C语言数据结构迷宫最短路径
C语言迪杰斯特拉实现最短路径算法

C语言迪杰斯特拉实现最短路径算法迪杰斯特拉(Dijkstra)算法是一种用于在加权图中寻找从起点到终点的最短路径的算法。
它使用贪心算法的原理,每次选择权重最小的边进行扩展,直到找到终点或者无法扩展为止。
下面是C语言中迪杰斯特拉算法的实现。
```c#include <stdio.h>#include <stdbool.h>//定义图的最大节点数#define MAX_NODES 100//定义无穷大的距离#define INFINITY 9999//自定义图的结构体typedef structint distance[MAX_NODES][MAX_NODES]; // 节点间的距离int numNodes; // 节点数} Graph;//初始化图void initGraph(Graph* graph)int i, j;//设置所有节点之间的初始距离为无穷大for (i = 0; i < MAX_NODES; i++)for (j = 0; j < MAX_NODES; j++)graph->distance[i][j] = INFINITY;}}graph->numNodes = 0;//添加边到图void addEdge(Graph* graph, int source, int destination, int weight)graph->distance[source][destination] = weight;//打印最短路径void printShortestPath(int* parent, int node)if (parent[node] == -1)printf("%d ", node);return;}printShortestPath(parent, parent[node]);printf("%d ", node);//执行迪杰斯特拉算法void dijkstra(Graph* graph, int source, int destination) int i, j;//存储起点到各个节点的最短距离int dist[MAX_NODES];//存储当前节点的父节点int parent[MAX_NODES];//存储已访问的节点bool visited[MAX_NODES];//初始化所有节点的距离和父节点for (i = 0; i < graph->numNodes; i++)dist[i] = INFINITY;parent[i] = -1;visited[i] = false;}//设置起点的距离为0dist[source] = 0;//寻找最短路径for (i = 0; i < graph->numNodes - 1; i++)int minDist = INFINITY;int minNode = -1;//选择距离最小的节点作为当前节点for (j = 0; j < graph->numNodes; j++)if (!visited[j] && dist[j] < minDist)minDist = dist[j];minNode = j;}}//标记当前节点为已访问visited[minNode] = true;//更新最短距离和父节点for (j = 0; j < graph->numNodes; j++)if (!visited[j] && (dist[minNode] + graph->distance[minNode][j]) < dist[j])dist[j] = dist[minNode] + graph->distance[minNode][j];parent[j] = minNode;}}}//打印最短路径及距离printf("Shortest Path: ");printShortestPath(parent, destination);printf("\nShortest Distance: %d\n", dist[destination]); int maiGraph graph;int numNodes, numEdges, source, destination, weight;int i;//初始化图initGraph(&graph);//输入节点数和边数printf("Enter the number of nodes: ");scanf("%d", &numNodes);printf("Enter the number of edges: ");scanf("%d", &numEdges);graph.numNodes = numNodes;//输入边的信息for (i = 0; i < numEdges; i++)printf("Enter source, destination, and weight for edge %d: ", i + 1);scanf("%d %d %d", &source, &destination, &weight);addEdge(&graph, source, destination, weight);}//输入起点和终点printf("Enter the source node: ");scanf("%d", &source);printf("Enter the destination node: ");scanf("%d", &destination);//执行迪杰斯特拉算法dijkstra(&graph, source, destination);return 0;```上述代码中,我们首先定义了一个图的结构体,里面包括节点间的距离矩阵和节点数。
