反应萃取技术地研究进展与应用

合集下载

双水相萃取技术的研究现状与应用

双水相萃取技术的研究现状与应用

基本内容
3、环保领域:双水相萃取技术在废水处理、重金属离子去除等方面具有潜在 应用价值。例如,通过双水相萃取技术成功实现了对含有重金属离子的废水的处 理,降低了废水中的重金属离子浓度。
基本内容
双水相萃取技术的研究方法双水相萃取技术的研究方法主要包括以下内容: 1、影响因素研究:双水相萃取技术的分离效果受到多种因素的影响,如双水 相体系的组成、目标物在双水相体系中的分配系数、实验温度和pH值等。通过对 这些影响因素的研究,可以优化双水相萃取工艺,提高目标物的分离效果。
基本内容
3、双水相萃取技术的设备研发和工艺优化将成为未来的研究重点,以进一步 降低操作成本,提高实际应用中的效率和稳定性。
基本内容
4、双水相萃取技术与其他新兴技术的结合,如微流控技术、纳滤技术等,将 成为未来的一个重要研究方向,以实现更高效、更便捷的分离和纯化过程。
基本内容
结论双水相萃取技术作为一种有效的分离和纯化技术,在食品、制药、环保 等领域已得到广泛应用。通过对该技术的研究和应用,不仅有利于促进相关领域 的技术进步,提高生产效率和产品质量,还有助于推动相关产业的绿色发展,为 实现可持续发展作出贡献。未来,随着科学技术的不断进步和创新,双水相萃取 技术将在更多领域展现其巨大潜力,为人类社会的进步和发展作出更大贡献。
基本内容
展望未来双水相萃取技术在多个领域显示出广泛的应用前景,但仍存在一定 的挑战和问题需要进一步探讨和研究。未来的发展趋势可能包括:
基本内容
1、双水相萃取技术的理论研究将更加深入,以进一步优化双水相体系的组成 和性质,提高目标物的分离效果。
基本内容
2、双水相萃取技术的应用领域将进一步拓展,特别是在新能源、新材料、生 物医药等领域的应用研究将更加活跃。

P204反萃除铁的研究进展

P204反萃除铁的研究进展

在湿法冶金中,铁通常以 Fe2+、Fe3+ 形式与有价金属一 同进入溶液中。当溶液中铁浓度比较高时(大于 1g/l),一般 采用针铁矿法、赤铁矿法、黄钾铁矾法等方法进行除铁 ;当 铁浓度比较低时(小于 1g/l),一般采用中和法进行除铁。但 是,由于化学沉淀法的分离效果较差,一般除铁后液中还含 有少量的 Fe3+。
较弱。还原反萃是根据 P204 对不同价态铁离子萃取能力不
2022年 5月下 世界有色金属 1
表 1 Fe3+– 无机配位体配合物的稳定常数
序号 1
配位体 Cl-
配位体数 n 2
lgβn 9.8
2
CN-
6
42.0
3
F-
1,2,3
5.28,9.30,12.06
4
I-
1
1.88
5
OH-
1,2,3
者通过蒸发结晶产出粗氯化钠。该工艺的主要缺点是反萃过
程中盐酸浓度高,酸雾大,操作条件差。但是,该工艺比较
简单、易于连续操作,可以在萃取箱中进行,在工业上得到
了广泛应用。
2.2.2 草酸反萃 蒋长俊等 [1] 采用草酸反萃 P204 中的 Fe3+,在室温、草
酸浓度为 70g/L、相比 2:1、振荡时间 20min 的条件下,铁 的反萃率超过 96%。经两级反萃,有机相中的 Fe3+ 可以降
2.3.1 铁粉还原 肖纯等 [7] 采用铁粉为还原剂,稀硫酸为反萃剂,在机械
搅拌和强保护气氛下,对 P204 进行反萃除铁。在负载有机 相中 Fe3+ 含量为 10.0g/L,铁粉加入量为理论量的 2.4 倍, 还原反萃时间为 6h,还原反萃温度为 40℃的条件下,Fe3+ 的反萃率达到 73%,反铁后液中 Fe2+ 的浓度为 61.8g/L,可

