耦合电容 旁路电容 滤波电容 的区别
旁路、耦合、退耦电容的选取

旁路、退耦、耦合电容的选取高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个1〜10^F的电容,滤除低频噪声;在电路板上的电源与地线之间放置一个0.01〜0.1 H 的电容,滤除高频噪声。
”在书店里能够得到的大多数的高速PCB 设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则(老外俗称Rule of Thumb )。
但是为什么要这样使用呢?各位看官,如果你是电路设计高手,你可以去干点别的更重要的事情了,因为以下的内容仅是针对我等入门级甚至是门外级菜鸟。
做电路的人都知道需要在芯片附近放一些小电容,至于放多大?放多少?怎么放?将该问题讲清楚的文章很多,只是比较零散的分布于一些前辈的大作中。
鄙人试着采用拾人牙慧的方法将几个问题放在一起讨论,希望能加深对该问题的理解;如果很不幸,这些对你的学习和工作正好稍有帮助,那我不胜荣幸的屁颠屁颠的了。
(以上有些话欠砍,在此申明以上不是我所写)什么是旁路?旁路(Bypass),在电路中为了改变某条支路的频率特性,使得它在某些频段内存在适当的阻值,而在另一些频段内则处于近似短路的状态,于是便产生了旁路电容的概念。
旁路电容之所以为旁路电容,是因为它旁边还存在着一条主路,而并不是某些电容天生就是用来做旁路电容的,也就是说什么种类的电容都可以用来做旁路电容,关键在于电容容值的大小合适与否。
旁路电容并不是电解电容或是陶瓷电容的专利。
之所以低频电路中多数旁路电容都采用电解电容原因在于陶瓷电容容值难以达到所需要的大小。
使用旁路电容的目的就是使旁路电容针对特定频率以上的信号相对于主路来说是短路的。
如图形式:要求旁路电容需要取值的大小;已知:1、旁路电容要将流经电阻R的频率高于f的交流信号近似短路。
求旁路电容的大小?1 2 f?C12 f ?R2 f ?C 2 f ?R解:旁路电容C的目的就是在频率f以上将原本流经R的绝大多数电流短路; 也即频率为f时,容抗远小于电阻值;当f=1khz,R=1k时,C应该远大于0.16uf。
伺服电池电路板电容

伺服电池电路板电容
伺服电池电路板上的电容主要用于滤波、耦合、储能等功能。
具体来说,以下是一些常见的电容类型及其用途:
1. 滤波电容:滤波电容主要用于滤除电源线上的干扰信号,提供稳定的电源电压。
在伺服电池电路板上,滤波电容通常位于电源输入端,用来减小电源噪声。
2. 耦合电容:耦合电容用于将信号的某一部分与其它部分隔离,常见于音频和视频信号处理中。
在伺服电池电路板上,耦合电容可能用于隔离和调整信号。
3. 储能电容:储能电容用于存储和释放电能,常用于放大器、振荡器等电路中。
在伺服电池电路板上,储能电容可能用于提供瞬间大电流,驱动负载。
4. 去耦电容:去耦电容主要用于稳定电源电压,防止电路间的相互干扰。
在伺服电池电路板上,去耦电容通常位于各个关键电路模块的电源输入端。
5. 电解电容:电解电容主要用于滤波、耦合、储能等功能,由于其容量大,因此在伺服电池电路板上常用于电源滤波和储能。
6. 陶瓷电容:陶瓷电容主要用于高频信号的滤波和耦合,由于其频率特性好,因此在伺服电池电路板上常用于高频电路的滤波和耦合。
以上就是伺服电池电路板电容的一些基本信息,具体的电容类型、数量和参数会根据电路的实际需求而变化。
电容的常见27种用法

电容在电路中的作用电容在电路中的作用:具有隔断直流、连通交流、阻止低频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等。
1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。
2、退耦电容:并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3、旁路电容:在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4、耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6、衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9、稳频电容:在振荡电路中,起稳定振荡频率的作用。
10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。
13、克拉波电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
去耦电容、旁路电容、滤波电容的选择和区别

