度,对追及时间的影响。如果两个物体的速度分别为\(v_1\)和\(v_2\),且\(v_1 > v_2\),那么它们之间的相对速度为\(v_1 - v_2\),这是解决追及问题的关键。
4.激发学生主动探索、积极思考的学习兴趣,培养他们面对数学问题的自信心和自主学习能力。
三、教学难点与重点
1.教学重点
-理解并掌握行程问题中速度、时间和路程的关系,能够根据这些关系列出相应的一元一次方程。
-学会运用一元一次方程解决行程问题,包括相遇、追及和单一行程问题。
-能够识别行程问题中的已知量和未知量,正确构建数学模型。
3.重点难点解析:在讲授过程中,我会特别强调速度、时间和路程的关系以及一元一次方程的构建这两个重点。对于难点部分,如相对速度的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与行程问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如模拟两个物体的相遇过程,演示行程问题的基本原理。
人教版七年级上册数学教案:3.4实际问题与一元一次方程-行程问题
一、教学内容
本节课选自人教版七年级上册数学教材第三章第四节“实际问题与一元一次方程-行程问题”。教学内容主要包括以下方面:
1.理解行程问题的概念,掌握行程问题中速度、时间和路程的关系。
2.学会运用一元一次方程解决行程问题,教师应针对这些重点和难点内容,设计直观的教具演示、实际案例分析、小组讨论等多种教学活动,帮助学生透彻理解核心知识,并突破难点。
行程问题公式讲解

行程问题公式行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程 +乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2 解题关键船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
行程问题公式大全

行程问题公式基本概念行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程 +乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程—被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长解题关键船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到。
此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速。
(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程。
水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到: 水速=船速—逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例:设后面一人速度为x,前面得为y,开始距离为s,经时间t后相差a米。
那么(x—y)t=s—a 解得t=s—a/x-y。
人教版七年级数学导学案3.4实际问题与一元一次方程——行程问题教案导学案含课后配套作业及答案

3.3一元一次方程的应用——行程问题【教学目标】1.能熟练地找出行程问题中的相等关系列方程解应用题;2.培养学生分析问题、解决问题的能力.【复习引入】1.A、B两地相距480千米,一列慢车从A地开出,每小时行驶60千米,一列快车从B地开出,每小时65千米.两车同时开出,⑴若相向而行,x小时后相遇,则可列方程为;⑵若相背而行,x小时后两车相距640千米,则可列方程为;⑶同向而行,快车在慢车后面,x小时后快车追上慢车,则可列方程为;⑷同向而行,慢车在快车后,x小时后两车相距640千米,则可列方程为.答案:解:(1)(60+65)x=480(2) (60+65)x+480=640(3)60x+480=65x(4)65x+480=60x+640【知识点梳理】行程问题中常用的关系式:路程=速度×时间.一般行程问题包括三种情况:⑴相遇问题常用的相等关系是:甲走的路程+乙走的路程=两地间的距离即速度和×时间=路程和;⑵追及问题①同地不同时出发时:前者走的路程=后者走的路程;②同地不同时出发时:前者走的路程-后者走的路程=两地间的距离即速度差×时间=路程差.⑶航行问题(以后另讲)【应用举例】例1甲、乙两人在10千米的环形公路上跑步,甲每分钟跑230米,乙每分钟跑170米.⑴若甲先跑10分,乙再从同地同向出发,还要多长时间相遇?⑵若甲先跑10分,乙再从同地反向出发,还要多长时间相遇?答案:解:1. (1) 设需要的时间为x秒(230-170)x=1000060x=10000 x=166.6分钟(2) 设需要的时间为x秒230×10+(230-170)x=1000060x=7700 x=128.3分钟答:⑴若甲先跑10分,乙再从同地同向出发,还要166.6分钟相遇?⑵若甲先跑10分,乙再从同地反向出发,还要128.3分钟相遇?例2一列火车行驶途中,经过一条长300m的隧道需要20s的时间.隧道的顶上有一盏固定的灯,垂直向下发光,灯光在火车上照了10s.求这列火车的长为多少?答案:解:经过一条长300m的隧道要20s:这里的20s是指隧道的长度加上火车的长度,即火车从进隧道,到完全的出隧道的长度。
