反比例函数与一次函数相结合常见大题简单题型
反比例函数与一次函数综合(面积问题、线段和差,函数值比较大小)—2024年二轮热点题型(全国通用)

反比例函数与一次函数综合目录热点题型归纳 (1)题型01 面积问题 (1)题型02 两线段和差最值问题 (3)题型03 两函数值比较大小问题 (15)中考练场 (31)题型01 面积问题【解题策略】【典例分析】例.(2023·辽宁鞍山·中考真题)如图,直线AB 与反比例函数()0k y x x=<的图象交于点()2,A m −,(),2B n ,过点A 作AC y 轴交x 轴于点C ,在x 轴正半轴上取一点D ,使2OC OD =,连接BC ,AD .若ACD 的面积是6.(1)求反比例函数的解析式.(2)点P 为第一象限内直线AB 上一点,且PAC △的面积等于BAC 面积的2倍,求点P 的坐标.【答案】(1)8y x =−;(2)()2,8P【分析】(1)根据2OC OD =,可得三角形面积之比,计算出AOC 的面积,面积乘2即为8k =,解析式可得;(2)根据点的坐标求出直线AB 的解析式为6y x =+,设符合条件的点(),6P m m +,利用面积的倍数关系建立方程解出即可.【详解】(1)解:∵2OC OD =,ACD 的面积是6,∴4AOC S =V , ∴8k =,∵图象在第二象限,∴8k =−,∴反比例函数解析式为:8y x =−;(2)∵点()2,A m −,(),2B n ,在8y x =−的图象上, ∴4m =,n =−4,∴()2,4A −,()4,2B −,设直线AB 的解析式为y kx b =+,2442k b k b −+=⎧⎨−+=⎩,解得:16k b =⎧⎨=⎩,∴直线AB 的解析式为6y x =+,∵AC y 轴交x 轴于点C ,∴()2,0C −, ∴14242ABC S =⨯⨯=,设直线AB 上在第一象限的点(),6P m m +, ∴()142282PAC ABC S m S =⨯⨯+==,∴248m +=,∴2m =,∴()2,8P .【点睛】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数关系式.【变式演练】1.(2023·山东泰安·三模)如图,一次函数1112y x =+的图象与反比例函数2(0)k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)请直接写出在第一象限124y y <<时,x 的取值范围.(3)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC AD =,连接.CB 求ABC 的面积.【答案】(1)412a k ==,(2)34x <<(3)8【分析】本题主要考查了求反比例函数的解析式,结合一次函数的解析式求点的坐标,解决问题的关键是画出图形.(1)用待定系数法即可求解;(2)根据图象直接得出答案;(3)求出()2,6C ,由1144822ABC A S CE x =⋅=⨯⨯=△,即可求解.【详解】(1)将点A 的坐标代入一次函数表达式得:1312a =+, 解得:4a =,则点()4,3A ,将点A 的坐标代入反比例函数表达式得:34k=, 解得:12k =;(2)把4y =代入12y x =,得3x =, 由图可知24y <时,3x >, 由图可知12y y <时,4x <, 124y y ∴<<时,34x <<;(3)点()4,3A ,D 点的纵坐标是0,AD AC =, ∴点C 的纵坐标是3206⨯−=,把6y =代入12y x =,得2x =, ()2,6C ∴,如图1,作CD x ⊥轴于D ,交AB 于E ,当2x =时,12122y =⨯+=,()2,2E ∴, ()2,6C ,624CE ∴=−=,∴由1144822ABC A S CE x =⋅=⨯⨯=△.2.(2023·山东泰安·一模)如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于()1,2A ,()2,B n −两点.(1)求一次函数和反比例函数的表达式.(2)根据图象,直接写出满足21k k x b x+<的x 的取值范围. (3)若点P 在线段AB 上,且1:3AOP BOP S S =△△:,求点P 的坐标.【答案】(1)2y x =,1y x =+(2)01x <<或<2x − (3)15,44⎛⎫ ⎪⎝⎭【分析】(1)把()1,2A 坐标代入2k y x =可得解析式,继而求出n ,用待定系数法求出一次函数解析式; (2)根据图象直接写出21k k x b x +<的x 的取值范围即可;(3)利用1:3AOP BOP S S =△△:得出3PB PA =,设P 坐标(),1x x +利用勾股定理建立方程求出x 即可. 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.【详解】(1)解:反比例函数2k y x =经过()1,2A , 2122k ∴=⨯=,∴反比例函数解析式为2y x =,()2B n −,在反比例函数2y x =的图象上, 212n ∴==−−,()21B ∴−−,,直线1y k x b =+经过()1,2A ,()2,1B −−,11221k b k b +=⎧∴⎨−+=−⎩,解得111k b =⎧⎨=⎩,∴一次函数的解析式为1y x =+;(2)解:观察函数图象可知21k k x b x +<的x 的取值范围是01x <<或<2x −;(3)解:设()1P x x +,,∵1:3AOP BOP S S =△△::1:3AP BP ∴=,即3PB PA =,()()()()22222119112x x x x ⎡⎤∴++++=−++−⎣⎦, 解得15(4x =舍去),214x =, P ∴点坐标为1544⎛⎫ ⎪⎝⎭,3.(2023·广东潮州·二模)如图,反比例函数2y x=的图象与一次函数y kx b =+的图象交于点A 、B ,点A 、B 的横坐标分别为1,2−,一次函数图象与y 轴的交于点C ,与x 轴交于点D .(1)求一次函数的解析式;(2)对于反比例函数2y x=,当1y <−时,写出x 的取值范围; (3)点P 是第三象限内反比例图象上的一点,若点P 满足S △BDP =12S △ODA ,请求出点P 的坐标.【答案】(1)1y x =+(2)20x −<<(3)(或(1−【分析】本题主要考查二次函数性质,一次函数性质,图形的面积等,解题的关键在于利用反比例函数得出交点坐标,从而求出一次函数解析式,以及懂得观察图象,获取图象信息,从而得到自变量的取值范围,以及利用割补法求面积.(1)利用反比例函数求出交点A 、点B 的坐标分别为()1,2,()2−,-1,再利用待定系数法即可求出一次函数的解析式.(2)当1y <−时,即为B 点右侧图象,观察图象,从而得出此段图象对应的自变量的取值范围为20x −<<.(3)先求出ODP 的面积为1,从而确定BDP △的面积为12,再通过点P 的不同的位置,设点P 的坐标为2,x x ⎛⎫ ⎪⎝⎭,根据图形面积列出方程,即可求出点P 的坐标.【详解】(1)解:∵反比例函数2y x =的图象与一次函数y kx b =+的图象交于点A 、B ,点A 、B 的横坐标分别为1,﹣2;∴A ()1,2,B()2,1−−; 把A 、B 的坐标代入y kx b =+得221k b k b +=⎧⎨−+=−⎩,解得11k b =⎧⎨=⎩;∴一次函数的解析式为1y x =+.(2)∵()2,1B −−;由图象可知,当20x −<<时,1y <−.(3)∵一次函数为1y x =+;∴D ()1,0−;∵A ()1,2, ∴1212ODA S =⨯⨯V ; ∴1122BDP ODA S S ==V V , 设点P 的坐标为: 2,x x ⎛⎫ ⎪⎝⎭,0x <;∴ON x =−,2PN x =−;当P 在直线下方时,如图1,则;()()()121211=1212112222BDP BDM PDNBMNP S S S S x x x x =+−⎛⎫⎛⎫−++−−−−−⨯= ⎪ ⎪⎝⎭⎝⎭梯形;解得x =∴点P (.当P 在直线AB 的上方时,如图2,则;()()()1211112211122222BDF BDM PDN BMNP SS S S x x x x =+−⎛⎫⎛⎫=−−−+−⨯−−−−= ⎪ ⎪⎝⎭⎝⎭梯形;解得1x =−∴点P (1−;综上可得:点P的坐标为:( 或(1− .4.(2023·广东云浮·二模)如图,在平面直角坐标系中,一次函数y kx b =+图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数m y x=在第一象限内的图象交于点C ,CD x ⊥轴, 1tan BAO 2∠=,42OA OD ==,.(1)求一次函数与反比例函数的解析式;(2)若点E 是反比例函数在第三象限内图象上的点,过点E 作EF ⊥y 轴,垂足为点F ,连接OE AF 、,如果4BAF EFO SS =,求点E 的坐标. 【答案】(1)一次函数解析式为122y x =+,反比例函数解析式为6y x =(2)342E ⎛⎫−− ⎪⎝⎭, 【分析】本题主要考查了一次函数与反比例函数综合,解直角三角形,待定系数法求函数解析式,正确求出对应的函数解析式是解题的关键.(1)先求出A 、D 坐标,以及AD 的长,解直角三角形求出CD 的长,进而得到点C 的坐标,然后利用待定系数法求出对应的函数解析式即可;(2)设出点E 坐标,求出OEF 的面积为3,进而得到ABF △的面积为12,再求出点B 的坐标,得到OB 的长,利用面积法求出BF 的长进而求出点E 的坐标即可.【详解】(1)解:∵42OA OD ==,,∴()()4020A D −,,,,426AD OA OD =+=+=,∵BAO CAD ∠=∠, ∴1tan tan 2BAO CAD ∠=∠=, ∵CD x ⊥轴, ∴1tan 2CD CAD AD ∠== , ∴132CD AD ==,∴点C 的坐标为()23,,∴把()()4023A C −,,,代入y kx b =+中得4023k b k b −+=⎧⎨+=⎩,解得122k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x =+,∵点C 在反比例函数my x =的图象上,∴将()23C ,代入m y x =中得32m=, 解得:6m =,∴反比例函数解析式为6y x =;(2)解:设6E m m ⎛⎫−− ⎪⎝⎭,, ∴6EF m OF m ==,∴132EFOSOF EF =⋅=,∴142BAFEFOSS==,∵一次函数解析式为122y x =+,∴()02B ,,∴2OB =,又∵4OA =,12ABF S BF OA =⋅=△,∴()2212OF +=,∴626m +=,∴32m =, ∴342E ⎛⎫−− ⎪⎝⎭,. 题型02 两线段和差最值问题【解题策略】例.(2023·四川宜宾·中考真题)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点()30C ,,顶点A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)6y x =,142y x =−+(2)在x 轴上存在一点()5,0P ,使ABP 周长的值最小,最小值是【分析】(1)过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,证明()AAS ACE CBD ≌,则3,CD AE BD EC m ====,由3OE m =−得到点A 的坐标是()3,3m −,由A 、()6B m ,恰好落在反比例函数ky x =第一象限的图象上得到()336m m−=,解得1m =,得到点A 的坐标是()2,3,点B 的坐标是()6,1,进一步用待定系数法即可得到答案;(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,利用轴对称的性质得到AP A P '=,()2,3A '−,则AP PB A B '+=,由AB =AB 是定值,此时ABP 的周长为AP PB AB AB A B '++=+最小,利用待定系数法求出直线A B '的解析式,求出点P 的坐标,再求出周长最小值即可.【详解】(1)解:过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D , 则90AEC CDB ∠=∠=︒,∵点()30C ,,()6B m ,,∴3,6,OC OD ==BD m =, ∴3CD OD OC =−=, ∵ABC 是等腰直角三角形, ∴90,ACB AC BC ∠=︒=,∵90ACE BCD CBD BCD ∠+∠=∠+∠=︒, ∴ACE CBD ∠=∠, ∴()AAS ACE CBD ≌,∴3,CD AE BD EC m ====, ∴3OE OC EC m =−=−, ∴点A 的坐标是()3,3m −,∵A 、()6B m ,恰好落在反比例函数ky x =第一象限的图象上.∴()336m m−=,解得1m =,∴点A 的坐标是()2,3,点B 的坐标是()6,1,∴66k m ==,∴反比例函数的解析式是6y x =,设直线AB 所对应的一次函数的表达式为y px q =+,把点A 和点B 的坐标代入得,2361p q p q +=⎧⎨+=⎩,解得124p q ⎧=−⎪⎨⎪=⎩,∴直线AB 所对应的一次函数的表达式为142y x =−+,(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,∴点A 与点A '关于x 轴对称, ∴AP A P '=,()2,3A '−,∵AP PB A P PB A B ''+=+=, ∴AP PB +的最小值是A B '的长度,∵AB =AB 是定值,∴此时ABP 的周长为AP PB AB AB A B '++=+最小, 设直线A B '的解析式是y nx t =+,则2361n t n t +=−⎧⎨+=⎩,解得15n t =⎧⎨=−⎩, ∴直线A B '的解析式是5y x =−, 当0y =时,05x =−,解得5x =,即点P 的坐标是()5,0,此时AP PB AB AB A B '++=+=综上可知,在x 轴上存在一点()5,0P,使ABP周长的值最小,最小值是【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.