经典版 锯齿波同步移向触发电路
锯齿波同步移相触发电路

锯齿波同步移相触发电路
锯齿波同步移相触发电路是一种可以将锯齿波信号同步移相的电路,用于电子电路中的时间控制和频率合成等应用场合。
在实际应用中,同步移相电路可以广泛应用于信号调制、时钟生成、频率合成等领域。
同步移相电路的基础构成包括锯齿波产生电路、比较器、相位延迟器、运算放大器和电位器等组成部分。
其中,锯齿波产生电路用于产生基准时钟信号,比较器用于检测参考信号和基准时钟信号之间的时间差,相位延迟器用于控制信号的相位,运算放大器用于放大电路信号,电位器用于调节信号幅度。
在同步移相电路中,电位器是调节信号幅度的主要的调节器件。
通常将电位器分别放置在反相器和非反相器之间,以控制信号的幅度。
当电位器的阻值大于一定值时,信号将被反相,当阻值小于一定值时,信号被非反相。
同步移相电路的工作原理非常简单,它利用锯齿波同步移相电路来控制不同信号的相位,实现信号的合成。
当锯齿波的上升沿来临时,比较器将发送一个脉冲信号,通过相位延迟器产生相位偏移信号,从而改变信号的相位。
通过这种方式,可以实现对信号的同步移相,从而实现频率合成和信号调制等应用。
锯齿波同步移相触发电路实验数据电压幅值与宽度表

锯齿波同步移相触发电路实验数据电压幅值与宽度表1. 实验目的本实验旨在研究锯齿波同步移相触发电路中,电压幅值与宽度之间的关系。
通过实验数据的收集和分析,探究锯齿波同步移相触发电路的性能特点。
2. 实验原理2.1 锯齿波生成器锯齿波生成器是一种周期性信号产生装置,其输出信号呈现出类似锯齿形状的波形。
该装置由一个稳压源、一个比较器和一个积分器组成。
稳压源提供给比较器一个参考电压,比较器将输入信号与参考电压进行比较,并输出一个方波脉冲。
积分器对方波脉冲进行积分处理,得到锯齿波输出。
2.2 同步移相触发电路同步移相触发电路是一种能够对输入信号进行相位调整的装置。
它由一个锯齿波生成器和一个可变延迟线构成。
输入信号与延迟线上的锯齿波进行比较,触发电路将输出信号与输入信号进行同步移相,实现相位调整的功能。
3. 实验步骤3.1 搭建锯齿波同步移相触发电路根据实验原理,搭建锯齿波同步移相触发电路。
将锯齿波生成器的输出信号与可变延迟线上的锯齿波进行比较,并接入触发电路。
调节可变延迟线的长度,使得输出信号与输入信号之间产生一定的相位差。
3.2 收集数据在实验过程中,改变可变延迟线的长度,并记录下每个长度对应的输出信号的电压幅值和宽度。
通过改变可变延迟线的长度,可以观察到输出信号的相位调整效果,并得到不同相位差下的电压幅值和宽度数据。
3.3 数据处理与分析根据收集到的数据,绘制电压幅值与宽度之间的关系图表。
通过分析图表中数据点的分布情况和趋势变化,可以得出锯齿波同步移相触发电路中,电压幅值与宽度之间是否存在一定规律或函数关系。
4. 实验数据电压幅值与宽度表可变延迟线长度(单位:cm)输出信号电压幅值(单位:V)输出信号宽度(单位:s)0 1.5 0.11 1.3 0.122 1.2 0.153 1.1 0.184 1.0 0.21………5. 数据分析通过对实验数据的分析,我们可以观察到以下规律:•随着可变延迟线长度的增加,输出信号的电压幅值逐渐降低。
锯齿波同步移相触发电路实验

锯齿波同步移相触发电路实验一、实验实训目的1.加深理解锯齿波同步移相触发电路的工作原理和各元件的作用。
2.掌握锯齿波同步移相触发电路的调试步骤和方法。
二、实验实训设备DJK01电源控制屏 1块DJK03 晶闸管触发电路 1块双踪示波器 1台万用表 1块三、实验实训线路及原理实验原理如图5-56所示。
其原理参看教材相关的内容。
图5-56 锯齿波同步移相触发电路原理图四、实验实训内容及步骤1.按图接好线后,接通电源,用示波器观察各观察孔的电压波形,并与理论波形比较。
1)同时观察1、2孔的电压波形,了解锯齿波宽度和1孔电压波形的关系。
2)观察3~5孔电压波形和输出电压U g的波形,记下各波形的幅值与宽度,并比较3孔电压U3与5孔电压U5的对应关系。
2.调节触发脉冲的移相范围。
将控制电压U ct调至零(调电位器RP1 ),用示波器观察1孔电压U1和U5的波形,调节偏移电压U b(即调节RP2)使α=180º,其波形如图5-57 所示。
3.调节U ct(调节RP1),使α=60º,观察并记录面板上观察孔1~5及输出脉冲电压波形,标出其副值与宽度并记录在表5-2中(可在示波器上直接读出,读数时应将示波器的“V/cm”和“t/cm”的旋钮放置在校准位置,以防读数误差)。