行程问题教案(共五篇)

行程问题教案(共五篇)第一篇:行程问题教案课题名称:行程问题教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系2:能准确地画出线段图3:能结合线段图来抓住路程时间速度的关系来求解教学重点与难点:1:掌握把题意转化为线段图来解题2:掌握相遇、追及、行程问题中时间、路程、速度的数理关系教学内容知识点一:相遇问题1:两个物体在同一路段上两个不同的地点相对而行时,如果同时到达某一地点,通常叫做相遇。
2:基本公式:速度和×相遇时间=距离3:解题时的关键在于理清运动过程,抓住两者同时行驶的路程及速度和,同时结合线段图求解。
例题1:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
(基本相遇问题)练习:1,一辆货车和一辆客车同时从相距450千米的两地相向而行,货车每小时行40千米,客车每小时行50米,问:几小时后两车在途中相遇?2.两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?3.辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:小明住东村,小牛住西村,小明和小牛同时从东村、西村出发到对方家走去,2小时后在途中相遇,小明每小时走3千米,小牛每小时走4千米,东西村相距多少千米?练习二:1,甲车每小时行50千米,乙车每小时行60千米,两车同时从两地相对开出,经过3小时两车可以相遇,两地之间相距多少千米?2,两辆汽车从相距450公里的两地相对开出,3小时后相遇,一辆汽车的速度是每小时80公里,求另一辆汽车的速度?课后作业:1、小明家和小牛家相距14千米,星期六小明和小牛同时从自己家出发向对方家里走去,小明每小时行3千米,小牛每小时走4千米,经过几小时两人在途中相遇?2、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
人教版数学七年级上册3.4实际问题与一元一次方程:行程问题

实际问题与一元一次方程——行程问题一、单选题1.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米2.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为( )A .1800米B .2000米C .2800米D .3200米3.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭4.方方早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x 分钟,那么可列出的方程是( )A .()25015290080x x -=-B .()80152502900x x -+=C .()25015290080x x -=+D .()80250152900x x ++=5.有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第三天走的路程为( )A .96里B .48里C .24里D .12里6.轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流行驶到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离,设两码头间的距离为xkm ,则列出方程正确的是( ).A .(20+4)x +(20-4)x =5B .20x +4x =5C .x x 5204+=D .x x 520420-4+=+ 7.一辆快车和一慢车同时从A 地出发沿同一公路同方向行驶,快车的行驶速度是120km/h ,慢车的行驶速度是80km/h ,快车比慢车早2h 经过B 地.设A 、B 两地间的路程是xkm ,由题意可得方程( )A .120x ﹣80x =2B .120x ﹣80x =2C .80x ﹣120x =2D .80x ﹣120x =2 8.某铁路桥长1200m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min .整列火车完全在桥上的时间共40s .则火车的长度为( )A .250mB .240mC .200mD .180m9.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在A 处,小强站在B 处,两人同时逆时针方向跑步,小彬每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A .半圆跑道AB 上 B .半圆跑道CD 上C .直跑道AD 上 D .直跑道BC 上 10.已知某桥全长1000米,现有一列火车匀速从桥上通过,测得火车从开始上桥到完全通过共用60秒,整列火车完全在桥上的时间是40秒,设火车的长度为x ,所列方程正确的是( )A .100010004060x x -+= B .100010004060x x +-= C .100010004060x += D .100010004060x += 11.