【变式演练】1.(2023·河南濮阳·三模)如图,一次函数6y x =−+与反比例函数()0ky x x=>交于A 、B 两点,交x 轴于点C ,已知点A 的坐标为()2,a .(1)求反比例函数解析式; (2)直接写出不等式()60kx x x−+>>的解集______. (3)在x 轴是否存在点P ,使得PA PB −有最大值,若存在,请求出点P 的坐标,若不存在,请说明理由. 【答案】(1)反比例函数解析式为:y =8x .(2)24x <<.(3)在x 轴上存在点P ,使PA PB −有最大值为AB 此时P 点坐标是()6,0.【分析】本题考查了一次函数与反比例函数的综合、三角形的三边关系的应用等知识点,熟练掌握待定系数法和数形结合法是解题关键.(1)先求解A 的坐标,再利用待定系数法求解反比例函数的解析式即可; (2)先求解函数的交点坐标,再结合图象可得答案;(3)先求解一次函数与x 轴的交点坐标,再结合三角形的三边关系确定P 的位置即可.【详解】(1)解:∵点A 的坐标为()2,a 在一次函数6y x =−+上,∴264a =−+=,∴()2,4A ,∵()2,4A 在反比例函数()0ky x x =>上,∴248k =⨯=,∴反比例函数解析式为:8y x =.(2)联立一次函数和反比例函数得析式为:86y x y x ⎧=⎪⎨⎪=−+⎩,解得24x y =⎧⎨=⎩或42x y =⎧⎨=⎩,∴()2,4A ,()4,2B , 由图示可知:不等式()60kx x x −+>>的解集是24x <<.(3)∵直线AB 的解析式是6y x =−+,令0y =, 则06x =−+,则6x =,∴()6,0C ,∴当P 点坐标是()6,0,PA PB −有最大值理由如下:在PAB 中,根据三边关系,PA PB AB −<,当P 在点C 处时,PA PB AB −=.即最大值为AB .故在x 轴上存在点P ,使PA PB −有最大值为AB 此时P 点坐标是()6,0.2.(2023·辽宁盘锦·二模)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于()1,A a −,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)当反比例函数值大于一次函数值时,直接写出x 的取值范围;(3)在y 轴上存在点P ,使得APB △的周长最小,求点P 的坐标并直接写出APB △的周长.【答案】(1)3y x =−,()3,1B −(2)10x −<<或3x <−(3)点P 的坐标为50,2⎛⎫ ⎪⎝⎭,【分析】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,灵活运用所学知识是解题的关键. (1)先把点A 坐标代入一次函数解析式求出点A 的坐标,再把点A 的坐标代入反比例函数解析式求出反比例函数解析式,再联立一次函数与反比例函数解析式即可求出点B 的坐标; (2)利用图象法求解即可;(3)如图所示,作点A 关于y 轴的对称点A ',连接BA '交y 轴于点P ,此时PA PB +的值最小,则APB △的周长最小,再求出直线BA '的解析式即可求出点P 的坐标,由()1,3A −,()3,1B −,()1,3A ',可求出AB 、A B '的值,最后根据APB△的周长为PA PB AB A B AB '++=+.【详解】(1)解:点()1,A a −在一次函数4y x =+的图象上,∴143a =−+=, ∴点()1,3A −,点()1,3A −在反比例函数ky x =的图象上,∴133k =−⨯=−,∴反比例函数的表达式为3y x =−,联立34y x y x ⎧=−⎪⎨⎪=+⎩, 解得: 13x y =−⎧⎨=⎩或31x y =−⎧⎨=⎩, ∴()3,1B −;(2)观察函数图象可知:当10x −<<或3x <−时,一次函数4y x =+的图象在3y x =−的图象的下方,∴当反比例函数值大于一次函数值时,x 的取值范围为:10x −<<或3x <−;(3)作点A 关于y 轴的对称点A ',连接BA '交y 轴于点P ,此时PA PB +的值最小,则APB △的周长最小,如图所示.点()1,3A −,∴点()1,3A ',设直线BA '的表达式为()0y mx n m =+≠,则331m n m n +=⎧⎨−+=⎩,得:1252m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线BA '的表达式为1522y x =+,在1522y x =+中,令0x =,则52y =,∴点50,2P ⎛⎫ ⎪⎝⎭,()1,3A −,()3,1B −,()1,3A ',∴AB =A B =='∴APB △的周长为PA PB AB A B AB '++=+=3.(2023·广东云浮·二模)如图,在平面直角坐标系中,矩形OABC 的两边OC 、OA 分别在坐标轴上,且2OA =,4OC =,连接OB .反比例函数1(0)k y x x=>的图象经过线段OB 的中点D ,并与AB 、BC 分别交于点B 、F .一次函数2y k x b =+的图象经过E 、F 两点.(1)分别求出一次函数和反比例函数的表达式.(2)点P 是x 轴上一动点,当PE PF +的值最小时,求点P 的坐标.【答案】(1)一次函数的解析式为1522y x =−+,反比例函数表达式为2y x =;(2)17,05⎛⎫ ⎪⎝⎭ 【分析】(1)由矩形的性质及中点坐标公式可得(2,1)D ,从而可得反比例函数表达式;再求出点E 、F 坐标可用待定系数法解得一次函数的解析式;(2)作点E 关于x 轴的对称点E ',连接E F '交x 轴于点P ,则此时PE PF +最小.求出直线E F '的解析式后令0y =,即可得到点P 坐标. 【详解】(1)解:四边形OABC 为矩形,2OA BC ==,4OC =,(4,2)B ∴.由中点坐标公式可得点D 坐标为(2,1),反比例函数1(0)k y x x =>的图象经过线段OB 的中点D ,1212k xy ∴==⨯=,故反比例函数表达式为2y x =.令2y =,则1x =;令4x =,则12y =.故点E 坐标为(1,2),1(4,)2F . 设直线EF 的解析式为2y k x b =+,代入E 、F 坐标得:222142k b k b =+⎧⎪⎨=+⎪⎩,解得:21252k b ⎧=−⎪⎪⎨⎪=⎪⎩, 故一次函数的解析式为1522y x =−+.(2)作点E 关于x 轴的对称点E ',连接E F '交x 轴于点P ,则此时PE PF +最小.如图. 由E 坐标可得对称点(1,2)E '−,设直线E F '的解析式为y mx n =+,代入点E '、F 坐标,得:2142m n m n −=+⎧⎪⎨=+⎪⎩,解得:56176m n ⎧=⎪⎪⎨⎪=−⎪⎩. 则直线E F '的解析式为51766y x =−,令0y =,则751x =.∴点P 坐标为17(5,0).故答案为:17(5,0).【点睛】本题考查了反比例函数的图象性质,反比例函数图象与一次函数图象的交点,中点坐标公式,矩形的性质,待定系数法求函数解析式,最短路径问题(将军饮马).解题关键在于牢固掌握待定系数法求函数解析式、将军饮马解题模型.题型03 两函数值比较大小问题【解题策略】例.(2023·山东淄博·中考真题)如图,直线y kx b =+与双曲线m y x=相交于点()2,3A ,(),1B n .(1)求双曲线及直线对应的函数表达式;(2)将直线AB 向下平移至CD 处,其中点()2,0C −,点D 在y 轴上.连接AD ,BD ,求ABD △的面积;(3)请直接写出关于x 的不等式m kx b x +>的解集. 【答案】(1)6y x =,142y x =−+ (2)10 (3)26x <<或0x <【分析】()1将()2,3A 代入双曲线m y x =,求出m 的值,从而确定双曲线的解析式,再将点(),1B n 代入6y x =,确定B 点坐标,最后用待定系数法求直线的解析式即可;()2由平行求出直线CD 的解析式为11,2y x =−−过点D 作DG AB ⊥交于G ,设直线AB 与y 轴的交点为H ,与x 轴的交点为F , 可推导出HDG HFO ∠=∠, 再由cos HFO ∠=,求出DG ==则ABD 的面积110;2=⨯ ()3数形结合求出x 的范围即可.【详解】(1)将()2,3A 代入双曲线m y x =,∴6m =, ∴双曲线的解析式为6y x =, 将点(),1B n 代入6y x =,∴6n =,∴()6,1B ,将()()2,3,6,1A B 代入y kx b =+, 2361k b k b +=⎧∴⎨+=⎩,解得124k b ⎧=−⎪⎨⎪=⎩,∴直线解析式为142y x =−+;(2)∵直线AB 向下平移至CD ,∴AB CD ,设直线CD 的解析式为12y x n =−+,将点()2,0C −代入1,2y x n =−+∴10n +=,解得1n =−∴直线CD 的解析式为112y x =−−∴()0,1D −过点D 作DG AB ⊥交于G ,设直线AB 与y 轴的交点为H ,与x 轴的交点为 F ,∴()()0,4,8,0H F ,∵90,90HFO OHF OHG HDG ∠+∠=︒∠+∠=︒,∴HDG HFO ∠=∠,∵4,8OH OF ==,HF ∴=cosHFO ∴∠=∵5DH =,DG DH ∴==, 2AB =∴ABD 的面积1102=⨯= (3)由图可知26x <<或0x <时,161.2x x −−> 【点睛】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,直线平移是性质,数形结合是解题的关键.【变式演练】1.(2023·山东青岛·一模)如图,一次函数y ax b =+与反比例函数k y x=的图象交于A 、B 两点,点A 坐标为(,2)m ,点B 坐标为(4,)n −,OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD 的面积;(3)请你根据图象直接写出不等式k ax b x+>的解集. 【答案】(1)一次函数表达式为112y x =−,反比例函数表达式为12y x =; (2)18;(3)6x >或40x −<<. 【分析】本题考查了反比例函数的综合题,涉及解直角三角形,待定系法求函数解析式,三角形面积等,熟练掌握反比例函数图象上点的坐标特征是解题的关键.(1)先求出点A 坐标,再利用待定系数法求出反比例函数解析,再根据点B 在反比例函数图象上,可得点B 的坐标,进一步利用待定系数法求一次函数解析式即可;(2)先求出点C 和点D 坐标,再根据OCD BCD OCBD S S S ∆∆=+四边形求解即可;(3)根据图象即可确定不等式的解集.【详解】(1)解:OA 与x 轴正半轴夹角的正切值为13,∴13AE OE =,点(,2)A m ,2AE ∴=,6OE m ==,∴点A 坐标为(6,2),6212k ∴=⨯=,点B 在反比例函数图象上,412n ∴−=,解得3n =−,∴点B 坐标为(4,3)−−,将点(6,2)A ,点(4,3)B −−代入一次函数y ax b =+,得6243a b a b +=⎧⎨−+=−⎩,解得121a b ⎧=⎪⎨⎪=−⎩,∴一次函数表达式为112y x =−,反比例函数表达式为12y x =; (2)解:当0x =时,1112y x =−=−, ∴点C 坐标为(0,1)−,CD y ⊥轴, ∴点D 纵坐标为1−,点D 在反比例函数12y x =上,∴点D 横坐标为12−,12CD ∴=,∴111211221822OCD BCD OCBD S S S ∆∆=+=⨯⨯+⨯⨯=四边形;(3)解:由图象可知,不等式kax b x +>的解集是6x >或40x −<<..2.(2023·广西桂林·一模)如图,直线1y kx b =+与双曲线2a y x=相交于A 、B 两点,直线AB 与x 轴相交于点C ,点B 的坐标是()3m m ,,5OA =,E 为x 轴正半轴上一点,且3os 5c AOE ∠=.(1)双曲线2y 的解析式是 ,直线1y 的解析式是 .(2)求证:3AOB COB S S =△△.(3)当12y y >时,x 的取值范围是 .【答案】(1)122,23y y x x ==+ (2)见解析(3)60x −<<或3x >【分析】(1)根据三角函数的定义求出点A 的坐标,代入反比例函数解析式求出结果即可;求出点B 的坐标,用待定系数法求出一次函数解析式即可;(2)根据A 、B 两点的坐标分别表示出AOB 和BOC 的面积即可得出答案;(3)根据函数图象得出x 的取值范围即可.【详解】(1)解:过点A 作AD x ⊥轴于点D ,如图所示:∵3cos 55OD AOE ∠==, ∴3OD =,∴4AD ,∴()34A ,,将点A 的坐标代入反比例函数2y x =12a =, ∴双曲线2y 的解析式为12y x =,∵点()3B m m ,在反比例函数12y x =图象上, ∴123m m =,解得2m =±,∴()6,2B −−,把()34A ,,()6,2B −−代入1y kx b =+得3462k b k b +=⎧⎨−+=−⎩,解得232k b ⎧=⎪⎨⎪=⎩,∴直线1y 的解析式是223y x =+;(2)解:∵()34A ,,()6,2B −−,∴AOC 的面积1422OC OC =⨯⨯=,BOC 的面积122OC OC =⨯⨯=,∴AOB 的面积3OC =,∴3AOB BOC S S =△△;(3)解:根据函数图象可知,当60x −<<或3x >时,一次函数在反比例函数图象的上面,∴当12y y >时,x 的取值范围为60x −<<或3x >.