迷宫最短路径算法

迷宫最短路径算法一、引言迷宫最短路径算法是指在迷宫中找到从起点到终点的最短路径的算法。
在实际应用中,迷宫最短路径算法可以用于机器人导航、游戏设计等领域。
本文将介绍几种常见的迷宫最短路径算法,包括深度优先搜索、广度优先搜索、Dijkstra 算法和 A* 算法。
二、深度优先搜索深度优先搜索是一种基于栈的搜索算法,其主要思想是从起点开始,沿着某个方向一直走到底,直到无路可走时回溯到上一个节点。
具体实现时,可以使用递归或手动维护栈来实现。
三、广度优先搜索广度优先搜索是一种基于队列的搜索算法,其主要思想是从起点开始,依次将与当前节点相邻且未被访问过的节点加入队列,并标记为已访问。
然后从队列头部取出下一个节点作为当前节点,并重复以上操作直到找到终点或队列为空。
四、Dijkstra 算法Dijkstra 算法是一种贪心算法,在图中寻找从起点到终点的最短路径。
具体实现时,首先将起点标记为已访问,并将其与所有相邻节点的距离加入一个优先队列中。
然后从队列中取出距离最小的节点作为当前节点,并更新其相邻节点到起点的距离。
重复以上操作直到找到终点或队列为空。
五、A* 算法A* 算法是一种启发式搜索算法,其主要思想是在广度优先搜索的基础上引入启发函数,用于评估每个节点到终点的估计距离。
具体实现时,将起点加入开放列表,并计算其到终点的估价函数值。
然后从开放列表中取出估价函数值最小的节点作为当前节点,并将其相邻未访问节点加入开放列表中。
重复以上操作直到找到终点或开放列表为空。
六、总结以上介绍了几种常见的迷宫最短路径算法,包括深度优先搜索、广度优先搜索、Dijkstra 算法和 A* 算法。
不同算法适用于不同场景,需要根据实际情况选择合适的算法。
在实际应用中,还可以结合多种算法进行优化,以提高寻路效率和精确度。
c语言最短路径的迪杰斯特拉算法

c语言最短路径的迪杰斯特拉算法Dijkstra的算法是一种用于查找图中两个节点之间最短路径的算法。
这个算法可以应用于有向图和无向图,但是它假设所有的边都有正权值,并且不包含负权值的边。
以下是一个简单的C语言实现:c复制代码#include<stdio.h>#define INF 99999#define V 5 // 顶点的数量void printSolution(int dist[]);void dijkstra(int graph[V][V], int src);int main() {int graph[V][V] = { { 0, 4, 0, 0, 0 }, { 4, 0, 8, 11, 7 },{ 0, 8, 0, 10, 4 },{ 0, 11, 10, 0, 2 },{ 0, 7, 4, 2, 0 } };dijkstra(graph, 0);return0;}void dijkstra(int graph[V][V], int src) { int dist[V];int i, j;for (i = 0; i < V; i++) {dist[i] = INF;}dist[src] = 0;for (i = 0; i < V - 1; i++) {int u = -1;for (j = 0; j < V; j++) {if (dist[j] > INF) continue;if (u == -1 || dist[j] < dist[u]) u = j;}if (u == -1) return;for (j = 0; j < V; j++) {if (graph[u][j] && dist[u] != INF && dist[u] + graph[u][j] < dist[j]) {dist[j] = dist[u] + graph[u][j];}}}printSolution(dist);}void printSolution(int dist[]) {printf("Vertex Distance from Source\n"); for (int i = 0; i < V; i++) {printf("%d \t\t %d\n", i, dist[i]);}}这个代码实现了一个基本的Dijkstra算法。
c语言最短路径搜寻算法

c语言最短路径搜寻算法
C 语言最短路径搜寻算法常用于在网图中寻找两点之间的最短路径,其中网图的最短路径分为单源最短路径和多源最短路径。
以下是两种常见的最短路径搜寻算法:- Dijkstra 算法:从一个起始点出发,到达一个终点,通过对路径权值的累加,找到最短路径。
- Floyd 算法:对于网中的任意两个顶点来说,之间的最短路径不外乎有两种情况。