表5-2U1U2U3U4U5U g 幅值(V)宽度(ms)图5-57 锯齿波同步触发电路移相范围五、实验实训注意事项1.观察输出脉冲电压U g时,应将输出端G、K分别接到晶闸管的门极和阴极,否则,无法观察到U g波形。
2.第3点没有波形时,请调节RP2、RP3。
六、实验实训报告1.画出α=60º时,观察孔1~5及输出脉冲电压波形。
2.指出U ct增加时,α应如何变化?移相范围大约等于多少度?指出同步电压的哪一段为脉冲移相范围。
3.分析RP3对输出脉冲宽度的影响。
4.写出本次实验实训的心得与体会。
实验实训二锯齿波同步移相触发电路实训(实验实训一、实验实训二选做一个)一、实训目的1.加深理解锯齿波同步移相触发电路的工作原理和各元件的作用。
锯齿波同步移相触发电路实验报告

锯齿波同步移相触发电路实验报告《锯齿波同步移相触发电路实验报告》哇塞,这次做锯齿波同步移相触发电路实验可真是超级有趣又充满挑战呢!一、实验目的我呀,做这个实验最开始就想搞明白锯齿波同步移相触发电路到底是怎么一回事。
就像我们要去探索一个神秘的小世界一样,这个电路在电力电子技术里可是很重要的呢。
我就想知道它是怎么产生锯齿波的,又怎么根据这个锯齿波去触发其他电路的,感觉就像是在解开一个超级复杂的谜题。
二、实验设备进到实验室,那里面摆满了各种各样的设备。
有示波器,这示波器就像是一个超级侦探的放大镜,可以让我们看到那些看不见的电信号的样子。
还有脉冲发生器呢,它就像是一个小指挥官,时不时地发出命令信号。
电源就更不用说啦,它是整个电路的能量源泉,就像我们人要吃饭才能有力量一样,电路没有电源可就没法工作啦。
还有好多电阻、电容和晶体管之类的小元件,它们就像一个个小士兵,每个都有自己的任务,组合在一起就能完成大任务。
我和我的小伙伴小明一起做这个实验。
小明可搞笑了,他一看到那些设备就眼睛放光,说:“哇,这些东西看起来好酷啊,我们肯定能做出超棒的实验。
”我也特别兴奋,感觉自己像是一个即将出征的小勇士。
三、实验原理这个锯齿波同步移相触发电路的原理其实还挺复杂的。
简单来说呢,就像是一场接力赛。
首先,电源提供的电压要经过一些电阻和电容的组合,这个过程就像是在给能量做一个特殊的加工。
电阻就像是路上的小阻碍,电容呢,就像一个可以暂时储存能量的小仓库。
它们相互作用,就产生了锯齿波。
这个锯齿波啊,就像一个个小梯子,一节一节地往上爬。
然后呢,还有一个同步信号。
这个同步信号就像是一个节拍器,告诉锯齿波什么时候开始新的一轮。
如果没有这个同步信号,那锯齿波就会乱了套,就像一群人跳舞没有音乐的节奏一样。
有了同步信号之后,锯齿波就能很有规律地产生啦。
再接着,这个锯齿波要和一个控制电压进行比较。
这个控制电压就像是我们的指挥棒,我们可以改变这个指挥棒的大小,然后就可以改变锯齿波被触发的时间点。
锯齿波同步触发电路移相范围的调试方法

锯齿波同步触发电路移相范围的调试方法锯齿波同步触发电路是一种常见的电子电路,用于将一个周期锯齿波信号与一个参考信号同步,并产生一个相位差可调的输出信号。
调试锯齿波同步触发电路的移相范围是为了使得输出信号的相位差能够在所需的范围内进行调整,下面将介绍一种常见的调试方法。
首先,为了调试锯齿波同步触发电路的移相范围,我们需要了解锯齿波信号和参考信号之间的相位关系。
假设锯齿波信号的频率为f1,周期为T1,参考信号的频率为f2,周期为T2。
参考信号的相位角为θ1,锯齿波信号的相位角为θ2。
相位差Δθ=θ2-θ1。
接下来,我们可以按照以下步骤进行调试:步骤1:将锯齿波信号和参考信号通过信号发生器输入锯齿波同步触发电路。
确保锯齿波信号和参考信号的幅值、频率和波形正常。
步骤2:使用示波器监测锯齿波同步触发电路的输出信号。
调节锯齿波同步触发电路中的移相器,改变移相器的移相量。
可以使用电位器或设置开关来实现移相器的移相调整。
步骤3:观察输出信号的相位差是否随着移相器的调整而变化。
通过调整移相器,我们可以改变输出信号的相位差。
步骤4:调整移相器,使输出信号的相位差在所需的范围内变化。
根据具体的应用需求,可以将输出信号的相位差设置为任意值。
步骤5:使用示波器监测输出信号的波形、频率和幅值。
确保输出信号的波形与预期一致,并且幅值和频率的变化在可接受的范围内。
通过以上调试方法,我们可以实现锯齿波同步触发电路移相范围的调整。
需要注意的是,调试过程中应小心地调节移相器,避免干扰其他电路元件或损坏设备。
另外,根据实际情况,可能需要结合其他电路调节相位差,比如使用配电器、运算放大器等。
总结起来,锯齿波同步触发电路移相范围的调试方法包括:输入信号的设置、移相器的调整、输出信号的监测和波形分析。
通过逐步调整移相器,我们可以达到所需的相位差范围,并保证输出信号的稳定性和准确性。