【点睛】本题主要考查了一次函数和反比例函数的综合应用,求一次函数和反比例函数的解析式,三角函数的应用,解题的关键是数形结合,根据三角函数求出点A 的坐标.3.(2023·四川泸州·一模)如图,一次函数y ax b =+的图象与反比例函数(0)ky x x=>的图象交于第一象限()1,4C ,()4D m ,两点,与坐标轴交于A 、B 两点,连接OC ,OD .(O 是坐标原点)(1)求一次函数与反比例函数的表达式;(2)直接写出当一次函数值小于反比例函数值时x 的取值范围;(3)将直线AB 向下平移多少个单位长度,直线与反比例函数(0)k y x x =>图象只有一个交点?【答案】(1)4y x =,5y x =−+; (2)01x <<或>4x ;(3)1.【分析】本题考查了反比例函数与一次函数的综合,熟练掌握函数的图象与性质是解题的关键.(1)根据待定系数法求解即可;(2)结合图象找出反比例函数图象高于直线部分对应的x 的范围即可;(3)设出平移后直线的解析式结合一元二次方程的根的判别式解答即可;【详解】(1)解:∵反比例函数ky x =过点()1,4C ,()4,D m , ∴144k m =⨯=,解得:4k =,1m = 反比例函数解析式为:4y x =,点()4,1D , ∵一次函数解析式y ax b =+过点C ,D ,∴441a b a b +=⎧⎨+=⎩,解得:15a b =−⎧⎨=⎩∴一次函数解析式为:5y x =−+;(2)解:根据图象,不等式kax x +<的解集为:01x <<或>4x ; (3)解:设直线AB 向下平移n 个单位长度时,直线与反比例函数图象只有一个交点,则平移后的解析式为5y x n =−+−, 联立两个函数得:45x n x =−+−,整理得:2(5n)40x x −−+=,2(5)4140n ∆=−−⨯⨯=,∴54n −=±,9n =或1,∵点(0,5)B ,∴9n =不符合题意舍去.∴直线AB 向下平移1个单位长度时,直线与反比例函数图象只有一个交点.4.(2024·新疆·一模)如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()()2,3,,1A B n −.(1)求反比例函数和一次函数的解析式;(2)判断点()2,1P −是否在一次函数1y k x b =+的图象上,并说明理由;(3)直接写出不等式21k k x b x+≥的解集. 【答案】(1)反比例函数解析式为6y x =,一次函数的解析式为122y x =+ (2)点()2,1P −在一次函数122y x =+的图象上,理由见解析(3)60x −≤<或2x ≥【分析】本题主要考查了一次函数与反比例函数综合:(1)先利用点A 求出反比例函数的解析式,由此求出点B 的坐标,再利用点A 及点B 的坐标求出一次函数的解析式;(2)在一次函数中求出2x =−时的函数值即可得到结论;(3)根据函数图象找到一次函数图象在反比例函数图象上方或二者交点处时自变量的取值范围即可得到答案.【详解】(1)解:将点()2,3A 代入反比例函数()220k y k x =≠中,得2236k =⨯=, ∴反比例函数解析式为6y x =;将点(),1B n −代入6y x =中,得6n −=,∴6n =−,∴()6,1B −−,将点()2,3A 、()6,1B −−代入一次函数()110y k x b k =+≠中,得112361k b k b +=⎧⎨−+=−⎩,∴1122k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x =+;(2)解:点()2,1P −在一次函数122y x =+的图象上,理由如下:在122y x =+中,当2x =−时,()12212y =⨯−+=,∴点()2,1P −在一次函数122y x =+的图象上;(3)解:由图象可知:当60x −≤<或2x ≥时,一次函数的图象在反比例函数图象的上方或二者的交点处,即21k k x b x +≥,∴当60x −≤<或2x ≥时,21k k x b x +≥.1.(2023·贵州·中考真题)如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0ky x x=>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围.【答案】(1)反比例函数解析式为4y x =,()22E ,(2)30m −≤≤【分析】(1)根据矩形的性质得到BC OAAB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E 的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可; (2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案.【详解】(1)解:∵四边形OABC 是矩形,∴BC OAAB OA ∥,⊥, ∵()4,1D 是AB 的中点,∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x =,在4y x =中,当42y x ==时,2x =,∴()22E ,;(2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−;∵一次函数y x m =+与反比例函数()0ky x x =>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.2.(2023·山东聊城·中考真题)如图,一次函数y kx b =+的图像与反比例函数my x=的图像相交于()1,4A −,(),1B a −两点.(1)求反比例函数和一次函数的表达式;(2)点(),0P n 在x 轴负半轴上,连接AP ,过点B 作BQ AP ∥,交my x=的图像于点Q ,连接PQ .当BQ AP =时,若四边形APQB 的面积为36,求n 的值.【答案】(1)4y x =−,3y x =−+(2)215n =−【分析】(1)根据反比例函数过点()1,4A −,(),1B a −两点,确定()4,1B −,待定系数法计算即可.(2)根据平移思想,设解析式求解即可.【详解】(1)解:∵一次函数y kx b =+的图像与反比例函数my x =的图像相交于()1,4A −,(),1B a −两点,∴144m =−⨯=−,故反比例函数的解析式为4y x =−,∴441a =−=−,故()4,1B −,∴414k b k b +=−⎧⎨−+=⎩,解得13k b =−⎧⎨=⎩, ∴直线的解析式为3y x =−+.(2)∵()1,4A −,()4,1B −,(),0P n ,BQ AP ∥,BQ AP =,∴四边形APQB 是平行四边形,∴点A 到点P 的平移规律是向左平移1n −−个单位,向下平移4个单位,∴点()4,1B −到点Q 的平移规律也是向左平移1n −−个单位,向下平移4个单位,故()5,5Q n +−, ∵()5,5Q n +−在4y x =−上,∴44555n +=−=−,解得:215n =−,∴点P 的坐标为210,5⎛⎫− ⎪⎝⎭, 设AB 与x 轴交于点C ,连接PB ,如图所示:把0y =代入3y x =−+,解得:3x =,∴()3,0C ,∴2136355PC ⎛⎫=−−=⎪⎝⎭, ∴()136411825APBS=⨯⨯−−=⎡⎤⎣⎦,∵四边形APQB 为平行四边形, ∴236APBAPQB S S==四边形,∴当215n =−时,符合题意.【点睛】本题考查了一次函数与反比例函数的交点,平移规律计算,熟练掌握规律是解题的关键. 3.(2023·四川乐山·中考真题)如图,一次函数y kx b =+的图象与反比例函数4y x=的图象交于点(),4A m ,与x 轴交于点B , 与y 轴交于点()0,3C .(1)求m 的值和一次函数的表达式; (2)已知P 为反比例函数4y x=图象上的一点,2OBP OAC S S =△△,求点P 的坐标. 【答案】(1)3y x =+ (2)()2,2P 或()2,2−−【分析】(1)先把点A 坐标代入反比例函数解析式求出m 的值,进而求出点A 的坐标,再把点A 和点C 的坐标代入一次函数解析式中求出一次函数解析式即可;(2)先求出3OB =,3OC =,过点A 作AH y ⊥轴于点H ,过点P 作PD x ⊥轴于点D ,如图所示,根据2OBPOACS S =△△可得11222OB PD OC AH⋅=⨯⋅,求出2PD =,则点P 的纵坐标为2或2−,由此即可得到答案.【详解】(1)解:点(),4A m 在反比例函数4y x =的图象上,44m ∴=,1m ∴=,()1,4A ∴,又点()1,4A ,()0,3C 都在一次函数y kx b =+的图象上,43k bb =+⎧∴⎨=⎩,解得13k b =⎧⎨=⎩, ∴一次函数的解析式为3y x =+.(2)解:对于3y x =+,当0y =时,3x =−,∴()30B −,,3OB ∴=,∵()0,3C ,3OC ∴=过点A 作AH y ⊥轴于点H ,过点P 作PD x ⊥轴于点D ,如图所示.2OBP AOC S S =△△,11222OB PD OC AH ∴⋅=⨯⋅. 11323122PD ∴⨯⨯=⨯⨯⨯,解得2PD =. ∴点P 的纵坐标为2或2−.将2y =代入4y x =得2x =, 将=2y −代入4y x =得2x =−,∴点()2,2P 或()2,2−−.【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.4.(2022·江苏徐州·中考真题)如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E . (1)点E 是否在这个反比例函数的图像上?请说明理由; (2)连接AE 、DE ,若四边形ACDE 为正方形. ①求k 、b 的值;②若点P 在y 轴上,当PE PB −最大时,求点P 的坐标.【答案】(1)点E 在这个反比例函数的图像上,理由见解析 (2)①1k =,2b =;②点P 的坐标为(0,2)−【分析】(1)设点A 的坐标为8(,)m m ,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫ ⎪⎝⎭,进而求得4(2,)E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD=,设点A 的坐标为8(,)m m ,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得PE PD PE PB−=−,则点P 即为符合条件的点,求得直线DE 的解析式为2y x =−,于是得到结论.【详解】(1)解:点E 在这个反比例函数的图像上. 理由如下:一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x =>的图像交于点A ,∴设点A 的坐标为8(,)m m ,点C 关于直线AD 的对称点为点E ,AD CE ∴⊥,AD 平分CE ,连接CE 交AD 于H ,如图所示:CH EH ∴=, AD x ⊥轴于D ,CE x ∴∥轴,90ADB ∠=︒, 90CDO ADC ∴∠+∠=︒, CB CD =, CBO CDO ∴∠=∠,在Rt ABD ∆中,90ABD BAD ∠+∠=︒,CAD CDA ∴∠=∠,CH ∴为ACD ∆边AD 上的中线,即AH HD =,4,H m m ⎛⎫∴ ⎪⎝⎭,4(2,)E m m ∴,428m m ⨯=,∴点E 在这个反比例函数的图像上;(2)解:①四边形ACDE 为正方形,AD CE ∴=,AD 垂直平分CE ,12CH AD ∴=,设点A 的坐标为8(,)m m ,CH m ∴=,8AD m =,182m m ∴=⨯,2m ∴=(负值舍去),(2,4)A ∴,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得242k b b +==⎧⎨⎩,解得12k b =⎧⎨=⎩; ②延长ED 交y 轴于P ,如图所示:CB CD =,OC BD ⊥,∴点B 与点D 关于y 轴对称,PE PD PE PB∴−=−,则点P 即为符合条件的点,由①知,(2,4)A ,(0,2)C ,(2,0)D ∴,(4,2)E ,设直线DE 的解析式为y ax n=+,∴2042a n a n +=+=⎧⎨⎩,解得12a n ==−⎧⎨⎩,∴直线DE 的解析式为2y x =−, 当0x =时,=2y −,即()0,2−,故当PE PB −最大时,点P 的坐标为(0,2)−.【点睛】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.。
一次函数与反比例函数十大考查题型