一种是直接从一个顶点到另一个顶点的边的权值;另一种是先经过若干个顶点,最终达到另一个顶点,期间经过的边的权值和。
这两种算法都可以用 C 语言实现,你可以根据具体需求选择合适的算法。
若你想了解更多关于最短路径搜寻算法的内容,可以继续向我提问。
迷宫最短路径问题的计算机解法

迷宫最短路径问题的计算机解法的信息目录迷宫最短路径问题的计算机解法的信息 (1)1.问题描述 (1)2.数据的输入与输出 (2)2.1.输入迷宫问题的大小规模 (2)2.2.建立数值迷宫图形 (2)2.3.走向(Direction) 控制 (2)2.4.数据输出 (2)3.数据结构 (2)3.1.数组(Array) (3)3.2.栈(Stack) (3)3.3.队列(Queue) (3)4.算法基本思想 (3)4.1.基本算法思想 (3)4.1.1.步骤一: (3)4.1.2.步骤二: (3)4.1.3.步骤三 (3)4.2.具体实施 (4)4.2.1.其一: (4)4.2.2.其二: (4)5.算法细化参考 (4)6.算法分析 (5)6.1.时间复杂性 (5)6.1.1.其一: (5)6.1.2.其二: (5)6.2.空间复杂性 (5)6.2.1.其一: (5)6.2.2.其二: (6)扳手1-1 (1)拉车1-2 (1)钢材1-3 (2)迷宫最短路径问题的计算机解法的信息迷宫最短路径问题的计算机解法的信息迷宫最短路径( the Shortest Path ofLabyrinth) 问题是一个典型的搜索、遍历问题,其程序设计思想在许多计算机运算程序、计算机管理程序中均有应用。
一般来说,用计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题抽象出一个适当的数学模型,然后设计一个解此数学模型的算法,最后编出程序,进行调试、调整,直至得到最终解答。
其中,寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间的关系,然后用数学语言加以描述。
但是,迷宫最短路径问题处理的对象不仅仅是纯粹的数值,而且还包括字符、表格、图象等多种具有一定结构的数据,这些非数值计算问题无法用数学方程加以描述,这就给程序设计带来一些新的问题。
迷宫最短路径( the Shortest Path ofLabyrinth) 问题是一个典型的搜索、遍历问题,其程序设计思想在许多计算机运算程序、计算机管理程序中均有应用。
最短路径——dijkstra算法代码(c语言)

最短路径——dijkstra算法代码(c语⾔)最短路径问题看了王道的视频,感觉云⾥雾⾥的,所以写这个博客来加深理解。
(希望能在12点以前写完)()⼀、总体思想1.初始化三个辅助数组s[],dist[],path[]s[]:这个数组⽤来标记结点的访问与否,如果该结点被访问,则为1,如果该结点还没有访问,则为0;dist[]:这个数组⽤来记录当前从v到各个顶点的最短路径长度,算法的核⼼思想就是通过不断修改这个表实现; path[]:这个数组⽤来存放最短路径;2.遍历图,修改上⾯的各项数组,每次只找最短路径,直到遍历结束⼆、代码实现1void dijkstra(Graph G, int v)2 {3int s[G.vexnum];4int dist[G.vexnum];5int path[G.vexnum];6for(int i = 0; i < G.vexnum; i++)7 {8 s[i] = 0;9 dist[i] = G.edge[v][i];10if(G.edge[v][i] == max || G.edge[v][i] == 0)11 {12 path[i] = -1;13 }14else15 {16 path[i] = v;17 }18 s[v] = 1;19 }2021for(int i = 0; i < G.vexnum; i++)22 {23int min = max;24int u;25for(int j = 0; j < G.vexnum; j++)26 {27if(s[j] != 1 && dist[j] < min)28 {29 min = dist[j];30 u = j;31 }32 }33 s[u] = 1;34for(int j = 0; j < G.vexnum; j++)35 {36if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])37 {38 dist[j] = dist[u] + G.edge[u][j];39 path[j] = u;40 }41 }42 }43 }三、代码解释先⾃⼰定义⼀个⽆穷⼤的值max#define max infdijkstra算法传⼊的两个参为图Graph G;起点结点 int v;⾸先我们需要三个辅助数组1int s[G.vexnum];//记录结点时是否被访问过,访问过为1,没有访问过为02int dist[G.vexnum];//记录当前的从v结点开始到各个结点的最短路径长度3int