但需要注意的是,在调试过程中,应小心操作以防止损坏电路元件和设备。
#一锯齿波同步移相触发电路

实验一锯齿波同步移相触发电路实验一、实验目地(1>加深理解锯齿波同步移相触发电路地工作原理及各元件地作用.(2>掌握锯齿波同步移相触发电路地调试方法.二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路地原理图如图1所示.锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子技术教材中地相关内容.图1四、实验内容(1>锯齿波同步移相触发电路地调试.(2>锯齿波同步移相触发电路各点波形地观察和分析.五、预习要求(1>阅读电力电子技术教材中有关锯齿波同步移相触发电路地内容,弄清锯齿波同步移相触发电路地工作原理.(2>掌握锯齿波同步移相触发电路脉冲初始相位地调整方法.六、思考题(1>锯齿波同步移相触发电路有哪些特点?(2>锯齿波同步移相触发电路地移相范围与哪些参数有关?(3>为什么锯齿波同步移相触发电路地脉冲移相范围比正弦波同步移相触发电路地移相范围要大?七、实验方法(1>在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧地自藕调压器,将输出地线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03地“外接220V”端,按下“启动”按钮,打开DJK03电源开关,这时挂件中所有地触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔地电压波形.①同时观察同步电压和“1”点地电压波形,了解“1”点波形形成地原因.②观察“1”、“2”点地电压波形,了解锯齿波宽度和“1”点电压波形地关系.③调节电位器RP1,观测“2”点锯齿波斜率地变化.④观察“3”~“6”点电压波形和输出电压地波形,记下各波形地幅值与宽度,并比较“3”点电压U3和“6”点电压U6地对应关系.(2>调节触发脉冲地移相范围将控制电压U ct调至零(将电位器RP2顺时针旋到底>,用示波器观察同步电压信号和“6”点U6地波形,调节偏移电压U b(即调RP3电位器>,使α=170°,其波形如图2所示.图2锯齿波同步移相触发电路(3>调节U ct<即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压地波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器地“V/DIV”和“t/DIV”微调旋钮旋到校准位置>.八、实验报告(1>整理、描绘实验中记录地各点波形,并标出其幅值和宽度.(2>总结锯齿波同步移相触发电路移相范围地调试方法,如果要求在U ct=0地条件下,使α=90°,如何调整?(3>讨论、分析实验中出现地各种现象.九、注意事项1.双踪示波器有两个探头,可同时观测两路信号,但这两探头地地线都与示波器地外壳相连,所以两个探头地地线不能同时接在同一电路地不同电位地两个点上,否则这两点会通过示波器外壳发生电气短路.为此,为了保证测量地顺利进行,可将其中一根探头地地线取下或外包绝缘,只使用其中一路地地线,这样从根本上解决了这个问题.当需要同时观察两个信号时,必须在被测电路上找到这两个信号地公共点,将探头地地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外.(2>因为脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管地门极和阴极<或者也可用约100Ω左右阻值地电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极地阻值),否则,无法观察到正确地脉冲波形.。
经典版 锯齿波同步移向触发电路

图 2.1 α=180°时同步电压信号波
形
将移相控制电压 Uct(即电位器 RP2)调至零(电位器 RP2 顺时针旋到底), 观察同步电压信号及⑥点的波形,调节偏移电压 Ub(即调 RP3 电位器),使 α=180°, 其波形如图 2.1 所示。
3、调节 Uct 使 α=60°,观察并记录①~⑥点及输出“G、K”之间脉冲电压 的波形,标出其幅值与宽度,并记录在表 2.2 中(可在示波器上直接读出,读数时 应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。
六、思考题
1、锯齿波同步移相触发电路有哪些特点? 2、锯齿波同步移相触发电路的移相范围与哪些参数有关?