01反比例函数与不等式一.解答题(共50小题)1.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.02共点问题一.解答题(共1小题)1.在平面直角坐标系xOy中,直线y=2x+b经过点A(1,m)、B(﹣1,﹣1).(1)求b和m的值;(2)将点B向右平移到y轴上,得到点C,设点B关于原点的对称点为D,记线段BC 与AD组成的图形为G.①直接写出点C、D的坐标;②若双曲线y=与图形G恰有一个公共点,结合函数图象,求k的取值范围.03代数式求值问题一.解答题(共3小题)1.如图已知函数y=(k>0,x>0)的图象与一次函数y=mx+5(m<0)的图象相交不同的点A、B,过点A作AD⊥x轴于点D,连接AO,其中点A的横坐标为x0,△AOD 的面积为2.(1)求k的值及x0=4时m的值;(2)记[x]表示为不超过x的最大整数,例如:[1.4]=1,[2]=2,设t=OD•DC,若﹣<m<﹣,求[m2•t]值.004面积类问题如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.05特殊图形的存在性问题1.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.2.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.3.如图,一次函数y=x+b的图象与y轴交于点B(0,2),与反比例函数y=(x<0)的图象交于点D(m,n).以BD为对角线作矩形ABCD,使顶点A,C落在x轴上(点A在点C的右边),BD与AC交于点E.(1)求一次函数和反比例函数的解析式;(2)求点A的坐标.4.如图,一次函数y=ax+b的图象与反比例函数y=(x>0)的图象交于点P(m,4),与x轴交于点A(﹣3,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求反比例函数与一次函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.5.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.(1)求k的值;(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.6.如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式≥kx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C 的坐标;若不存在,请说明理由.7.反比例函数y=在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形ABCD有一个顶点在反比例函数y=的图象上,求t的值.06线段和差问题最值问题1.如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=(x>0)的图象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.2.如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限内的点A(a,4)和点B(8,b).过点A作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n<的解集;(3)在x轴上取点P,使PA﹣PB取得最大值时,求出点P的坐标.07线段间数量关系1.如图,在平面直角坐标系xOy中,反比例函数y=的图象与正比例函数y=kx的图象的一个交点为M(1,b).(1)求正比例函数y=kx的表达式;(2)若点N在直线OM上,且满足MN=2OM,直接写出点N的坐标.08周长问题1.如图,已知平行四边形OABC中,点O为坐标原点,点A(3,0),C(1,2),函数y =(k≠0)的图象经过点C.(1)求k的值及直线OB的函数表达式:(2)求四边形OABC的周长.09整点问题1.在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.10新定义问题1.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2.若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,下图①为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,0),(1)若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;(2)点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(3)若点D的坐标为(4,2),将直线y=2x+b平移,当它与点A,D的“相关矩形”没有公共点时,求出b的取值范围.2.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.(1)求函数y=x+2的图象上所有“中国结”的坐标;(2)若函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与相应“中国结”的坐标;(3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?3.定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.(1)max{,3}=;(2)已知y1=和y2=k2x+b在同一坐标系中的图象如图所示,若max{,k2x+b}=,结合图象,直接写出x的取值范围;(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.。
反比例函数和一次函数结合的题型

反比例函数和一次函数结合的题型
题目:
一条直线贯穿着反比例函数 $y=\dfrac{k}{x}$ 和一次函数
$y=mx+n$ 的图象,交点坐标为 $(2,3)$,求这两个函数的解析式。
解答:
设直线的解析式为 $y=ax+b$,则由于交点坐标为 $(2,3)$,所以有:
$$\begin{cases}3=2a+b \\ \dfrac{k}{2}=3a+b\end{cases}$$
解以上方程组可以得到 $a=-\dfrac{3}{4},b=\dfrac{15}{4}$。
因此,直线的解析式为 $y=-\dfrac{3}{4}x+\dfrac{15}{4}$。
将其与反比例函数 $y=\dfrac{k}{x}$ 和一次函数 $y=mx+n$ 分别相交可以得到:
$$\begin{cases}\dfrac{k}{2}=-\dfrac{3}{4}\cdot
2+\dfrac{15}{4}\\\dfrac{k}{4}=-\dfrac{3}{4}\cdot
4+\dfrac{15}{4}\end{cases}$$
解以上方程组得到 $k=12$,因此反比例函数的解析式为
$y=\dfrac{12}{x}$。
将直线与一次函数相交可以得到:
$$\begin{cases}n=3-\dfrac{3}{4}\cdot
2\\\dfrac{15}{4}=2m+n\end{cases}$$
解以上方程组得到 $m=\dfrac{13}{8},n=\dfrac{9}{4}$,因此一次函数的解析式为 $y=\dfrac{13}{8}x+\dfrac{9}{4}$。
反比例函数与一次函数专项练习30题(有答案)ok

反比例函数和一次函数专项练习30题(有答案)1.如图,已知一次函数与反比例函数的图象交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)根据正比例函数与反比例函数的性质直接写出B点坐标;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.2.正比例函数y=kx和反比例函数的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为3.(1)写出这两个函数的表达式;(2)求B点的坐标;(3)在同一坐标系中,画出这两个函数的图象.3.反比例函数与一次函数y=2x+1的图象都过点(1,a).(1)确定a的值以及反比例函数解析式;(2)求反比例函数和一次函数的图象的另一个交点坐标.4.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,﹣3a)(a>0),且点B在反比例函数的图象上,求a的值和一次函数的解析式.5.如图正比例函数与反比例函数的图象在第一象限内的交点A的横坐标为4.(1)求k值;(2)求它们另一个交点B的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.6.已知一次函数y=kx+b与反比例函数的图象交于点(﹣1,﹣1),求这两个函数的解析式及它们图象的另一个交点的坐标.7.如图所示,一次函数y=kx+b的图象与反比例函数的图象交于M、N两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)当x为何值时一次函数的值大于反比例函数的值.8.如图,已知反比例函数的图象与一次函数y2=k2x+b的图象交于A,B两点,且A(2,n),B(﹣1,﹣2).(1)求反比例函数和一次函数的关系式;(2)利用图象直接写出当x在什么范围时,y1>y2.9.如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A、B两点,其中点A的坐标为(1,2).(1)分别求出这两个函数的表达式;(2)请你观察图象,写出y1>y2时,x的取值范围;(3)在y轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.已知反比例函数y=﹣和一次函数y=kx﹣2都经过点A(m,﹣3).(1)求m的值和一次函数的关系式.(2)若点M(a,y1)和N(a+2,y2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的图象性质比较y1与y2的大小.11.如图,函数y=3x的图象与反比例函数的图象的一个交点为A(1,m),点B(n,1)在反比例函数的图象上.(1)求反比例函数的解析式;(2)求n的值;(3)若P是y轴上一点,且满足△POB的面积为6,求P点的坐标.12.如图,已知反比例函数的图象经过点A(﹣2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.(3)根据图象写出使y1>y2的x的取值范围.13.直线y1=2x﹣7与反比例函数的图象相交于点P(m,﹣3).(1)求反比例函数的解析式.(2)试判断点Q是否在这个反比例函数的图象上?14.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,a)、B(﹣2,1)两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.15.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出点A、B的坐标;(2)求出反比例函数的解析式;(3)求出线段AB的长度.16.如图,已知A(n,2),B(2,﹣4)是一次函数y1=kx+b的图象和反比例函数y2=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)当x取何值时,y1<y2?17.已知反比例函数的图象,经过一次函数y=x+1与的交点,求反比例函数的解析式.18.如图,一次函数y=kx+2与x轴交于点A(﹣4,0),与反比例函数y=的图象的一个交点为B(2,a).(1)分别求出一次函数与反比例函数的解析式;(2)作BC⊥x轴,垂足为C,求S△ABC.19.如图,一次函数y1=kx+b与反比例函数.(m、k≠0)图象交于A(﹣4,2),B(2,n)两点.(1)求m、n的值及反比例函数的表达式;(2)当x取非零的实数时,试比较一次函数值与反比例函数值的大小.20.一次函数y1=kx+b与反比例函数的图象相交于点A(﹣1,4)、B(﹣4,n),(1)求n的值;(2)连接OA、OB,求△OAB的面积;(3)利用图象直接写出y1>y2时x的取值范围.21.已知:如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(m,4)和点B(﹣4,﹣2).(1)求一次函数y=ax+b和反比例函数的解析式;(2)求△AOB的面积;(3)根据图象,直接写出不等式的解集.22.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围;(3)你能求出图中△AOB的面积吗?若不能,请说明理由;若能,请写出求解过程.23.如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=交于点A、C,其中点A在第一象限,点C在第三象限.(1)求点B的坐标;(2)若,求点A的坐标.24.已知一次函数与反比例函数y=﹣的图象交于点P(﹣3,m),Q(2,﹣3).求一次函数的解析式.25.已知正比例函数y=k1x(k1≠0)的图象经过A(2,﹣4)、B(m,2)两点.(1)求m的值;(2)如果点B在反比例函数(k2≠0)的图象上,求反比例函数的解析式.26.如图,已知正比例函数y=﹣3x与反比例函数的图象相交于A和B两点,如果有一个交点A的横坐标为2.(1)求k的值;(2)求A,B两点的坐标;(3)当_________时,.27.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比列函数的图象的两个交点.(1)求m、n的值;(2)求一次函数的关系式;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.28.如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.29.如图,已知反比例函数的图象与一次函数y=k2+b的图象交于A、B两点,A(2,n),B(﹣l,﹣2).(1)求反比例函数和一次函数的关系式;(2)试证明线段AB分别与x轴、y轴分成三等分;(3)利用图象直接写出不等式的解集.30.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二、四象限内的A、B两点,点B的坐标为(6,n).线段OA=5,E为x轴负半轴上一点,且sin∠AOE=,求该反比例函数和一次函数的解析式.参考答案:1.(1)由x=4,得y=2;则k=xy=4×2=8;(2)∵A,B两点是正比例函数和反比例函数的交点,点A(4,2),∴B(﹣4,﹣2);(3)由图象可得在两个交点的左边,一次函数的值小于反比例函数的值,∴x<﹣4或0<x<42.