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意可列方程为( )A .75+(120-75)x =270B .75+(120+75)x =270C .120(x -1)+75x =270D .120×+(120+75)x =27012.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了3h .已知水流的速度是3km h ,设船在静水中的平均速度为km h x ,根据题意列方程( ).A .()()2333x x +=-B .()()3323x x +=-C .()()2333x x +=-D .()()3323x x +=-二、填空题13.学校操场的环形跑道长400米,小聪的爸爸陪小聪锻炼,小聪跑步每秒行2.5米,爸爸骑自行车每秒行6.5米,两人从同一地点出发,同向而行,每隔________秒两人相遇一次. 14.甲乙两车分别从AB 、两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了1小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,则,A C 两地相距_________千米.15.如图所示,甲、乙两人沿着边长为10m 的正方形,按A→B→C→D→A ...的方向行走,甲从A 点以5m /分钟的速度,乙从B 点以8m /分钟的速度行走,两人同时出发,当甲、乙第15次相遇时,它们在______边上.16.如图,已知等边三角形ABC 的边长为24厘米,甲、乙两动点同时从顶点A 出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,相遇后甲、乙的速度均增加1厘米/秒且都改变原方向移动.则第二次相遇时乙与最近顶点的距离是__________厘米.17.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地(C 在A 、B 两地之间),共乘船3h ,已知船在静水中的速度是8km/h ,水流速度是2km/h ,若A 、C 两地距离为2km ,则A 、B 两地间的距离是________.18.AB 、两地相距450千米,甲、乙两车分别从A B 、两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,设经过t 小时两车相距50千米,则t 的值是_______________小时.三、解答题19.甲、乙两地相距3千米,小王从甲地出发步行到乙地,小李从乙地出发步行到甲地.两人同时出发,20分钟后两人相遇.已知小王的速度比小李的速度每小时快1千米,求两人的速度.20.从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米.平均车速增加了30千米/时,需要4.5小时即可达到.求长途汽车原来行驶的速度.21.甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地问:(1)甲车速度是________千米/小时,乙车速度是_________千米/小时.A,B距离是_______千米.(2)这一天,若乙车晚1小时出发,则再经过多长时间,两车相距20千米?22.一列火车匀速行驶,经过一条长475m的A隧道用了30s的时间.A隧道的顶上有一盏灯,垂直向下发光,行驶过程中灯光照在火车上的时间是11s.(1)求这列火车的长度;(2)若这列火车经过A隧道后按原速度又经过了一条长775m的B隧道,求这列火车经过B隧道需要的时间.23.甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为60千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,已知丙城在甲、乙两城之间,且与甲城相距260千米.用一元一次方程的知识解答下列问题:(1)已知客车和出租车在甲、乙之间的M处相遇,求M处与丙城的距离;(2)求客车与出租车相距200千米时客车的行驶时间.参考答案1.C解:12秒=1300小时,150米=0.15千米,设火车长x千米,根据题意得:1300×(4.5+120)=x+0.15,解得:x=0.265,0.265千米=265米.答:火车长265米.故选:C.2.C解:设小宇的速度为x米/分,根据题意得:1018010800x=⨯-,解得:10x=,则小宇家离学校的距离为10180102800x+⨯=(米),故选:C.3.C解:设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意得:111 79x⎛⎫+=⎪⎝⎭.故选:C.4.A解:设他推车步行的时间为x分钟,骑自行车上学时间为(15-x)分钟,根据题意得:80x+250(15-x)=2900,变形得:250(15-x)=2900-80x,.故选择:A.5.B解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,12x里,14x里,18x里,依题意,得:4x+2x+x+12x+14x+18x=378,解得:x =48.故选:B .6.D解:顺流的速度为(20+4)km/h ,∴顺流的时间为204x +小时; 同理可得逆流的时间为204x -小时, 可列方程 204x ++204x -=5. 