七、实验方法
1、 将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧,使输出线电 压为 200V(不能打到“交流调速”侧工作,因为 DJK03-1 的正常工作电源电压 为 220V10%,而“交流调速”侧输出的线电压为 240V。如果输入电压超出其 标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏)。用两根导线 将 200V 交流线电压接到 DJK03-1 的“外接 220V”端为挂件提供电源,并为触 发电路引入同步信号。按下“启动”按钮,打开 DJK03-1 电源开关,这时挂件 中所有的触发电路都开始工作。
6、接入挂件 DJK03 的电压不要超过 220V。
四、实验内容
1、锯齿波同步移相触发电路的调试。 2、锯齿波同步移相触发电路各点波形的观察和分析。
调试正弦波
锯齿波的实物图
产生的负波形
实验最后的脉冲图
五、预习要求
1、阅读教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相 触发电路的工作原理。
2、掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
《锯齿波同步移相触发电路实验》

《锯齿波同步移相触发电路实验》一、实验目的:1. 理解锯齿波同步移相触发电路的原理;2. 了解同步移相电路的特点和应用;3. 熟悉实验器材的使用方法和实验方法。
二、实验原理:同步移相电路是一种基本的信号处理电路,它是通过传输器件(如锯齿电压发生器,正弦波振荡器等)得到的两路同频信号对位移相,然后再将其中一路信号经过级联电路滤掉高频成分,剩下低频分量,然后再通过运算放大器输出到驱动器驱动被驱动器件,实现对被驱动器件进行同步控制的电路。
在同步移相电路中,特别常用的是锯齿波同步移相触发电路,其基本原理如下:锯齿波同步移相触发电路是用来控制脉冲宽度调制(PWM)的主要电路,它主要由一个锯齿波信号发生器、一个变压器和一个运算放大器组成。
锯齿波发生器产生的锯齿波,经过变压器的变换,使其输出信号与控制信号同步。
运算放大器将两路输入信号相减,再放大,从而得到控制信号,控制脉冲的宽度。
三、实验器材:锯齿波信号发生器、示波器、数字万用表、电源、电容、电阻等。
四、实验步骤:1. 准备实验器材,给锯齿波信号发生器和示波器供电。
2. 将锯齿波信号发生器连接到示波器,观察其输出波形是否为锯齿波。
3. 在示波器上调节触发电平,使锯齿波稳定地显示。
4. 观察变压器的接线方式,并将其连接到运算放大器的输入端。
5. 利用电容和电阻配置同步移相滤波电路,将锯齿波信号和控制信号按同频率输入至运算放大器的输入端。
6. 通过示波器观察输出脉冲波形是否符合预期。
五、实验结果与分析:1. 实验中锯齿波同步移相触发电路工作正常,输出脉冲波形均符合预期。
2. 实验结果表明,锯齿波同步移相触发电路能够很好地实现对脉冲宽度的控制,具有应用价值。
六、实验总结:本实验通过锯齿波同步移相触发电路的实验操作,加深了对同步移相电路的理解和应用,掌握了实验器材的使用方法和实验方法。
实验结果表明,锯齿波同步移相触发电路非常适合用于控制脉冲宽度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表 2.1 锯齿波同步移相触发电路实验所需挂件及附件
序号
型号
备注
1
DJK01 电源控制屏
该控制屏包含“三相电源输出”等几个模块。
2
DJK03-1 晶闸管触发电路该挂件包含“锯齿波同步移相触发电路”等模块。
3
双踪示波器
4
若干导线
三、实验线路图及原理
锯齿波同步移相触发电路由同步电压检测、锯齿波形成、移相控制、脉冲形 成、脉冲放大等环节组成,工作原理可参见教材中的相关内容。
表 2.2 锯齿波同步移相触发电路实验各点波形记录表
测试点
波形
UT
0
t
U1
0
t
U2
0
t
U3
0
t
U4
0
t
U5
0
t
U6
0
t
八、实验报告