区别去耦电容去除在期间切换时从⾼高配到配电⽹网中的RF能量量储能作⽤用,供局部化的直流电源,减少跨板浪涌电流在VCC 引脚通常并联⼀一个去耦电容,电容同交隔直将交流分量量从这个电容接地有源器器件在开关时产⽣生的⾼高频开关噪声江燕电源线传播,去耦电容就是提供⼀一个局部的直流给有源器器件,减少开关噪声在板上的传播并且能将噪声引导到地。
如果主要是为了了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;旁路路电容从元件或电缆中转移出不不想要的共模 RF 能量量。
这主要是通过产⽣生 AC 旁路路消除⽆无意的能量量进⼊入敏敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
在电路路中,如果电容起的主要作⽤用是给交流信号提供低阻抗的通路路,就称为旁路路电容;电⼦子电路路中,去耦电容和旁路路电容都是起到抗⼲干扰的作⽤用,电容所处的位置不不同,称呼就不不⼀一样了了。
对于同⼀一个电路路来说,旁路路(bypass)电容是把输⼊入信号中的⾼高频噪声作为滤除对象,把前级携带的⾼高频杂波滤除,⽽而去耦 (decoupling)电容也称退耦电容,是把输出信号的⼲干扰作为滤除对象。
滤波电容选择经过整流桥以后的是脉动直流,波动⽅方位很⼤大,后⾯面⼀一般⽤用⼤大⼩小两个电容⼤大电容⽤用来稳定输出,因为电容两端电压不不能突变,可以使输出平滑,⼩小电容⽤用来滤除⾼高频⼲干扰,使输出电压纯净,电容越⼩小,谐振频率越⾼高,可滤除的⼲干扰频率越⾼高容量量的选择⼤大电容,负载越重,吸收电流的能⼒力力越强,这个⼤大电容的容量量就要越⼤大⼩小电容,凭经验,⼀一般104 即可1、电容对地滤波,需要⼀一个较⼩小的电容并联对地,对⾼高频信号提供了了⼀一个对地通路路。
2、电源滤波中电容对地脚要尽可能靠近地。
3、理理论上说电源滤波⽤用电容越⼤大越好,⼀一般⼤大电容滤低频波,⼩小电容滤⾼高频波。
4、可靠的做法是将⼀一⼤大⼀一⼩小两个电容并联,⼀一般要求相差两个数量量级以上,以获得更更⼤大的滤波频段.滤波电容电源和地直接连接去耦电容1.为本集成电路路蓄能电容2.滤除该期间产⽣生的⾼高频噪声,切断其通过供电回路路进⾏行行传播的通路路3.防⽌止电源携带的噪声对电路路构成⼲干扰滤波电容的选⽤用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C 为滤波电容,单位为UF; T 为频率, 单位为Hz,R 为负载电阻,单位为Ω当然,这只是⼀一般的选⽤用原则,在实际的应⽤用中,如条件(空间和成本)允许,都选取C≥5T/R.PCB制版电容的选择⼀一般的10PF 左右的电容⽤用来滤除⾼高频的⼲干扰信号,0.1UF 左右的⽤用来滤除低频的纹波⼲干扰,还可以起到稳压的作⽤用。
电容在电路中的作用以及分类

电容在电路中的作用:具有隔断直流、连通交流、阻止低频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等。
1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。
2、退耦电容:并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3、旁路电容:在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4、耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6、衬垫电容:与谐振电路主电容申联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极问电容造成的自激振荡。
9、稳频电容:在振荡电路中,起稳定振荡频率的作用。
10、定时电容:在RC时间常数电路中与电阻R申联,共同决定充放电时间长短的电容。
11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而申联的电容。
13、克拉波电容:在电容三点式振荡电路中,与电感振荡线圈申联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15、稳幅电容:在鉴频器中,用于稳定输出信号的幅度。
滤波电容、去耦电容、旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。
各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。
交变电流的频率f越高,电容的阻抗就越低。
旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。
对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。
但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。
滤波电容:滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。
(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容与旁路电容的区别

去耦电容与旁路电容的区别
旁路电容是把电源或者输入信号中的交流分量的干扰作为滤除对象。
有了旁路电容,将电源5V中的交流分量——波动进行滤除。
将蓝色波形变成粉红色波形。
一般来说,靠近电源放置。
去耦电容是芯片的电源管脚,由于自身用电过程中信号跳变产生的电源管脚对外的波形输出,我们用电容进行滤除。
把信号电源管脚,输出干扰作为滤除对象,防止干扰信号返回电源。
尖峰电流的形成:
数字电路输出高电平时从电源拉出的电流Ioh和低电平输出时灌入的电流Iol的大小一般是不同的,即:Iol>Ioh。
以下图的TTL与非门为例说明尖峰电流的形成:
输出电压如右图(a)所示,理论上电源电流的波形如右图(b),而实际的电源电流保险如右图(c)。
由图(c)可以看出在输出由低电平转换到高电平时电源电流有一个短暂而幅度很大的尖峰。
尖峰电源电流的波形随所用器件的类型和输出端所接的电容负载而异。
产生尖峰电流的主要原因是:
输出级的T3、T4管短设计内同时导通。
在与非门由输出低电平转向高电平的过程中,输入电压的负跳变在T2和T3的基极回路内产生很大的反向驱动电流,由于T3的饱和深度设计得比T2大,反向驱动电流将使T2首先脱离饱和而截止。
T2截止后,其集电极电位上升,使T4导通。
可是此时T3还。
耦合电容和旁路电容的作用