故选:D .7.D解:设A 、B 两地间的路程为x km , 根据题意得:280120x x -=; 故选:D .8.B解:设火车长度是xm , 列式:120012006040x x +-=,解得240x =. 故选:B .9.D解:设小强第一次追上小彬的时间为x 秒,根据题意,得:6x -4x+115=2×115+2×85,解得x=142.5,整个跑道长为2×115+2×85=400(m),小强第一次追上小彬时,小彬跑了4x=570(m),而570-400=170>115,∴他们的位置在直跑道BC 上,故选:D .10.A解:火车从车头上桥到车尾离桥运动的总路程为:(1000)x m +,整列火车完全在桥上运动的总路程为:(1000)x m -火车是匀速运动的,根据题意可列方程为:100010004060x x -+=, 故选:A .11.B解:设再经过x 小时两车相遇,则75+(120+75)x =270,故选:B12.C解:设船在静水中的平均速度为km h x ,已知水流的速度是3km h ,则船顺流而行的速度是(x+3)km /h ,船逆流而行的速度是(x -3)km /h ,根据题意列方程:()()2333x x +=-故选:C .13.100解:设每隔x 秒两人相遇一次,根据题意得:(6.5-2.5)x =400,解得:x =100.答:每隔100秒两人相遇一次.故答案为:100.14.420解:设乙车每小时行驶x 千米,则甲车每小时行驶(x +20)千米,由题意得:3x =2(x +20),解得:x =40,则x +20=60,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A ,B 两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y 小时到达C 地,由题意得:60(y -3)=40(y +3),解得:y =15,∴B ,C 两地的距离为:60(15-3)=720(千米),∴A ,C 两地的距离为:720-300=420(千米),故答案为420.15.BC解:设第一次相遇用时1t 分钟,1185103t t -=⨯,解得110t =,设又过了2t 分钟第二次相遇,2285104t t -=⨯,解得2403t =, ∴从第二次相遇开始每隔403分钟甲、乙相遇一次, ∴第15次相遇用时为:4059010(151)33+⨯-=(分钟), ∴乙的路程为:59018403933⨯÷=(圈),故相遇在BC 边. 16.6 解:设出发x 秒后甲乙第一次相遇,根据题意得:x+3x=24×3,解得:x=18,此时甲的路程:18118⨯=,∴相遇地点在线段AC 上,距离点C 的距离为:24186-=厘米;∴第二次相遇的时间为:18+24×3÷(2+4)=30(秒),∴乙第二次运动的时间为:301812-=秒,∴乙第二次的路程为:41248⨯=厘米,∴第二次相遇的地点在线段AB 上,距离点A 的距离为24246486++-=厘米,∴第二次相遇时乙与最近顶点A 的距离是6厘米;故答案为:6.17.12.5km解:设A 、B 两地间的距离是:x km∴A 、C 两地距离为2km∴B 、C 两地距离为()2x -km 根据题意得:238282x x -+=+-,即23106x x -+= ∴()35290x x +-=∴8100x =∴2512.52x==∴A、B两地间的距离是:12.5km故答案为:12.5km.18.2或2.5解:当甲、乙两车相遇前相距50千米时,根据题意得:(120+80)t+50=450,解得:t=2;当甲、乙两车相遇后相距50千米时,根据题意得:(120+80)t=450+50,解得:t=2.5,综上,t的值为2小时或2.5小时.故答案为:2或2.519.小李的速度为每小时4千米,小王的速度为每小时5千米.解:设小李的速度为每小时x千米,则小王的速度为每小时()1x+千米根据题意得:13(x+x+1)=3,解得:x=4,∴小李的速度为每小时4千米,小王的速度为每小时5千米.20.50千米/时解:设长途汽车原来行驶的速度为x千米/时,开通高速公路后,速度为(30)x+千米/时,根据题意,得:840 4.5(30)x x-=⨯+解得:50x=答:长途汽车原来行驶的速度为50千米/时.21.(1)15,45,180;(2)2912小时或3712小时解:(1)设甲的速度为xkm/h,则乙的速度为3903x+=x+30(km/h),根据题意得:3x=x+30,解得:x=15,∴x+30=45,∴AB的距离为:45×4=180km,∴AB的距离为180km;(2)设再经过y小时,两人相距20km,则15(y+1)+45y=180-20或15(y+1)+45y=180+20,解得:y=2912或3712,∴再经过2912小时或3712小时后,两人相距20km.22.(1)275米;(2)42秒解:(1)设这列火车的长度为x米,依题意,得:475 1130x x+=,解得:x=275.答:这列火车的长度为275米.(2)这列火车的速度为275÷11=25(米/秒),这列火车经过B隧道需要的时间为(275+775)÷25=42(秒).答:这列火车经过B隧道需要的时间为42秒.23.(1)60km;(2)4小时或203小时解:(1)设客车和出租车x小时相遇则60x+90x=800∴x=163,此时客车走的路程为320km,距离甲城为320km,∴ 丙城与甲城相距260千米,∴丙城与M处之间的距离为320-260=60(km)(2)设当客车与出租车相距200千米时客车的行驶时间是t小时,∴当客车和出租车没有相遇时60t+90t+200=800解得t=4,∴当客车和出租车相遇后60t+90t-200=800解得:t=203,∴当客车与出租车相距200千米时客车的行驶时间是4小时或203小时.。