超临界流体萃取技术的应用及研究进展

超临界流体萃取技术的应用及研究进展
油的 中 草 药 有 珊 瑚 姜_ 木 香[ 3、 3 J 、当 归 _ 、 见 5 月 J 草[ 川 芎[ 大 蒜 [ 莪 术 [ 姜 黄 [ ]宽 叶 缬 草 、 、 8、 8 ] 9、 9 ] 1、 0
的化工技术 已取得了长足进展 , 广泛应用于医药 、 食 品、 香料 和化 工等领 域 。典型 的代表有 啤酒 花提取 、 咖啡因分离及烟草脱除尼古 丁等 , 它们是应用于生 产 最早且 最 为成功 的 范例 。 目前 , 内外 对 S E应 国 F
经 过近 3 的研究 ,F 0年 S E作 为一 种对 环境 友好
艺和操作条件 , 以改善萃取成分的溶解性和选择性。
1 1 挥发 油的提 取 .
挥发油又称精油 , 是广泛存在于植 物体 内的一 类多成分油状混合物, 临床上具有止 咳、 喘、 在 平 发 汗、 祛风等医疗作用。挥发油难溶于水 , 能完全溶于 乙醇 、 乙醚等有机溶剂 , 对光线 、 温度和空气敏感 , 易 氧化和分解 , 同时具有分子量小、 沸点低 、 极性 中等 、 亲脂性高的特点 , 最适合用 S -O 进行提取。 CC z 目前 , 国内外采用 S - O 萃 取技术提取挥发 CC 2
・4 ・ 3
根 [ l 果 [ l蛇床 子[ l小 茴 香 [ l黄 花 蒿 [ l 1、 l草 1、 2 、 3 1、 4 1、 5
刺柏E]香附[l苍术[ l l、 6 、 7 、 8 砂仁[ 1 和火棘E] 9 2 等。 0
与传统工艺采用 的水蒸气蒸馏法 ( D法 ) 比较 , S 相 s - 萃取技术不仅产物收率普遍提高 , cc  ̄ 提取时间 缩短 , 而且 经 过 G  ̄ CMS鉴 定 可 分 离 出常 规 方 法 得 不到的成分 , 留了其天然风味。 保

