线性方程组直接解法

合集下载

求解线性方程组的直接解法

求解线性方程组的直接解法

求解线性方程组的直接解法5.2LU分解① Gauss消去法实现了LU分解顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。

将下三角矩阵的对角元改成1,记为L,则有A=LU,这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的历史得到这一点.因为从消元的历史有u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,nm ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,na ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分解,同时还求出了g, Lg=b的解.②直接LU分解上段我们得到(l ij=m ij>u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n2诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很容易记住.可写成算法(L和U可存放于A>:for k=1:n-1for j=k:nu kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,jendfor i=k+1:nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kkendend这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步计算存储.考察上面的表格会发现还可安排其它计算次序,只要在这一次序下每个元素左边的L的元素与上方的U的元素已计算在先。

求解线性方程组的直接解法范文

求解线性方程组的直接解法范文

求解线性方程组的直接解法5.2 LU 分解① Gauss 消去法实现了LU 分解顺序消元结束时的上三角矩阵U 和所用的乘数,严格下三角矩阵。

将下三角矩阵的对角元改成1,记为L ,则有A =LU ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-613322121121542774322这事实是一般的,我们不难从消去的第k 个元素时的矩阵k 行及k 列元素的历史得到这一点.因为从消元的历史有 u kj =a kj -m k 1u 1j - m k 2u 2j -…- m k ,k-1u k-1,j , j=k ,k+1,…,n m ik =(a ik -m i 1u 1k - m i 2u 2k -…-m i ,k-1u k-1,k )/u kk i=k+1,k+2,…,n 于是 a kj =m k 1u 1j +m k 2u 2j +…+m k ,k-1u k-1,j +u kj , j=k ,k+1,…,n a ik =m i 1u 1k +m i 2u 2k +…+m i ,k-1u k-1,k +m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L 和U (见下段).将矩阵分解为单位下三角矩阵和上三角矩阵之积称为矩阵的LU 分解.顺序消元实现了LU 分解,同时还求出了g , Lg =b 的解.② 直接LU 分解上段我们得到(l ij =m ij ) u kj =a kj -l k 1u 1j -l k 2u 2j -…- l k ,k-1u k-1,j , j=k ,k+1,…,n l ik =(a ik -l i 1u 1k -l i 2u 2k -…-l i ,k-1u k-1,k )/u kk i=k +1,k+2,…,n2诸元素对应乘积,只不过算L 的元素时还要除以同列对角元.这一规律很容易记住.可写成算法(L 和U 可存放于A ): for k =1:n -1 for j=k :n u kj =a kj -l k 1u 1j -l k 2u 2j -…- l k ,k-1u k-1,jendfor i=k+1:nl ik =(a ik -l i 1u 1k -l i 2u 2k -…-l i ,k-1u k-1,k )/u kk end end这一算法也叫Gauss 消去法的紧凑格式,可一次算得L ,U 的元素,不需逐步计算存储.考察上面的表格会发现还可安排其它计算次序,只要在这一次序下每个元素左边的L 的元素与上方的U 的元素已计算在先。

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

数值分析-线性方程组的直接解法

数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。

线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。

在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。

高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。

高斯消元法的主要步骤包括消元、回代和得到方程组的解。

消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。

在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。

回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。

回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。

高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。

但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。

另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。

在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。

列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。

LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。

综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。

高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。

在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。

线性方程组的直接解法程序设计

线性方程组的直接解法程序设计

线性方程组的直接解法程序设计一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过消元和回代的方式,将线性方程组转化为上三角形式,进而求解未知数的值。

程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行初等行变换,将系数矩阵A转化为上三角矩阵U,并同时对常数向量b进行相应的变换;3.判断是否有唯一解,如果主对角线上存在零元素,则方程组无解;如果主对角线上所有元素都非零,则方程组有唯一解;4.进行回代计算,求解未知数的值。

高斯消元法的优点是简单直观,容易理解和实现。

但是在一些情况下,会出现主对角线上有零元素的情况,此时需要进行行交换,增加了额外的计算量。

二、LU分解法LU分解法是另一种常用的线性方程组直接解法。

它将系数矩阵A分解为下三角矩阵L和上三角矩阵U的乘积,即A=LU。

程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行LU分解,找到下三角矩阵L和上三角矩阵U;3.解第一个方程Ly=b,先求解向前替代方程,计算出y的值;4.解第二个方程Ux=y,再求解向后替代方程,计算出x的值。

LU分解法的优点是可以在多次需要解线性方程组的情况下重复使用LU分解的结果,提高计算效率。

但是LU分解法需要找到L和U的值,增加了额外的计算量。

三、数学实验在进行数学实验时,需要注意以下几点:1.线性方程组的系数矩阵应该是满秩的,以保证方程组有唯一解;2.对于大规模的线性方程组,可以使用稀疏矩阵存储和计算,减少内存和计算时间的消耗;3.在求解过程中,需要判断方程组是否有解,并且考虑特殊情况的处理;4.通过数学实验可以验证直接解法的正确性和有效性,分析计算结果的误差和稳定性。