数学行程问题解题技巧

数学行程问题解题技巧数学行程问题是中小学数学中常见的一类问题,主要涉及物体在直线或曲线上运动的相关计算。
解决这类问题需要掌握一定的解题技巧。
下面,我将为您详细介绍数学行程问题的解题技巧。
一、理解题意,明确问题解决数学行程问题的第一步是仔细阅读题目,理解题意,明确需要求解的问题。
注意抓住题目中的关键词,如:速度、时间、路程、起点、终点等。
二、建立数学模型根据题目描述,建立相应的数学模型。
对于直线运动,通常使用公式:路程= 速度× 时间;对于曲线运动,需要根据具体情况进行求解。
三、解题技巧1.匀速直线运动在匀速直线运动中,速度保持不变。
解题时,只需使用路程= 速度× 时间这个公式即可。
例题:小明骑自行车以每小时15公里的速度行驶,问3小时后他行驶了多少公里?解答:路程= 速度× 时间= 15公里/小时× 3小时= 45公里2.非匀速直线运动在非匀速直线运动中,速度随时间变化。
此时,需要求出平均速度,然后使用路程= 平均速度× 时间求解。
例题:一辆汽车从静止开始加速,加速度为2米/秒,求5秒后汽车行驶的距离。
解答:首先求出5秒末的速度:v = at = 2米/秒× 5秒= 10米/秒然后求出平均速度:v_avg = (初速度+ 末速度) / 2 = (0 + 10) / 2 = 5米/秒最后求出路程:s = v_avg × t = 5米/秒× 5秒= 25米3.曲线运动曲线运动的问题较为复杂,需要根据具体情况进行分析。
通常,可以采用微元法或图像法求解。
四、检查答案,确保正确完成解题过程后,不要急于提交答案,要检查计算过程和结果是否正确,确保无误。
总结:数学行程问题虽然种类繁多,但只要掌握了解题技巧,就能迎刃而解。
在解题过程中,要注意理解题意、建立数学模型、选择合适的解题方法,并检查答案。
初中数学人教版七年级上第三章一元一次方程3.4实际问题与一元一次方程——行程问题

列方程解决实际问题一般步骤
1.审:审题 2.设:设未知数 3.列:根据等量关系列方程 4.解:解方程 5.验:检验 6.答:作答
复习回顾
1.基本关系式:__路__程__=速__度__×__时_间____ 2.甲的速度是每小时行4千米,则他x小时行__4X_ 千米. 3.甲每小时行4千米,乙每小时行5千米,则甲、 乙 一小时共行_9__千米,y小时共行_9_y_千米. 4.某一段路程 x 千米,如果火车以49千米/时的速 度行驶,那么火车行完全程需要___小时.
A 50m
80千米 30m B
甲
240千米
乙
第一种情况:
A车路程+B车路程+相距80千 米=相距路程
50m + 30m + 80 = 240 m =2
精讲 例题
线段图分析:
例1、 A、B两车 分别停靠在相距 240千米的甲、 乙两地,甲车每 小时行50千米, 乙车每小时行30 千米。
(3)若两车同时 相 向 而行,请问 B车行了多长时 间后两车 相 距 80 千米?n小时
A 50×1
甲
50n
120千米
30n B
10 乙
A车路程+A车同走的路程+ B车同走的路程-相 距10千米=相距路程
精讲 例题 例 2.小王、叔叔在400米长的环形跑道上练习跑 步,小王每秒跑5米,叔叔每秒跑7.5米。 (1)若两人同时同地反向出发,多长时间两人首 次相遇?
叔叔 小王
相等关系:叔叔路程 + 小王路程 = 跑道周长 7.5x + 5x = 400
A车速度 > B车速度
4、如果A车能追上B车,你能画出线段图吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播
速度约为340米/秒.设听到回响时,汽车离山谷x米.根据题意,列出方
程为( A )
A.2x+4×20=4×340
B.2x-4×72=4×340
C.2x+4×72=4×340
D.2x-4×20=4×340
基础题组 中档题组 综合运用
10.在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行驶 18米,另一列火车每秒行驶17米,两列火车错车而过用了10秒钟,另一列火 车长( B )
基础题组 中档题组 综合运用
解:设小明的速度为2x米/秒,哥哥的速度为3x米/秒.由题意,得 3x×160-2x×160=400, 解得x=2.5,则2x=5,3x=7.5. 设两人同时同地反向出发,则经过y秒他们第一次相遇.由题意,得 5y+7.5y=400, 解得y=32. 答:经过32秒他们第一次相遇.
解得x= 1 .
6
答:通讯员需要 1 h可以追上学生.
6
基础题组 中档题组 综合运用
知识点三 顺流(风)逆流(风)问题 5.一艘轮船在一河道中航行,顺流而下每小时航行23 km,逆流而上每小时 航行15 km,则轮船在平静的河面航行的速度是__1_9_____km/h,河水的流速 是____4____km/h.
8.已知某铁路桥长500 m,现在一列火车匀速通过该桥,火车从开始上桥到 过完桥共用了30 s,整列火车完全在桥上的时间为20 s,则火车的长度为 ___1_0_0___m.