(1)∵正比例函数y=kx 与反比例函数,的图象都过点A(1,3),则k=3,∴正比例函数是y=3x ,反比例函数是.(2)∵点A与点B关于原点对称,∴点B的坐标是(﹣1,﹣3).(3)∵正比例函数的图象过原点,所以令x=1,则y=3,图象过(1,3),描出此点即可;∵反比例函数的图象是双曲线,∴应在每一个双曲线上描出3各点,即可画出函数图象.3.(1)由题意得,2+1=a,解得,a=3,(1分)由题意得,,解得,k=3.(2分)反比例函数解析式为.(3分)(2)由题意得,,(4分)解得,,∴反比例函数和一次函数图象的另一个交点坐标是(﹣4.∵点B(a,﹣3a)在反比例函数图象上,∴﹣=﹣3a,解得a=1,a=﹣1(舍去),∴点B的坐标为(1,﹣3),∵一次函数y=kx+b图象经过点A(0,1),B(1,﹣3),∴,解得,∴一次函数解析式为y=﹣4x+1.5.(1)将A的横坐标4代入y1=x,得y1=×4=2,由题意可得A点坐标为(4,2),由于反比例函数y=的图象经过点A,∴k=2×4=8.(5分)(2)将两个函数的解析式组成方程组得:,解得,.所以A(4,2),B(﹣4,﹣2).所以B点坐标为B(﹣4,﹣2).(3分)(3)由于A点横坐标4,B点横坐标为﹣4,由图可知:当x>4或﹣4<x<0时,y1>y2.6.由已知得,(2分)解得.(4分)∴一次函数的解析式为y=2x+1,(5分)反比例函数的解析式为.(6分)由,解得x=﹣1或.(7分)当时,y=2.∴函数图象的另一个交点的坐标为()∴m=6,a=﹣6即N(﹣1,﹣6)且,解得∴反比例函数和一次函数的解析式的解析式分别为y=.y=2x﹣4.(2)由图象可知,当﹣1<x<0或x>3时一次函数的值大于反比例函数的值.8.(1)∵双曲线过点(﹣1,﹣2),∴k1=﹣1×(﹣2)=2.∵双曲线y1=,过点(2,n),∴n=1.由直线y2=k2x+b过点A,B 得,解得.∴反比例函数关系式为y1=,一次函数关系式为y2=x﹣1.(2)当x<﹣1或0<x<2时,y1>y2.9.(1)解:∵y1=k1x过点A(1,2),∴k1=2.(2分)∴正比例函数的表达式为y1=2x.(3分)∵反比例函数过点A(1,2),∴k2=2.(5分)∴反比例函数的表达式为y=.(6分)(2)﹣1<x<0或x>1.(8分)(3)∵点A的坐标为(1,2),∴OA=,当OA为腰时,OA=OP2=,P2点坐标为(0,4),当AP1=OA=,可知P1坐标为(0,),当OA=OP3=时,可得P3坐标为(0,﹣)由图可知,P1(0,),P2(0,﹣),P3(0,4),当OA为底时,OP4==,故P1(0,),P2(0,﹣),P3(0,4),P4(0,).10.(1)∵反比例函数y=﹣经过点A(m,﹣3).∴﹣3m=﹣6,∴m=2;∵一次函数y=kx﹣2经过点A(m,﹣3).∴2k﹣2=﹣3,∴k=﹣,∴一次函数的关系式为y=﹣x﹣2.(2)当a>0时,则a<a+2,∵反比例函数y=﹣的图象在第四象限内是增函数,∴y1<y2;当﹣2<a<0时,则a+2>0,由图象知y1>y2;当a<﹣2时,则a<a+2,∵反比例函数y=﹣的图象在第二象限内是增函数,∴y1<y211.(1)∵函数y=3x的图象过点A(1,m),∴m=3,∴A(1,3);∵点A(1,3)在反比例函数的图象上,∴k=1×3=3,∴反比例函数的解析式为y=;(2)∵点B(n,1)在反比例函数的图象上,(3)依题意得PO•3=6∴OP=4,∴P点坐标为(0,4)或(0,﹣4).12.(1)∵点A(﹣2,1)在反比例函数y1=mx的图象上,∴1=m﹣2,即m=﹣2,又A(﹣2,1),C(0,3)在一次函数y2=kx+b图象上,∴即k=1,b=3,∴反比例函数与一次函数解析式分别为:y=与y=x+3;(2)由得x+3=﹣,即x2+3x+2=0,∴x=﹣2或x=﹣1,∴点B的坐标为(﹣1,2).(3)当x<﹣2或﹣1<x<0时,反比例函数在一次函数图象的上方,即y1>y2…13.(1)把(m,﹣3)分别代入和y1=2x﹣7,得,解得m=2,k=﹣6,∴反比例函数的解析式.(2)把点Q代入反比例函数的解析式中,即=﹣=.故点Q在反比例函数的图象上14.(1)把B(﹣2,1)代入得:m=﹣2×1=﹣2,∴y=﹣,把A(1,a)代入得:a=﹣2,∴A(1,﹣2),把A(1,﹣2),B(﹣2,1)代入得:,解得:k=﹣1,b=﹣1,∴y=﹣x﹣1,答:一次函数和反比例函数的解析式分别是y=﹣,y=﹣x﹣1.(2)令y=0,则0=﹣x﹣1,∴x=﹣1,∴C(﹣1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC =×1×2+×1×1=1.5 15.(1)A点坐标为(﹣6,﹣2),B点坐标为(4,3);(2)把B(4,3)代入y=得m=3×4=12,所以反比例函数的解析式为y=;(3)分别过点A、点B作y轴、x轴的垂线,两线交于点C,即AC⊥BC,如图,则点C的坐标为C(4,﹣2),在Rt△ACB中,AC=10,BC=5,∵AB2=BC2+AC2,∴AB==5.16.(1)∵B(2,﹣4)在函数y2=的图象上,∴m=﹣8.∴反比例函数的解析式为:y2=﹣.∵点A(n,2)在函数y2=﹣的图象上∴n=﹣4∴A(﹣4,2)∵y1=kx+b经过A(﹣4,2),B(2,﹣4),∴,解得.∴一次函数的解析式为:y1=﹣x﹣2(2)由交点坐标和图象可知,当﹣4<x<0或x>2取何值时,y1<y217.把y=x+1代入得:x+1=x+,解得:x=1,把x=1代入y=x+1得:y=2,把(1,2)代入y=得:k=2,即反比例函数的解析式是y=18.(1)将A(﹣4,0)代入y=kx+2得:﹣4k+2=0,即k=0.5,∴一次函数解析式为y=0.5x+2,将B(2,a)代入一次函数解析式得:a=1+2=3,即B (2,3),将B(2,3)代入反比例解析式得:m=2×3=6,则反比例解析式为y=;(2)∵OC=2,OA=4,∴AC=OC+OA=2+4=6,∵BC=3,∴S△ABC =AC•BC=919.(1)∵A(﹣4,2)在上,∴m=﹣8,∴反比例函数的解析式是y=﹣,∵B(2,n )在上,∴n=﹣4.(2)当x<﹣4或0<x<2时,y1>y2;当x=﹣4或x=2时,y1=y2;当﹣4<x<0或x>2时,y1<y2.20.(1)根据题意,反比例函数y2=的图象过(﹣1,4),(﹣4,n),易得m=﹣4,n=1;则y1=kx+b的图象也过点(﹣1、4),(﹣4,1);代入解析式可得k=1,b=5;∴y1=x+5;(2)设直线AB交x轴于C点,由y1=x+5得,∴C(﹣5,0),∵S△AOC =×5×4=10,S△BOC =×5×1=2.5,∴S△AOB=S△AOC﹣S△BOC=10﹣2.5=7.5;(3)根据图象,两个图象只有两个交点,根据题意,找一次函数的图象在反比例函数图象上方的部分;易得当x>0或﹣4<x<﹣1时,有y1>y2,故当y1>y2时,x的取值范围是x>0或﹣4<x<﹣1 21.(1)∵点B(﹣4,﹣2)在反比例函数的图象上,∴,k=8.∴反比例函数的解析式为.﹣﹣﹣﹣﹣﹣﹣﹣(1分)∵点A(m,4)在反比例函数的图象上,∴,m=2.∵点A(2,4)和点B(﹣4,﹣2)在一次函数y=ax+b 的图象上,∴解得∴一次函数的解析式为y=x+2.(2)设一次函数y=x+2的图象与y轴交于点C,分别作AD⊥y轴,BE⊥y轴,垂足分别为点D,E.(如图)∵一次函数y=x+2,当x=0时,y=2,∴点C的坐标为(0,2).∴S△AOB=S△AOC+S△BOC ===6(3)﹣4<x<0或x>2.阅卷说明:第(3)问两个范围各(1分)22.(1)设反比例函数的解析式是y=(a≠0),把A(﹣2,1)代入得:k=﹣2,即反比例函数的解析式是y=﹣;把B(1,n)代入反比例函数的解析式得:n=﹣2,即B的坐标是(1,﹣2),把A(﹣2,1)和B(1,﹣2)代入y=kx+b得:,解得:k=﹣1,b=﹣1.即一次函数的解析式是y=﹣x﹣1;(2)根据图象可知:一次函数的值大于反比例函数的值的x的取值范围是x<﹣2或0<x<1;(3)能求出△AOB的面积,把y=0代入y=﹣x﹣1得:0=﹣x﹣1,x=﹣1,即C的坐标是(﹣1,0),OC=1,∵A(﹣2,1),B(1,﹣2),∴△AOB的面积S=S△AOC+S△BOC=×1×1+×1×|﹣2|=1.523.(1)当y=0时,则kx+2k=0,又∵k≠0∴x=﹣2,∴点B坐标为(﹣2,0);(2)设点A的坐标为(x、y),∴S△AOB =•|﹣2|•|y|=,∴y=±,∵点A在第一象限,∴y=,把y=代入y=得x=,∴点A 的坐标为(,)24.∵把P(﹣3,m)代入反比例函数y=﹣得:m=2,∴点P的坐标为(﹣3,2),设一次函数的关系式为y=kx+b,∴把Q和P 的坐标代入得:,解得:k=﹣1,b=﹣1.故所求一次函数的关系式为y=﹣x﹣125.(1)因为函数图象经过点A(2,﹣4),所以2k1=﹣4,得k1=﹣2.(2分)所以,正比例函数解析式:y=﹣2x.(1分)(2)根据题意,当y=2时,﹣2m=2,得m=﹣1.(1分)于是,由点B 在反比例函数的图象上,得,解得k2=﹣2.所以,反比例函数的解析式是.26.(1)把x=2代入y=﹣3x得:y=﹣6,即A的坐标是(2,﹣6),把A的坐标代入y=得:﹣6=,解得:k=﹣13;(2)解方程组得:,,即A的坐标是(2,﹣6),B的坐标是(﹣2,6);(3)当﹣2<x<0或x>2时,>﹣3x,故答案为:﹣2<x<0或x>227.(1)把A(﹣4,2)代入y=得:m=﹣8,即反比例函数的解析式为y=﹣,把B(n,﹣4)代入得:n=2,即B(2,﹣4),即m=﹣8,n=2;(2)把A、B的坐标代入一次函数的解析式得:解得:k=﹣1,b=﹣2,即一次函数的解析式是y=﹣x﹣2;(3)一次函数的值小于反比例函数的值的x的取值范围是x>2或﹣4<x<028.解方程组得或,∴C点坐标为(1,4),∵CD⊥x轴,∴D点坐标为(1,0)对y=x+3,令x=0,y=3,∴B点坐标为(0,3),∴四边形OBCD的面积=(OB+CD)•OD=(3+4)×1=29.1)解:把B(﹣1,﹣2)分别代入反比例函数∴k1=﹣1×(﹣2)=2,∴反比例函数的解析式为y=;把A(2,n)代入上式,得n=1,∴A点坐标为(2,1),把A(2,1)和B(﹣l,﹣2)分别代入一次函数y=k2x+b 得,2k2+b=1,﹣k2+b=﹣2,解得k2=1,b=﹣1,∴一次函数的关系式为y=x﹣1;(2)证明:过A作AE⊥x轴于E,BF⊥y轴与F,AB 与坐标轴相交于C、D,如图,对于y=x﹣1,令x=0,y=﹣1;令y=0,x=1,∴C(1,0),D(0,﹣1),AC===,CD===,BD===,∴AC=CD=BD,∴线段AB分别与x轴、y轴分成三等分;(3)解:x<﹣1或0<x<230.过点A作AC⊥x轴于点C.∵sin∠AOE=,OA=5,∴AC=OA•sin∠AOE=4,由勾股定理得:CO==3,∴A(﹣3,4),把A(﹣3,4)代入到中得m=﹣12,∴反比例函数解析式为,∴6n=﹣12,∴n=﹣2,∴B(6,﹣2),∴有,解得:,∴,一次函数的解析式为。
一次函数与反比例函数相结合

3、直线y=﹣x﹣2与反比例函数y= 的图象交 于A、B两点,且与x、y轴交于C、D两点,A点的 坐标为(﹣3,k+4).(1)求反比例函数的解析 式(2)把直线AB绕着点M(﹣1,﹣1)顺时针旋 转到MN,使直线MN⊥x轴,且与反比例函数的图 象交于点N,求旋转角大小及线段MN的长.
4、已知一次函数y1=ax+b的 图象与反比例函数y2= 的图 象相交于A、B两点,坐标分 别为(﹣2,4) (4﹣2).(1)求两个函数 的解析式;(2)结合图象写 出y1<y2时,x的取值范围; (3)求△AOB的面积; (4)是否存在一点P,使以点 A﹑B﹑O﹑P为顶点的四边形 为菱形?若存在,求出顶点P 的坐标;若不存在,请说明理 由.
A M
B
O
C
N
8.(2012年衡阳市)在一次远足活动中,某班学生分成 两组,第一组由甲地匀速步行到乙地后原路返回,第二组 由甲地匀速步行经乙地继续前行到丙地后原路返回,两组 同时出发,设步行的时间为t(h),两组离乙地的距离分 别为S1(km)和S2(km),图中的折线分别表示S1、S2 与t之间的函数关系.(1)甲、乙两地之间的距离为___, 乙、丙两地之间的距离为____;(2)求第二组由甲地出 发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB所表示的S2与t间的函数关系式,并 写出自变量t的取值范围. S/km
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)