path[G.vexnum];//记录最短路径,存放的是该结点的上⼀个为最短路径的前驱结点初始化三个数组1for(int i = 0; i < G.vexnum; i++)2 {3 s[i] = 0;//⽬前每个结点均未被访问过,设为04 dist[i] = G.edge[v][i];//dist[]数组记录每个从v结点开到其他i结点边的长度(权值)5if(G.edge[v][i] == max || G.edge[v][i] == 0)6 {7 path[i] = -1;8 }//如果v到i不存在路径或者i就是v结点时,将path[i]设为-1,意为⽬前v结点不存在路径到i9else10 {11 path[i] = v;12 }//反之,若v到i存在路径,则v就是i的前驱结点,将path[i] = v13 s[v] = 1;//从遍历起点v开始,即已经访问过顶点s[v]=114 }开始遍历数组并且每次修改辅助数组以记录⽬前的情况,直⾄遍历结束1for(int i = 0; i < G.vexnum; i++)2 {3int min = max;//声明⼀个min = max⽤来每次记录这次遍历找到的最短路径的长度(权值)4int u;//声明u来记录这次历找到的最短路径的结点5for(int j = 0; j < G.vexnum; j++)//开始遍历找⽬前的最短路径6 {7if(s[j] != 1 && dist[j] < min)8 {9 min = dist[j];10 u = j;11 }//找出v到结点j的最短路径,并且记录下最短路径的结点u = j12 }13 s[u] = 1;//找到结点u,即已访问过u,s[u] = 114for(int j = 0; j < G.vexnum; j++)//开始遍历修改辅助数组的值15 {16if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])17 {18 dist[j] = dist[u] + G.edge[u][j];19 path[j] = u;20 }//如果v→j的路径⽐v →u→j长,那么修改dist[j]的值为 dist[u] + G.edge[u][j],并且修改j的前驱结点为path[j] = u21 }22 }遍历结束后,数组dist[]就是存放了起点v开始到各个顶点的最短路径长度最短路径包含的结点就在path数组中例如我们得到如下的path[]数组1 path[0] = -1;//0到⾃⼰⽆前驱结点2 path[1] = 0;//1的前驱为结点0,0⽆前驱结点,即最短路径为0 →13 path[2] = 1;//2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →24 path[3] = 0;//3的前驱为结点0,0⽆前驱结点,即最短路径为0 →35 path[4] = 2;//4的前驱结为点2,2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →2 →4 dijkstra对于存在负权值的图不适⽤,明天再更新Floyd算法叭。
c语言课程设计最短路径

c语言课程设计最短路径一、教学目标本节课的教学目标是让学生掌握C语言中最短路径算法的基本概念和实现方法。
具体包括以下三个方面:1.知识目标:使学生了解最短路径问题的背景和意义,理解Dijkstra算法和A*算法的原理,学会使用C语言实现最短路径算法。
2.技能目标:培养学生运用C语言解决实际问题的能力,提高学生的编程技巧和算法思维。
3.情感态度价值观目标:激发学生对计算机科学的兴趣,培养学生的创新精神和团队合作意识。
二、教学内容本节课的教学内容主要包括以下几个部分:1.最短路径问题的定义和意义:介绍最短路径问题的背景,让学生了解其在实际应用中的重要性。
2.Dijkstra算法:讲解Dijkstra算法的原理,演示算法的实现过程,让学生学会使用C语言实现Dijkstra算法。
3.A算法:介绍A算法的原理,讲解算法的优势和不足,让学生了解并掌握A*算法的实现方法。
4.算法优化:讨论如何优化算法,提高算法的效率,让学生学会在实际问题中灵活运用算法。
三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:讲解最短路径问题的基本概念和算法原理,让学生掌握基本知识。
2.案例分析法:分析实际问题,让学生了解最短路径算法在实际应用中的价值。
3.实验法:让学生动手实践,学会使用C语言实现最短路径算法,提高编程能力。
4.讨论法:学生进行小组讨论,培养学生的团队合作意识和创新精神。
四、教学资源为了支持本节课的教学内容和教学方法,将准备以下教学资源:1.教材:《C语言程序设计》2.参考书:《数据结构与算法分析》3.多媒体资料:最短路径算法的动画演示4.实验设备:计算机、网络设备通过以上教学资源的支持,相信能够有效地帮助学生掌握最短路径算法,提高学生的编程能力。