综上所述,线性方程组的直接解法程序设计在计算方法和数学实验中都是重要的研究内容。

高斯消元法和LU分解法是常用的直接解法,通过编写程序并进行数学实验,可以深入理解和应用这些方法。

这些方法的有效性和稳定性对于解决实际问题具有重要意义。

数值分析——线性方程组直接解法Hilbert矩阵

数值分析——线性方程组直接解法Hilbert矩阵

数值分析第一次上机实习报告——线性方程组直接解法一、问题描述设 H n = [h ij ] ∈ R n ×n 是 Hilbert 矩阵, 即11ij h i j =+- 对n = 2,3,4,…13,(a) 取11n n x R ⨯⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭,及n n b H x =,用Gauss 消去法和Cholesky 分解方法来求解n n H y b =,看看误差有多大.(b) 计算条件数:2()n cond H(c) 使用某种正则化方法改善(a)中的结果.二、方法描述1. Gauss 消去法Gauss 消去法一般用于系数矩阵稠密且没有任何特殊结构的线性方程组。

设H =[h ij ],y = (y 1,y 2,…,y n )T . 首先对系数矩阵H n 进行LU 分解,对于k=1,2,…n,交替进行计算:1111),,1,,1(),1,2,,k kj kj kr rj r k ik ik ir rk r kk u h l u j k k n l a l u i k k n u -=-=⎧=-=+⎪⎪⎨⎪=-=++⎪⎩∑∑…… 由此可以得到下三角矩阵L=[l ij ]和上三角矩阵U=[u ij ]. 依次求解方程组Ly=b 和Ux=y ,111,1,2,,1(),,1,,1i i i ir r r n i i ir r r i ii y b l y i n x y u x i n n u -==+⎧=-=⎪⎪⎨⎪=-=-⎪⎩∑∑…… 即可确定最终解。

2. Cholesky 分解法对于系数矩阵对称正定的方程组n n H y b =,存在唯一的对角元素为正数的下三角矩阵L ,使得H=LL T 。

因此,首先对矩阵H n 进行Cholesky 分解,即1122111()1()j jj jj jk k j ij ij ik jk k jj l h l l h l l l -=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑ 1,i j n =+… L 的元素求出之后,依次求解方程组Ly=b 和L T x=y ,即1111111(),2,3,i i i ik k k ii b y l y b l y i n l -=⎧=⎪⎪⎨⎪=-=⎪⎩∑… 11(),1,2,n n nn n i i ki k k i nn y x l x y l x i n n l =+⎧=⎪⎪⎨⎪=-=--⎪⎩∑…1 由此求得方程组n n H y b =的解。

第三章 线性代数方程组的直接解法1

第三章 线性代数方程组的直接解法1

for
j = n : −1 : 2
y( j ) = y( j ) u( j , j )
y (1 : j − 1) = y (1 : j − 1) − y ( j )u(1 : j − 1, j )
end
y(1) = y(1) u(1,1)
加减乘除运算次数之和)均为 两种算法的工作量(加减乘除运算次数之和 两种算法的工作量 加减乘除运算次数之和 均为 n
高斯变换
a 0
(1) 11

L = I +l e 1
其中 l i 1
T 1 1
l1 = (0, l21,⋯, ln1)
a
(1) 11
T
=
−1 1
a
(1) i1
i = 2, 3,⋯ , n
−1 1 T 1 1