中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)1.(2023•攀枝花模拟)如图,已知直线y=mx与双曲线的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是()A.(1,3)B.(3,1)C.(1,﹣3)D.(﹣1,3)【分析】反比例函数的图像是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(﹣1,3),另一个交点的坐标为(1,﹣3).故选:C.2.(2023•滨湖区一模)在平面直角坐标系xOy中,反比例函数与一次函数y =ax+b(a>0)的图像相交于A(﹣8,m)、B(﹣2,n)两点,若△AOB面积为15,则k的值为()A.﹣8B.﹣7.5C.﹣6D.﹣4【分析】过点A、B分别作y轴的垂线,垂足分别为C、D,根据点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,推出n=4m,根据S梯形ACDB=S△OAB=15,求得n﹣m=3,进一步计算即可求解.【解答】解:∵反比例函数与一次函数y=ax+b(a>0)的图像相交于A (﹣8,m)、B(﹣2,n)两点,∴A(﹣8,m)、B(﹣2,n)两点在第二象限,过点A、B分别作y轴的垂线,垂足分别为C、D,则AC=8,BD=2,OC=m,OD=n,∴CD=n﹣m,∵点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,∴S△AOC=S△BOD,﹣8m=﹣2n,即n=4m,∵S△AOC+S梯形ACDB=S△BOD+S△OAB,∴S梯形ACDB=S△OAB=15,即,∴n﹣m=3,∴4m﹣m=3,解得m=1,∴A(﹣8,1),∴k=﹣8×1=﹣8.故选:A.3.(2023•宁波模拟)如图,一次函数y1=x﹣1的图像与反比例函数的图像交于点A (2,m),B(n,﹣2),当y1>y2时,x的取值范围是()A.x<﹣1或x>2B.x<﹣1或0<x<2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2【分析】先把B(n,﹣2)代入y1=x﹣1,求出n值,再根据图像直接求解即可.【解答】解:把B(n,﹣2)代入y1=x﹣1,得﹣2=n﹣1,解得:n=﹣1,∴B(﹣1,﹣2),∵图像交于A(2,m)、B(﹣1,﹣2)两点,∴当y1>y2时,﹣1<x<0或x>2.故选:D.4.(2023•宁德模拟)如图,已知直线l与x,y轴分别交于A,B两点,与反比例函数的图像交于C,D两点,连接OC,OD.若△AOC和△COD的面积都为3,则k的值是()A.﹣2B.﹣3C.﹣4D.﹣6【分析】由S△AOC=S△COD得,AC=CD,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),代入解析式得到n=m,过点作CH⊥y轴于H,利用S△AOC=3,可求出k.【解答】解:如图,∵S△AOC=S△COD,以AC,CD作底,高相同∴AC=CD,即C为AD的中点,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),∵D(,2m﹣n)在反比例函数y=的图像上,∴,∴n=m过点作CH⊥y轴于H,则CH=﹣,OA=n=m,∵S△AOC=3,∴OA•CH=3,∴×m×(﹣)=3,∴k=﹣4.故选:C.5.(2023•宿迁模拟)如图,在平面直角坐标系中,直线l与函数的图像交于A、B两点,与x轴交于C点,若OA=AB,且∠OAB=90°,则tan∠AOC的值为()A.B.C.D.【分析】作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,通过证得△AOE≌△BAD(AAS),求得B(),代入,即可得到(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解得y=,即可求得tan∠AOC ====.【解答】解:作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,∵∠OAB=90°,∴∠OAE+∠DAB=90°,∵∠OAE+∠AOE=90°,∴∠DAB=∠AOE,∵OA=AB,∠AEO=∠ADB=90°,∴△AOE≌△BAD(AAS),∴AD=OE=m,BD=AE=,∴B(),∵函数的图像过B点,∴(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除以k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解这个方程得y=,∴k>0,∴>0,∴=,∴tan∠AOC====.故选:A.6.(2023•呼和浩特一模)如图,在平面直角坐标系中,直线y=﹣3x+3交x轴于A点,交y轴于B点,以AB为边在第一象限作正方形ABCD,其中顶点D恰好落在双曲线上,现将正方形ABCD沿y轴向下平移a个单位,可以使得顶点C落在双曲线上,则a的值为()A.B.C.2D.【分析】作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G,由函数解析式确定B的坐标是(0,3),A的坐标是(1,0),根据全等三角形的判定和性质得出△OAB≌△FDA≌△BEC,AF=OB=EC=3,DF=OA=BE=1,结合图形求解即可.【解答】解:作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3),令y=0,解得:x=1,即A的坐标是(1,0),则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△EBC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4),代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把x=3代入y=得:y=.即G的坐标是,∴CG=4﹣=,∴a=,故选:A.7.(2023•徐州模拟)如图,一次函数的图像与反比例函数的图像交于点A,与y轴交于点C,AD⊥x轴于点D,点D坐标为(4,0),则△ADC的面积为()A.3B.6C.8D.12【分析】根据AD⊥x轴,D(4,0)求出点A的横坐标,代入一次函数表达式中求出点A纵坐标,再利用三角形面积公式计算.【解答】解:∵AD⊥x轴,D(4,0),∴x A=4,代入中,∴,即A(4,3),∴△ADC的面积为,故选:B.8.(2023•茅箭区一模)如图已知反比例函数C1:的图像如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是由曲线C2上一点,点M在直线y=﹣x 上,连接MN、ON,若MN=ON,△MON的面积为,则k的值为()A.B.C.﹣2D.﹣1【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:∵将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P⊥x轴于点P,连接ON',M'N',∵MN=ON,∴M'N'=ON',M'P=OP,∴S△MON=2S△PN'O=2×=|k|=,∵k<0,∴k=﹣.故选:B.9.(2023•西安二模)如图,在平面直角坐标系中,直线y=﹣x+1与x轴,y轴分别交于点A,B,与反比例函数的图像在第二象限交于点C,若AB=BC,则k的值为﹣2.【分析】过点C作CH⊥x轴于点H.求出点C的坐标,可得结论.【解答】解:过点C作CH⊥x轴于点H.∵直线y=﹣x+1与x轴,y轴分别交于点A,B,∴A(1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴△AOB∽△AHC,∴,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(﹣1,2),∵点C在y=的图像上,∴k=﹣2,故答案为:﹣2.10.(2023•双流区模拟)如图,已知一次函数的图像与反比例函数图像交于A,B两点.若AC∥x轴,且AC=BC,则△ABC面积的最小值为4.【分析】由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),即可推出m+n=﹣,mn=﹣3,利用勾股定理求得AB2=4b2+16,进而推出S△ABC =AB•CT=AB2=b2+4,利用二次函数的性质即可求得△ABC的面积有最小值为4.【解答】解:由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),联立,得x2+3bx﹣9=0,∴m+n=﹣,mn=﹣3,∴AB2=(m﹣n)2+(m+b﹣n﹣b)2=(m﹣n)2=[(m+n)2﹣4mn]=4b2+16,如图,过点C作CT⊥AB于点T,∵AC=BC,∴AT=BT=AB,由一次函数可知,∠CAB=30°,∴CT=AT=AB,∴S△ABC=AB•CT=AB2=b2+4,∴当b=0时,△ABC的面积有最小值为4,故答案为:4.11.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y=3x与反比例函数的图像交于A,B两点,C是反比例函数位于第一象限内的图像上的一点,作射线CA交y轴于点D,连接BC,BD,若,△BCD的面积为30,则k=6.【分析】作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C (a,),可证明tan∠CAE=tan∠CBF=,则∠CAE=∠CBF,即可推导出∠CDM =∠CMD,则CD=CM,所以===,则CI=4FI,所以a=4m,C(4m,),由=tan∠CMD=tan∠CBF=,得DI=MI=3m,则DM=6m,于是得×6m ×m+×6m×4m=30,则m2=2,所以k=3m2=6.【解答】解:作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,∵直线y=3x经过原点,且与双曲线y=交于A,B两点,∴点A与点B关于原点对称,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C(a,),F(﹣m,),∵tan∠CAE===,tan∠CBF===,∴tan∠CAE=tan∠CBF,∴∠CAE=∠CBF,∵AE∥BF∥DM,∠CAE=∠CDM,∠CBF=∠CMD,∴∠CDM=∠CMD,∴CD=CM,∵===,∴CI=4FI,∴a=4m,∴C(4m,),∵=tan∠CMD=tan∠CBF===,∴DI=MI=CI=×4m=3m,∴DM=DI+MI=6m,∵DM•FI+DM•CI=S△BCD=30,∴×6m×m+×6m×4m=30,∴m2=2,∴k=3m2=3×2=6,故答案为:6.12.(2023•余姚市校级模拟)如图,点A在y=(x>0)的图像上,点B,C在y=(x <0)的图像上(C在B左边),直线AB经过原点O,直线AC交y轴于点M,直线BC 交x轴于点N.则=;=m,=n,则=.【分析】作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x轴于F,CG⊥y 轴交y轴于G,再设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),从而可以表示出AD=a,OE=﹣bCG=﹣c,CF=﹣,BE=﹣,再根据三角形相似的判定定理得出△BEO∽△ODA,△CGM∽△ADM,△NCF∽△NBE,可分别表示出OA:OB,MC:MA,NB:NC,再由直线AB经过原点O,可以表示出及的值,最后代入即可得到答案.【解答】解:如图所示,作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x 轴于F,CG⊥y轴交y轴于G,设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),则AD=a,OE=﹣b,CG=﹣c,CF=﹣,BE=﹣,∵BE⊥x轴,∴BE∥y轴,∴∠EBO=∠BOG,∵∠BOG=∠DOA,∴∠EBO=∠DOA,∵AD⊥y轴,∴∠BEO=∠ODA=90°,∴△BEO∽△ODA,∴OA:OB=AD:OE=﹣,∵AD⊥y轴,CG⊥y轴,∴△CGM∽△ADM,∴==﹣=m,∵BE⊥x,CF⊥x轴,∴△NCF∽△NBE,∴====n,∴==﹣,∵直线AB经过原点O,∴=,=,∴=,=,由图像可知,a>0,c<b<0,∴=﹣,=﹣,∴=﹣=,=﹣=,故答案为:;.13.(2023•岳阳一模)如图,已知正比例函数y1=x的图像与反比例函数y2=的图像相交于点A(3,n)和点B.(1)求n和k的值;(2)请结合函数图像,直接写出不等式x﹣<0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求△AOE的面积.【分析】(1)先把点A(3,n)代入正比例函数解析式求出n的值,再把求出的点A坐标代入反比例函数解析式即可求出k值;(2)根据正比例函数和反比例函数都是关于原点成中心对称的,可得出点B的坐标,然后根据图像即可写出解集;(3)根据题意作出辅助线,然后求出OA的长,根据菱形的性质求出OC的长,可推出,然后求出菱形的面积即可求出△AOE的面积.【解答】解:(1)把点A(3,n)代入正比例函数可得:n=4,∴点A(3,4),把点A(3,4)代入反比例函数,可得:k=12;(2)∵点A与点B是关于原点对称的,∴点B(﹣3,﹣4),∴根据图像可得,不等式x﹣<0的解集为:x<﹣3或0<x<3;(3)如图所示,过点A作AG⊥x轴,垂足为G,∵A(3,4),∴OG=3,AG=4在Rt△AOG中,AO==5∵四边形AOCD是菱形,∴OC=OA=5,,∴.14.(2023•锦江区模拟)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像与x 轴交于点A(﹣2,0),与反比例函数交于点B(1,m).(1)求反比例函数的表达式;(2)点M为反比例函数在第一象限图像上的一点,过点M作x轴垂线,交一次函数y =2x+b图像于点N,连接BM,若△BMN是以MN为底边的等腰三角形,求△BMN的面积;(3)点P为反比例函数图像上一点,连接PB,若∠PBA=∠BAO,求点P的坐标.【分析】(1)用待定系数法即可求解;(2)若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,进而求解;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,进而求解.【解答】解:(1)将点A的坐标代入一次函数表达式得:0=﹣4+b,解得:b=4,即一次函数的表达式为:y=2x+4,当x=1时,y=2x+4=6,则点B(1,6),将点B的坐标代入反比例函数表达式得:k=1×6=6,即反比例函数表达式为:y=;(2)设点N的坐标为(t,2t+4),则点M(t,),若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,则(2t+4+)=6,解得:t=1(舍去)或3,则点M、N的坐标分别为:(3,10)、(3,2),则△BMN的面积=MN•(x M﹣x B)=(10﹣2)×(3﹣1)=8;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,∵点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,由中点坐标公式得,点M(﹣,3),在Rt△AMH中,由AB的表达式知,tan∠BAO=2,则tan∠MHA=,则直线MH表达式中的k值为﹣,则直线MH的表达式为:y=﹣(x+)+3,令y=﹣(x+)+3=0,则x=,即点H(,0),由点B、H的坐标得,直线BH的表达式为:y=﹣x+,联立y=﹣x+和y=并解得:x=1(舍去)或,则点P的坐标为:(,).。