基础题组 中档题组 综合运用
基础题组 中档题组 综合运用
9.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员按一
2x 14 28
x 35
x
28
2x - 14
35
12 60
,
解得x=42,
则2x-14=2×42-14=70.
答:去时上、下坡路程分别为42千米和70千米.
基础题组 中档题组 综合运用
考查角度二 列方程解决环形跑道中的相遇问题 13.(课本P112复习题T6改编)小明和他哥哥早晨起来沿长为400米的环形跑 道练习跑步.小明跑2圈用的时间和他哥哥跑3圈用的时间相等,两人同时同 地同向出发,经过2分40秒第一次相遇,若他们两人同时同地反向出发,则 经过几秒他们第一次相遇?
基础题组 中档题组 综合运用
解析:设乙车的平均速度是x千米/时,依题意,得4
560 7
x
=560,解得x
=60,即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙
车从C地到A地需要(t+7)小时,依题意得80(1+10%)t=60(7+t),解得t=15
,所以60(7+t)-560=760(千米).即A,B两地相距760千米.
解:设乙车的速度为x km/h,则甲车的速度为(x+10) km/h.根据题意,得 14 (x+x+10)=42,
60
解得x=85,则x+10=95. 答:乙车的速度为85 km/h,甲车的速度为95 km/h.
基础题组 中档题组 综合运用
知识点二 追及问题 3.甲、乙两站相距240千米,从甲站开出一列慢车,速度为80千米/时,从 乙站开出一列快车,速度为120千米/时,如果两车同时开出,同向而行(慢 车在后),那么经过___1_.5____小时,两车相距300千米.
基础题组 中档题组 综合运用
考查角度一 列方程解决上、下坡问题 12.汽车上坡时每小时走28千米,下坡时每小时走35千米.去时,下坡路的 路程比上坡路的路程的2倍还少14千米,原路返回比去时多用了12分钟.求 去时上、下坡路程各多少千米.
基础题组 中档题组 综合运用
解:设去时上坡路为x千米,则下坡路为(2x-14)千米.根据题意,得
基础题组 中档题组 综合运用
6.一架飞机在两个城市间飞行,无风时每小时飞行550 km.在一次往返飞行 中,飞机顺风飞行用了5 h,逆风飞行用了6 h,求这次飞行时的风速. 解:设这次飞行时的风速为x km/h.根据题意,得 5(550+x)=6(550-x), 解得x=50. 答:这次飞行时的风速为50 km/h.
A.164米 C.172米
B.168米 D.176米
基础题组 中线上,B,C两地相距560千米,甲、乙两车
分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小
时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,
经过一段时间后两车同时到达A地,则A,B两地相距__7_6_0____千米.
基础题组 中档题组 综合运用
4.一队学生去校外进行训练,他们以5 km/h的速度行进,走了18 min的时
候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14
km/h的速度按原路追上去,通讯员需多少时间可以追上学生?
解:设通讯员需要x h可以追上学生.根据题意,得
5
18
60
x
=14x,
基础题组 中档题组 综合运用
知识点四 过桥梁、隧道问题
7.武汉地铁2号线列车车厢全长约120米,若该列车以72千米/时的速度通过
全长约3100米的过江隧道,从列车进入隧道口起,到列车完全通过隧道,所
需的时间是( A )
A.2分41秒
B.2分35秒
C.2分29秒
D.2分23秒
基础题组 中档题组 综合运用
的速度为36 km/h,则两车相遇的时间是( B )
A.14时20分
B.15时20分
C.15时40分
D.14时40分
基础题组 中档题组 综合运用
2.历经3年多的施工建设,2022年冬奥会重点交通保障工程——全长约42 km 的京礼高速兴延段正式开通运营.甲、乙两车同时从兴延高速两端相向匀速出 发,经过14 min相遇,甲车比乙车每小时多行驶10 km,求甲、乙两车的速度.
九年级数学上册人教版
第三章 一元一次方程
3.4 实际问题与一元一次方程
第5课时 行程问题
基础题组 中档题组 综合运用
基础题组 中档题组 综合运用
知识点一 相遇问题
1.某公路的干线上有相距108 km的A,B两个车站.某日14时整,甲、乙两
车分别从A,B两站同时出发,相向而行.已知甲车的速度为45 km/h,乙车