A
( 2)
=L A
(1)
L = I −l e
(1 a11) 0 I n−1 c1 T 1
(i ) ii
的各阶顺序主子式都不等于零 顺序主子式都不等于 A 的各阶顺序主子式都不等于零,即
−1 −1 1 2
1 4 7 0 −3 − 6 = U L2 L1 A = 0 0 1
∴ A = L L U = LU
其中
1 0 0 2 1 0 −1 − 1 L = L1 L2 = 3 2 1
Gauss消去法的矩阵表示 消去法的矩阵表示 设给定 n 阶矩阵 记
1 0 0 −2 1 0 L1 = −3 0 1
设给定矩阵
则有
7 1 4 0 −3 −6 L1 A = 0 −6 −11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章
线性方程组
直接解法
3-1
W
Y
第三章目录
§1. Gauus 消元法 §2. 主元素法
2.1 引入主元素法的必要性 2.2 列主元素法 2.3 全主元素法 2.4 解三对角方程组的追赶法 §3. 矩阵分解法 3.1 Gauss消去法的矩阵形式 3.2 矩阵的三角分解 3.3 直接三角分解法 §4. 平方根法与改进的平方根法 §5. 矩阵求逆
程。然后按方程相反顺序求解上三角形方程组,得到原
方程组的解,此过程称为回代过程。
我们的目的,是要总结归纳出一般情况下的n阶线性方程 组的消元公式和回代求解公式,从而得到求解n阶线性方
程组的能顺利在计算机上实现的行之有效的算法。
3-7
W
a1(11) x1 a1G(12)axu2ss消a1元(13) 法x3 的 基a1(14本) x步4 骤b11((1)4阶)
a
(1) 43
x3
a4(14) x4
b4(1)
统一加上标 ,并简记为 A(1) x b(1) , A(1) A,b(1) b,首先消元 :
第一步
: 找乘数, 假定a1(11)
0, 要消第二个方程中
x1 , 可以
a2(11) a1(11)
为乘数,
而以
a2(11) a1(11)
乘第一个方程加到第二
3-8
W
Y
Gauss消元法的基本步骤2(4阶)
可以检查,分别以li1乘第一个方程加到第i个方程上 可以完成第一次消元,得同解方程组:
a1(11) x1 a1(12) x2 a1(13) x3 a1(14) x4 b1(1)
a2(22) x2 a2(23) x3 a2(24) x4 b2(2) (3- 4)(a) a3(22) x2 a3(23) x3 a3(24) x4 b3(2)
a4(22) x2 a4(23) x3 a4(24) x4 b4(2)
变化以后的方 程组系数及右 边的常数项可 总结出如下的 计算公式:
完成第一次消元之后的 方程组记为:
A(2) x = b (2)
ai(j2)
a (1) ij
li1a1(1j)
bi(2) bi(1) li1b1(1)
i, j 2,3,4
Y
求为aa解32((能1111步))更xx骤11清,楚并aa地32((且1122得))很xx到22容算易法aa地,32((11可33))下xx推33面广以至aa4一阶32((1144))般线xx的性44 n方阶程bb线32((组11性))为方(例3程总-组4结。)
a
(1) 41
x1
a4(12) x2
其矩阵形式为: an1x1 an2 x2 ann xn bn
Ax=b
(3-2) 其中: a11 a12 a1n
x1
b1
A
a21 a22 an1an2
a2n ann
,x
x2 :
xn
,b
b2 ∶
3-3 bn
W
Y
线性方程组的概念(续)
如果线性方程组Ax = b的系数行列式不为零, 即det(A) 0,则该方程组有唯一解。
3-9
W
Y
Gauss消元法的基本步骤3(4阶)
第二步: 消x2 ,首先找到乘数
li 2
a(2) i2
a(2) 22
,i

3,4
个方程中,并以
a3(11) a1(11)
,
a4(11) a1(11)
分别
乘第一个方程加到第三 ,第四个方程上消 x1,这些乘数实际上可记为
l21
a2(11) a1(11)
, l31
a3(11) a1(11)
, l41
a4(11) a1(11)
或记为li1
ai(11) a1(11)
(i 2,3,4)
3-4
W
Y
线性方程组的数值解法
解线性方程组的数值方法大致分为两类: 1. 直接法:指假设计算过程中不产生含入误差,经过有
限步四则运算可求得方程组准确解的方法。
2. 迭代法:从给定的方程组的一个近似值出发,构造某 种算法逐步将其准确化,一般不能在有限步内得到准确解。
这一章介绍计算机上常用的直接法,它们都是以Gauss 消元法为基本方法,即先将线性方程组化为等价的三角形 方程组,然后求解。 请注意:由于在计算中某些数据实际上只能用有限位小
§6.方程组的性态和条件数 3-2
W
Y
方程在组科的学求研解究问和题工是程基技线本术性的中,方所常提程见出组的的的,计很概算多问念问题题中如,插线值性函
数,最小二乘数据拟合,构造求解微分方程的差分格式等, 都包含了解线性方程组问题,因此,线性方程组的解法在 数值计算中占有较重要的地位。
设n阶线性方程组:a11x1 a12 x2 a1n xn b1 a2 1x1a22 x2 a2n xn b2 (3-1)
数,即不可避免地存在着舍入误差的影响,因 而即使是确解法,也只能求到近似解。 直接法在求解中小型线性方程组(≤100个),特别是 系数矩阵为稠密型时,是常用的、非常好的方法。
3-5
W
Y
§1 Gauss消元法
Gauss消元法是最基本的一种方法,下例说明其基本思想:
例1 解线性方程组: x1 x2 x3 6
3-6
W
Y
例1(续)
再消一次元得:
二次消元后将方程化为
倒三角形式,然后进行
x115x2x29 xx33
6 57
22 5
x3
66 5
(3- 3)(b)
回代容易解出: x3 = 3, x2 = 2, x1 = 1。
上述Gauss消元法的基本思想是:先逐次消去变量,将
方程组化成同解的上三角形方程组,此过程称为消元过
12x1 3x2 3x3 15 18x1 3x2 x3 15
(3- 3)
解:消去x1,进行第一次消元:首先找乘数,以 -12乘第一个方程加到第二个方程,以18乘第一个 方程加到第三个方程上可得同解方程组:
x115xx22
x3 6 9x3 57
(3- 3)(a)
21x2 17x3 93
求解Ax = b,曾经学过高斯(Gauss)消元法, 克莱姆(Cramer)法则,矩阵变换法等,但已远 远满足不了实际运算的需要,主要体现两个方面: 一是运算的快速和准确,其次是方程组的个数增 大时的计算问题。如何建立能在计算机上可以实 现的有效而实用的解法,具有极其重要的意义, 我们也曾指出过,Cramer法则在理论上是绝对正 确的,但当n较大时,在实际计算中却不能用。
相关文档
最新文档