2022一次函数与反比例函数交点问题精选20题

2021-2022学年北师大九年级数学上册6.2.1—一次函数与反比例函数交点问题精选20题 1.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=2k x的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >22.如图,直线l 与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =kx(x >0)的图象交于点C ,若S △AOB =S △BOC =1,则k =( )A .1B .2C .3D .43.一次函数y =﹣x +a ﹣3(a 为常数)与反比例函数y =﹣4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时a 的值是( )A .0B .﹣3C .3D .44.如图,在平面直角坐标系中,函数y =4x(x >0)与y =x ﹣1的图象交于点P (a ,b ),则代数式11a b的值为( )A .﹣12B .12C .﹣14D .145.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx(k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,﹣2),则点F 的坐标是( )A .(54,0) B .(74,0) C .(94,0) D .(114,0) 6.如图,在平面直角坐标系中,直线y =x 与函数y =kx(x >0)的图象交于点A ,直线y =x ﹣1与函数y =kx(x >0)的图象交于点B ,与x 轴交于点C .若点B 的横坐标是点A 的横坐标的2倍,则k 的值为( )A .23B .2C .1D .497.如图,直线y =k 1x +b 与双曲线y =2k x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x+b 的解集是 .8.如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB=CB,曲线y=kx(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为.9.设函数y=3x与y=﹣2x﹣6的图象的交点坐标为(a,b),则12a b的值是.10.如图,直线y=﹣x+b与双曲线y=kx(k<0),y=mx(m>0)分别相交于点A,B,C,D,已知点A的坐标为(﹣1,4),且AB:CD=5:2,则m=.11.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.12.如图,直线AB交双曲线y=kx于A、B两点,交x轴于点C,且B恰为线段AC的中点,连接OA.若S△OAC=72,则k的值为.13.在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为.14.如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.15.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣2x(x<0)上,D点在双曲线y=kx(x>0)上,则k的值为.16.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B,C两点,若函数(0)ky k x=>的图象与△ABC 的边有2个公共点,则k 的取值范围是 .17.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y =kx +b 和反比例函数y =mx图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b ﹣mx>0的解集.18.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.19.如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=mx的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.参考答案1.D 2.D 3.C 4.C 5.C 6.D 7.﹣5<x <﹣1或x >0 8.4 9.﹣2 10.54 11.2 12.7313.0 14.8 15.6 16.5<k <8或9<k <2017.解:(1)把A (﹣4,2)代入y =mx,得m =2×(﹣4)=﹣8, 所以反比例函数解析式为y =﹣8x, 把B (n ,﹣4)代入y =﹣8x,得﹣4n =﹣8, 解得n =2,把A (﹣4,2)和B (2,﹣4)代入y =kx +b ,解得,所以一次函数的解析式为y =﹣x ﹣2; (2)y =﹣x ﹣2中,令y =0,则x =﹣2, 即直线y =﹣x ﹣2与x 轴交于点C (﹣2,0), ∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6; (3)由图可得,不等式kx +b ﹣mx>0的解集为:x <﹣4或0<x <2.18.解:(1)∵点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). 由图象可得:k 1x +b >2k x的x 的取值范围是x <﹣1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (﹣1,4),B (4,n ), ∴k 2=﹣1×4=﹣4,k 2=4n , ∴n =﹣1,∴B(4,﹣1),∵一次函数y=k1x+b的图象过点A,点B,∴,解得:k1=﹣1,b=3,∴一次函数的解析式y=﹣x+3,反比例函数的解析式为y=﹣4x;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=12×3×1=32,∴S△AOB=S△AOC+S△BOC=12×3×1+132×4=152,∵S△AOP:S△BOP=1:2,∴S△AOP=152×13=52,∴S△AOC<S△AOP,S△COP=52﹣32=1,∴12×3•x P=1,∴x P=32,∵点P在线段AB上,∴y=﹣23+3=73,∴P(23,73).19.解:(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=4-4=﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.20.解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,∴一次函数的解析式为y=﹣43 x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=mx图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣4x.。
中考一次函数与反比例函数[含答案]
![中考一次函数与反比例函数[含答案]](https://img.taocdn.com/s3/m/1839c564b90d6c85ec3ac67b.png)
反比例函数与一次函数综合题针对演练1. 已知正比例函数y =2x 的图象与反比例函数y =k x(k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1. (1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小若存在,请求出点M 的坐标;若不存在,请说明理由.第1题图2. 如图,反比例函数2y x=的图象与一次函数y =kx +b 的图象交于点A 、B ,点A 、B 的横坐标分别为1、-2,一次函数图象与y 轴交于点C ,与x 轴交于点D . (1)求一次函数的解析式;(2)对于反比例函数2y x=,当y <-1时,写出x 的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA若存在,请求出点P的坐标;若不存在,请说明理由.第2题图3. 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.4. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y=mx的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第4题图5. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=m x (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC . (1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形如果存在,求出点D 的坐标;如果不存在,说明理由.第5题图6. 如图,直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=mx(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形△OAB相似若存在求出D点的坐标,若不存在,请说明理由.第6题图7. 如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称并说明理由.第7题图8. 如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过点C作CA⊥x轴,过点D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.第8题图9. 如图,点B 为双曲线y =kx(x >0)上一点,直线AB 平行于y 轴,交直线y =x于点A ,交x 轴于点D ,双曲线y =k x与直线y =x 交于点C ,若OB 2-AB 2=4.(1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD 若存在,求出点P 的坐标;若不存在,请说明理由.第9题图答案1.解:(1)设A点的坐标为(x,y),则OP=x,PA=y,∵△OAP的面积为1,∴12xy=1,∴xy=2,即k=2,∴反比例函数的解析式为2yx;(2)存在,如解图,作点A关于x轴的对称点A′,连接A′B,交x轴于点M,此时MA+MB最小,∵点B的横坐标为2,∴点B的纵坐标为y=22=1,即点B的坐标为(2,1).又∵两个函数图象在第一象限交于A点,∴2 2xx=,解得x1=1,x2=-1(舍去).∴y=2,∴点A的坐标为(1,2),∴点A关于x轴的对称点A′(1,-2),设直线A′B的解析式为y=kx+b,代入A′(1,-2),B(2,1)得,23,215k b kk b b+=-=⎧⎧⎨⎨+==-⎩⎩解得,∴直线A′B的解析式为y=3x-5,令y=0,得x=53,∴直线y=3x-5与x轴的交点为(53,0),即点M的坐标为(53,0).第1题解图2.解:(1)∵反比例函数y=2x图象上的点A、B的横坐标分别为1、-2,∴点A的坐标为(1,2),点B的坐标为(-2,-1),∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x<0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1,∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m, ∴m =-1,∴点P 的坐标为(-1,-2). 3.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0).将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx ,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x<0或x≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤nx的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.4.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-,∴n =1,∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n ,1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y=0,得x=-5,则C点坐标为(-5,0),∴t的最大值为A′B=(-2-1)2+(-1+2)2=10.