耦合电容和旁路电容的作用
嘿,你问耦合电容和旁路电容的作用呀?这俩家伙在
电路里可重要着呢。
咱先说耦合电容吧。
它就像个小信使,在电路里传递
信号。
比如说,一个电路的一部分产生了信号,要传给另
一部分,这时候耦合电容就上场啦。
它能让信号顺利地通过,同时又能阻止直流电流过去。
就像一个检查站,只让
特定的东西通过。
要是没有耦合电容,信号可能就传不过去,或者传得乱七八糟的。
它能让不同部分的电路协调工作,就像乐队里的指挥,让各个乐器配合得好好的。
再说说旁路电容。
这家伙就像个小保镖,保护电路不
受干扰。
有时候电路里会有一些杂波或者干扰信号,旁路
电容就能把这些坏家伙给引走,不让它们影响正常的电路
工作。
就像你在路上走,旁边有个垃圾桶很臭,旁路电容
就像个屏风,把臭味挡住,让你能安心走路。
它能让电路
更稳定,工作得更顺畅。
我给你讲个事儿吧。
我有个朋友,他自己组装收音机。
一开始他不知道耦合电容和旁路电容的作用,随便装了几
个电容上去。
结果收音机的声音很杂,根本听不清。
后来
他请教了别人,知道了这两个电容的重要性。
他重新安装了合适的耦合电容和旁路电容,嘿,这下收音机的声音可清晰了。
他可高兴了,说以后组装电路一定要注意这些小零件的作用。
所以啊,耦合电容和旁路电容在电路里可重要啦,一个负责传递信号,一个负责排除干扰。
有了它们,电路才能正常工作,发挥出最大的作用。
加油哦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容耦合的作用是将交流信号从前一级传到下一级。
当然,耦合的方法还有直接耦合和变压器耦合的方法。
直接耦合效率最高,信号又不失真,但是,前后两级的工作点的调整复杂,相互牵连。
为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。
同时,又能使交流信号顺利的从前一级传给后一级,同时能完成这一任务的方法就是采用电容传输或变压器传输来实现。
它们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。
但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成份要损失一些。
一般情况下,小信号传输时,常用电容作为耦合元件,大信号或强信号的传输,常用变压器作耦合元件。
滤波电容、去耦电容、旁路电容作用
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解
1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水。
这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)。
2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地
2.旁路电容和去耦电容的区别
去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC 旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象
电容:只要是电容:最终只有一个功能:储能(或是储存电荷)
用于旁路:是让有用信号容易通过(通过是指从电容的一脚到另一脚)
用于去耦:是让非有用的脉动能量通过(认真来说是:储存在电容里,并适时释放出来)
要让某一频率的波形/信号容易通过电容,就必须使这一波形/信号的能量无法完全填满电容这样的一个容器,当填满时,就无法通过了..
至于能否填满电容这一容器,就得看频率(填/释的时间)有量了(能量的强弱,也就是常提的RC常数的R--------R对电荷有阻碍作用).
作为旁路时,要让有用的信号通过电容,就要设置电路参数。
要让电容在信号有有效时间内填不满电荷(电容充满电的时间远大于信号周期)——容量。
另一个就是限制能量强度,也就是串R了,但串R有违旁路的目的。
作为去耦是一样的,只是对象不同。
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
耦合电容隔直流通交流
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
滤波电容用在电源上,使电源更平滑,没有杂波;
去耦电容用在直流信号反馈上,去掉交流耦合信号;
旁路电容用在直流通路连接时提高交流信号通过率的。
另:滤波/去耦/旁路之类的电容并不是越大越好:
如:一个很大的电源滤波电容,储存容量是足够了,但是由于容量过大,刚通电瞬间,由于电容两端电压不能突变,所以整流管上和变压器上的负担很大,如是后面的滤波电容过大,使输出电压上升过慢,导致变压器/整流管等长时间超负荷工作,会被损坏,或是引起过载保护等问题。
(解决方法是合适减小滤波电容或是采用开机电压慢升(也就是小电流让电容上建立正常电平后,再让电源进入工作状态)。
又如:旁路电容过大,因为三极管(以典型共射极为例)建立正常的工作点后,E极电压设为2V,又设放大电路的输入低频非有用信号,使Ce上升为2.2V,如在其后有个2.7V的高频有用信号来到,因Ce电荷过多,Re无法让Ce快速放电到静态电平,会使一个或更多个有用信号周期失真。
又如:去耦,当电容过大,由于退耦电阻的关系,电压上升速度过慢。
会使某些高要求电路复位不正常,而不能工作。
所以,不管是滤波,去耦,旁路。
都要选择合适的RC常数,不要一味追求C过大,想着C越大,滤波/去耦/旁路效果就越好。
真正理解RC常数这一个含义。