五、教学评估为了全面、客观地评估学生在最短路径算法学习过程中的表现,将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答和小组讨论的表现,以了解学生的学习态度和理解程度。
数据结构 dijkstra算法 c语言

数据结构 dijkstra算法 c语言Dijkstra 算法是一种用于找到图中从一个顶点到其他顶点的最短路径的贪心算法。
以下是一个使用 C 语言实现 Dijkstra 算法的示例代码:```c#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define MAX顶点数 100// 图的邻接表表示typedef struct {int顶点;struct Edge* edges;} Vertex;// 边的结构typedef struct Edge {int weight;Vertex* destination;struct Edge* next;} Edge;// 初始化图void initGraph(Vertex* graph, int vertices) {for (int i = 0; i < vertices; i++) {graph[i].edges = NULL;}}// 在图中添加边void addEdge(Vertex* graph, int source, int destination, int weight) {Edge* edge = (Edge*)malloc(sizeof(Edge));edge->weight = weight;edge->destination = &graph[destination];edge->next = graph[source].edges;graph[source].edges = edge;}// Dijkstra 算法找到从源顶点到其他顶点的最短路径void dijkstra(Vertex* graph, int source) {int vertices = MAX顶点数;int distance[vertices];bool visited[vertices];// 初始化距离和访问状态for (int i = 0; i < vertices; i++) {distance[i] = INT_MAX;visited[i] = false;}// 源顶点的距离为 0distance[source] = 0;// 循环找到最短路径while (1) {int minVertex = -1;for (int i = 0; i < vertices; i++) {if (!visited[i] && distance[i] < distance[minVertex]) {minVertex = i;}}if (minVertex == -1) {break;}visited[minVertex] = true;for (Edge* edge = graph[minVertex].edges; edge != NULL; edge =edge->next) {int destination = edge->destination->顶点;if (!visited[destination] && distance[minVertex] != INT_MAX && distance[minVertex] + edge->weight < distance[destination]) {distance[destination] = distance[minVertex] + edge->weight;}}}// 打印最短距离for (int i = 0; i < vertices; i++) {if (i == source) {continue;}printf("从顶点%d 到顶点%d 的最短距离为: %d\n", source, i, distance[i]);}}int main() {// 图的顶点数和边数int vertices = 9, edges = 14;// 创建图的邻接表Vertex graph[vertices];initGraph(graph, vertices);// 添加边addEdge(graph, 0, 1, 4);addEdge(graph, 0, 7, 8);addEdge(graph, 1, 2, 8);addEdge(graph, 1, 7, 11);addEdge(graph, 2, 3, 7);addEdge(graph, 2, 8, 2);addEdge(graph, 3, 4, 9);addEdge(graph, 3, 5, 14);addEdge(graph, 4, 5, 10);addEdge(graph, 5, 6, 2);addEdge(graph, 5, 8, 6);addEdge(graph, 6, 7, 1);addEdge(graph, 6, 8, 7);// 执行 Dijkstra 算法dijkstra(graph, 0);return 0;}```上述代码实现了一个使用 Dijkstra 算法的示例程序。