第4题解图5.解:(1)∵一次函数y1=14x+1的图象与x轴交于点A,与y轴交于点C,∴A(-4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB=4,且BP=2OC=2,∴点P的坐标为(4,2),将点P(4,2)代入y2=mx,得m=8,∴反比例函数的解析式为y2=8 x;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC 与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx=,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第5题解图6.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b,得b=-4,∴直线的解析式为y=x-4,∵直线也过A点,∴把点A(-1,n)代入y=x-4,得n=-5,∴A(-1,-5),将A(-1,-5)代入y=mx(x<0),得m=5,∴双曲线的解析式为5yx=;(2)如解图,过点O作OM⊥AC于点M,∵点B是直线y=x-4与y轴的交点,∴令x=0,得y=-4,∴点B(0,-4),∴OC=OB=4,∴△OCB是等腰直角三角形,∴∠OBC=∠OCB=45°,∴在△OMB中,sin45°=OMOB=4OM,∴OM=22,∵AO=12+52=26,∴在△AOM中,sin∠OAB=OMOA=2226=21313;第6题解图(3)存在.如解图,过点A作AN⊥y轴于点N,则AN=1,BN=1,∴AB=12+12=2,∵OB=OC=4,∴BC=42+42=42,又∵∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA∽△BCD或△OBA∽△DCB,∴OBBC=BACD或OBDC=BABC,即442=2CD或4DC=242,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(6,0)或(20,0).7.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ).在Rt △AOB 中, tan ∠OAB =OB OA =33,∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°,∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是(3+32t ,12t ).∵点C 、E 在y =kx 的图象上,∴(3+32t )×12t =3t ,解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第7题解图8.解:(1)∵双曲线y =kx 经过点D (6,1),∴6k =1,解得k =6;(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴, ∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3,∴6x=-3,解得x =-2,∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c),∴点A 、B 的坐标分别为A (c ,0),B (0,1), 设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得,∴直线AB 的解析式为y =-1x c+1,设直线CD 的解析式为y =ex +f ,则16,661e ec f cc c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c +,∵AB 、CD 的解析式中k 都等于1c-,∴AB 与CD 的位置关系是AB ∥CD . 9.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =kx(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a)2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a)2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y xy x =⎧⎪⎨=⎪⎩联立2222x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得(舍去),∴C 点坐标为(2,2), 第9题解图∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2,∴S △ABC =12CM ·AB =12×(4-2)×72 =7-724;(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a ),则A 点坐标为(a ,a ),∴AP =|a -2a|,∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a -2)2=14×222(2)a a -,即(a -2)2=14×222((a a a +⨯-,∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去),∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.若反比例函数x
k
y =
与一次函数42-=x y 的图象都经过点A (a ,2) (1)求反比例函数x k
y =的解析式;
(2) 当反比例函数x
k
y =的值大于一次函数42-=x y 的值时,求自变量x 的
取值范围.
2.如图,已知直线x y 2-=经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数x
k
y =(0≠k )的图象上. (1)求a 的值;
(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.
3.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例
函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1
tan 422
ABO OB OE ∠=
==,,. (第19题)
x
y
O x y 2-=
P
P '
x
k y = 1
1
(1)求该反比例函数的解析式; (2)求直线AB 的解析式.
4.已知一次函数2y x =+与反比例函数k y x
=
,其中一次函数2y x =+的图象经过点P (k ,5).
①试确定反比例函数的表达式;
②若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标
5.如图,已知反比例函数1
1k y x
=
(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C .若△OAC 的面积为1,且tan ∠AOC =2 . (1)求出反比例函数与一次函数的解析式;
(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值?
6.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0)。
⑴求点D 的坐标;
⑵求经过点C 的反比例函数解析式.
7.如图,一次函数3y kx =+的图象与反比例函数m
y x
=
(x>0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、
点D ,且S △DBP =27,1
2
OC CA =。
(1)求点D 的坐标;
(2)求一次函数与反比例函数的表达式;
(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?
8.如图,已知A (4,a ),B (-2,-4)是一次函数y =kx +b 的图象和反比例
函数x
m
y =的图象的交点.
(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积.
9.如图,一次函数y =kx +b 与反比例函数y =
x
m
的图象交于A (2,3),B (-3,n )两点.
(1)求一次函数与反比例函数的解析式;
x
y A O P
B
C D
(2)根据所给条件,请直接写出不等式kx +b >
x
m
的解集______________; (3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .
10.如图,一次函数b x y +=的图象经过点B (1-,0),且与反比例函数x
k
y =(k
为不等于0的常数)的图象在第一象限交于点A (1,n ).求: (1)一次函数和反比例函数的解析式; (2)当61≤≤x 时,反比例函数y 的取值范围.
11.已知直线x y 3-=与双曲线x
m y 5
-=
交于点P (-1,n ). (1)求m 的值;
(2)若点),(11y x A ,),(22y x B 在双曲线x
m y 5
-=上,且021<<x x ,试比较1y ,2
y 的大小.
12.如图, 在平面直角坐标系中,一次函数y kx b =+(k ≠0)的图象与反比例函数
y
O
A
B
x m
y =
(m ≠0)的图象相交于A 、B 两点. 求:(1)根据图象写出A 、B 两点的坐标并分别求出反比例函数和一次函数的解析式;
(2)根据图象写出:当x 为何值时,一次函数值大于反比例函数值.
13.如图,已知一次函数()0≠+=k b kx y 的图像与x 轴,y 轴分别交于A (1,0)、B (0,-1)两点,且又与反比例函数()0≠=m x
m
y 的图像在第一象限交于C 点,C 点的横坐标为2.
⑴ 求一次函数的解析式;
⑵ 求C 点坐标及反比例函数的解析式.
14.如图所示,在平面直角坐标系中,一次函数1y kx =+的图象与反比例函数9
y x
=
的图象在第一象限相交于点A .过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C .如果四边形
C O A B
x
y
A O
x
B
y
1
-1
-2
1223题图
OBAC 是正方形,求一次函数的关系式.
15.如图,反比例函数x
y 2
=
的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C 。
(1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积。
16.如图 7,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k
y x
=(k 为常数, 0k ≠)的图象相交于点 A (1,3)
. (1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.
17.反比例函数21
m y x
-=
的图象如图所示,1(1)A b -,,2(2)B b -,是该图象上的两点. y
B 1-
1- 1 2 3 3 1
2 A (1,3)
A
C
O B
(1)比较1b 与2b 的大小; (2)求m 的取值范围.
18.若反比例函数
x
k
y =
与一次函数42-=x y 的图象都经过点A (a ,2) (1)求反比例函数x k
y =的解析式;
(2) 当反比例函数x
k
y =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.
19.如图,已知反比例函数1
1k y x
=
(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C .若△OAC 的面积为1,且tan∠AOC =2 . (1)求出反比例函数与一次函数的解析式;
(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值?
y
x O
20.如图,函数
b x k y +=11的图象与函数x
k y 2
2=
(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3). (1)求函数
1y 的表达式和B 点的坐标;
(2)观察图象,比较当0>x
时,1y 与2y 的大小.
21.一次函数y=kx+b 图象与反比例函数y=
m
x
的图象交于点A (2,1),B (-1,n )两点。
(1)求反比例函数的解析式 (2)求一次例函数的解析式 (3)求△AOB 的面积
x
y
图10
O
B
A
C
D
A
B
O
C
x
y
22.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象和反比例函数x
m
y =
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;
(3)求方程0=-+x m
b kx 的解(请直接写出答案); (4)求不等式0<-+x
m
b kx 的解集(请直接写出答案).
23.如图,一次函数2y kx =+的图象与反比例函数m
y x
=
的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12
OC OA =.
(1)求点D 的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的x 的取值范围.
y x
P
B
D A
O C。