当前萃取分离技术的研究应用与进展

当前萃取分离技术的研究应用与进展

当前萃取分离技术的研究应用与进展当前萃取分离技术是化学、生物、环境等领域的重要技术手段之一,广泛应用于药物开发、环境监测、食品安全等领域。

随着科学技术的进步和需求的不断增加,萃取分离技术也在不断发展和改进。

本文将围绕当前萃取分离技术的研究应用与进展进行探讨。

一、应用领域及需求1.药物开发:药物中间体的分离纯化、天然药物中活性成分的提取等。

2.环境监测:水、土壤、大气中有机污染物和无机污染物的分析监测。

3.食品安全:食品中农药、兽药、重金属等残留物的检测与分离。

4.化学工程:化工原料的纯化、有机废弃物的处理等。

二、萃取分离技术的现状1.传统萃取技术:包括液液萃取、固相萃取等,已经得到广泛应用,但存在工艺复杂、时间长、溶剂耗量大等问题。

2.共价萃取技术:通过改变溶剂特性或添加萃取剂,可以提高萃取效率和选择性,具有更广泛的应用前景。

3.离子液体萃取技术:离子液体是一种新型环保溶剂,在药物开发、催化剂制备等方面显示出较大潜力。

4.超临界流体萃取技术:超临界流体具有较高的溶解能力和较低的表面张力,可用于制备高纯度的化合物。

5.固相微萃取技术:采用微量的吸附剂直接吸附目标化合物,具有快速、高效、省溶剂等优点。

三、研究进展1.萃取剂的改进和设计:研究人员通过改变萃取剂的结构和性质,提高了其分离效率和选择性。

2.新型萃取材料的研发:包括纳米材料、多孔材料等,在提高分离效率和选择性的同时,还具有较高的稳定性和再生能力。

3.萃取工艺的改进:通过优化工艺参数,如溶剂体积、溶剂浓度、萃取温度等,可以提高分离效率和减少工艺复杂性。

4.联合技术的发展:通过将不同的分离技术进行组合,如萃取-膜分离、萃取-吸附分离等,可以提高整体分离效率和减少能耗。

四、挑战和展望1.萃取剂的选择和设计:目前常用的萃取剂仍然存在选择性、稳定性和毒性等问题,需要开发更高效和环保的萃取剂。

2.萃取分离过程的机理研究:了解分子间相互作用和传质过程等机理,有助于优化工艺参数和提高分离效率。

最新萃取实验报告

最新萃取实验报告

最新萃取实验报告实验目的:探究不同萃取方法对目标化合物提取效率的影响,并比较其适用性。

实验材料:- 目标化合物样品- 有机溶剂(如乙醇、丙酮、氯仿等)- 水- 萃取装置(分液漏斗、烧杯、磁力搅拌器等)- 称重设备- 温度计- pH计- 离心机实验方法:1. 样品准备:将目标化合物样品按照预定的质量比例溶解于水中,调整pH值以适应不同的萃取条件。

2. 溶剂选择:根据目标化合物的溶解性和稳定性,选择合适的有机溶剂进行实验。

3. 萃取过程:将选定的有机溶剂加入到含有目标化合物的溶液中,使用磁力搅拌器充分混合,使目标化合物从水相转移到有机相。

4. 分离与收集:使用分液漏斗将混合后的两相分离,收集有机相中的液体。

5. 重复萃取:对水相进行二次或多次萃取,以提高目标化合物的提取效率。

6. 溶剂蒸发:将收集到的有机相液体在旋转蒸发仪中蒸发,得到目标化合物的粗提取物。

7. 结果分析:通过光谱分析(如高效液相色谱法HPLC)和质量检测(如质谱法MS)对提取物进行定性和定量分析。

实验结果:- 记录每次萃取后目标化合物的回收率和纯度。

- 比较不同萃取方法(如单次萃取与多次萃取)的效果。

- 分析溶剂的选择对萃取效率和目标化合物稳定性的影响。

- 评估温度和pH值对萃取过程的影响。

结论:- 确定最佳的萃取方法和条件,包括溶剂类型、萃取次数、温度和pH 值。

- 讨论实验中观察到的任何异常现象及其可能的原因。

- 提出改进实验方案的建议,以及未来研究的方向。

建议:- 针对目标化合物的特性,进一步优化萃取条件。

- 探索新的萃取技术,如微波辅助萃取或超临界流体萃取。

- 考虑环境因素和成本效益,选择更环保和经济的萃取溶剂。

萃取分离技术研究进展

萃取分离技术研究进展

萃取分离技术的目的是提取有效的物质,剔除有害的物质。

目前该技术的应用范围日益广泛,其原理是利用与原溶剂不同的液体实现萃取与分离的目的。

使用萃取分离技术可以提高产品的质量,随着技术的不断发展,萃取分离技术也得到了进一步完善。

文章主要探讨了萃取分离技术的研究进展情况,旨在实现对萃取分离技术的进一步优化。

1 萃取精馏萃取精馏是萃取分离技术中的常见类型,主要就是萃取分离技术研究进展张兴宗(曲阜师范大学 化学与化工学院,山东 曲阜 273165)摘 要:随着化工业生产的不断进步,萃取分离技术的应用范围日益广泛,不仅可以提高产品纯度,还能够提高产品质量。

文章主要介绍了萃取精馏技术与超临界流体萃取技术的发展现状和应用,旨在说明现代萃取分离技术摆脱了传统萃取分离的限制,能够实现难度更大的组分分离。

关键词:萃取分离技术;研究;进展中图分类号:TF845.6 文献标识码:B 文章编号:1004-275X(2018)02-006-02系统的超低压氮气是8.0MPa、60℃的超高压氮气通过30PV0003A/B、30PV0015减压至0.45MPa而来,用作吹灰载气其温度偏低,使飞灰冷却板结,曾经导致输送管线经常发生堵塞。

输灰线堵塞现象:送灰时长时间V1508低料位不出现,且吹灰器及管线压力蹩高。

技改在30PV0015阀后增加E3056换热器,以0.45MPa低压蒸汽为介质对氮气进行加热,并且沿飞灰输送管线在多处增加DN25吹扫氮气。

操作方面需要注意的是,在投用输灰线前必须预热充分,管道温度升高达到要求再送灰;将备用吹灰器吹今余灰后关闭接料阀、均压阀及助流阀,对输灰管线加强监控,可进行热氮吹扫,以管线压力不涨为根据,确保备用输灰线畅通不堵塞。