1、整理、描绘实验中记录的各点波形,并标出其幅值和宽度。 2、总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在 Uct=0 的条件下,使 α=90°,如何调整? 3、讨论、分析实验中出现的各种现象。 4、分析影响锯齿波宽度、脉冲宽度之电阻和电容的特性和作用。
四、实验内容
1、锯齿波同步移相触发电路的调试。 2、锯齿波同步移相触发电路各点波形的观察和分析。
调试正弦波
锯齿波的实物图
产生的负波形
实验最后的脉冲图
五、预习要求
1、阅读教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相 触发电路的工作原理。
2、掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
电力电子技术实验
实验一 锯齿波同步移相触发电路
一、实验目的
1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2、掌握锯齿波同步移相触发电路的调试方法。 3、 熟悉与掌握锯齿波同步移相触发电路及其主要点的波形测量与分析。 4 、熟悉锯齿波同步移相触发电路故障的分析与处理。
二、实验所需挂件及附件
图 2.1 α=180°时同步电压信号波
形
将移相控制电压 Uct(即电位器 RP2)调至零(电位器 RP2 顺时针旋到底), 观察同步电压信号及⑥点的波形,调节偏移电压 Ub(即调 RP3 电位器),使 α=180°, 其波形如图 2.1 所示。
3、调节 Uct 使 α=60°,观察并记录①~⑥点及输出“G、K”之间脉冲电压 的波形,标出其幅值与宽度,并记录在表 2.2 中(可在示波器上直接读出,读数时 应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。
6、接入挂件 DJK03 的电压不要超过 220V。
六、思考题
1、锯齿波同步移相触发电路有哪些特点? 2、锯齿波同步移相触发电路的移相范围与哪些参数有关?
七、实验方法
1、 将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧,使输出线电 压为 200V(不能打到“交流调速”侧工作,因为 DJK03-1 的正常工作电源电压 为 220V10%,而“交流调速”侧输出的线电压为 240V。如果输入电压超出其 标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏)。用两根导线 将 200V 交流线电压接到 DJK03-1 的“外接 220V”端为挂件提供电源,并为触 发电路引入同步信号。按下“启动”按钮,打开 DJK03-1 电源开关,这时挂件 中所有的触发电路都开始工作。
九、注意事项
1﹑双踪示波器的两个探头的地线通过示波器外壳短接,使用时必须使两个 探头的地线同电位,即只使用一根地线,另一根地线不用。避免造成实验线路短 路。
2﹑时间测量的一种方法。 将示波器扫描档微调旋钮顺时针调到最大锁定位置。被测波形稳定后,扫描 档粗调旋钮所示时间/格,即为 X 轴上时间/格(X 轴不扩展)。 3﹑电角度测量的一种方法。 调扫描档的粗﹑细调节旋钮和有关控制件,使一个周期的被测波形稳定地占 示波器 X 轴的 3 格或 6 格,则每格为 120º或 60º,每半格为 60º或 30º。 4﹑电压测量的一种方法。 将 Y 轴的微调顺时针旋调到最大锁定位置。调有关控制器件使波形稳定。Y 轴粗调所指的 V/格乘 10 或 1,(10 或 1 为探头衰减比)即为 Y 轴的 V/格。 5﹑波形正确记录在坐标轴上,并能反映波形的周期﹑相位及有关相应的数 值。
1、用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 (1)同时观察同步电压引入端和测试点①的电压波形,了解其形成的原因。 (2)观察测试点①和②的电压波形,了解锯齿波宽度和①点电压波形的关系。 (3)调节电位器 RP1,观测②点锯齿波斜率的变化。 (4)观察③~⑥点电压波形和输出电压的波形,记下各波形的周期﹑峰值电压 ﹑脉冲幅值﹑脉冲宽度,并比较③点和⑤点波形间的对应关系。 2、观察触发脉冲的移相范围