4.6 输灰线泄漏吹灰器V1508位于气化框架一楼,而飞灰贮仓V1507顶部在四楼,飞灰输送管线连接吹灰器底部与飞灰贮仓顶部,管线很长且有多处弯头。

飞灰输送是气固两相流动过程,固相的存在加剧了管道磨损,尤其是弯头部位冲刷磨损严重。

超临界流体萃取技术的进展与挑战

超临界流体萃取技术的进展与挑战

超临界流体萃取技术的进展与挑战超临界流体萃取技术作为一种高效、绿色的分离技术,在众多领域展现出了巨大的应用潜力。

近年来,随着科学技术的不断进步,该技术取得了显著的进展,但同时也面临着一系列挑战。

超临界流体萃取技术的原理是利用超临界流体在特定条件下具有优异的溶解能力和传质性能,从而实现对目标物质的高效提取和分离。

超临界流体通常是指处于其临界温度和临界压力以上的流体,如二氧化碳、乙烷、丙烷等。

其中,二氧化碳由于其临界温度和压力相对较低、化学性质稳定、无毒无害且价格低廉等优点,成为了最常用的超临界流体。

在进展方面,超临界流体萃取技术的应用领域不断拓展。

在食品工业中,它被用于提取天然香料、色素、油脂等成分。

例如,从咖啡豆中提取咖啡因,不仅能够提高提取效率,还能减少有机溶剂的使用,降低对环境的污染。

在医药领域,该技术可用于提取中草药中的有效成分,提高药物的纯度和质量。

此外,在化工、环保等领域也有着广泛的应用。

同时,超临界流体萃取技术的工艺和设备也在不断优化。

新型的萃取装置和工艺流程的开发,提高了萃取效率和选择性。

例如,采用多级萃取和逆流萃取等方式,能够更好地分离复杂混合物中的目标成分。

并且,与其他技术的结合,如超临界流体色谱、超临界流体结晶等,为物质的分离和纯化提供了更多的可能性。

然而,超临界流体萃取技术也面临着一些挑战。

首先,设备投资和运行成本较高,这限制了其在一些中小企业中的广泛应用。

超临界流体萃取设备需要在高压条件下运行,对设备的材质和制造工艺要求严格,导致设备造价昂贵。

而且,为了维持超临界状态,需要消耗大量的能量,增加了运行成本。

其次,超临界流体萃取技术对操作条件的要求较为苛刻。

例如,压力、温度、流速等参数的微小变化都可能对萃取效果产生显著影响。

这就需要操作人员具备较高的技术水平和丰富的经验,以确保萃取过程的稳定性和可靠性。

再者,对于一些极性较强或分子量较大的物质,超临界流体的溶解能力有限,导致萃取效果不理想。

湿法磷酸萃取技术发展现状与研究进展

湿法磷酸萃取技术发展现状与研究进展

湿法磷酸萃取技术发展现状与研究进展下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言湿法磷酸萃取技术因其高效、环保的特点,在矿业和冶金工业中得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反应萃取技术的研究进展与应用摘要:化工过程强化技术是节能减排的重要途径,其包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。

本文综述了反应萃取技术的基本原理及其分类。

并介绍了其研究现状和在各个领域的应用,并对其今后的发展前景做出了预测。

与传统的萃取技术相比较,反应萃取技术作为一种新型耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。

关键词:反应萃取;进展;应用;超临界Research Progress and Application ofReactive Extraction TechnologyABSTRACT:Chemical process intensification technology is an important way of energy saving and emission reduction. It includes equipment strengthening and methods strengthening, and reaction extraction technology is one of the methods strengthening. The basic principle and classification of reaction extraction technique are reviewed in this paper.Its research status and application in various fields are introduced, and the prospect of its future development is forecasted. Compared with the traditional extraction technology, the reaction extraction technology can improve efficiency and reduce waste emissions, which is a new technology for chemical engineering, energy saving, clean, safe and sustainable development.KEY WORDS:Reaction extraction; Development; Application; Super critical目录前言 (1)1 反应萃取的分类 (1)1.1 水解反应萃取 (1)1.2 醣化反应萃取 (2)1.3 酶反应萃取 (2)2 反应萃取的研究进展与应用 (3)2.1 酶促合成油酸香茅醇酯的超临界连续反应-分离过程 (3)2.2 反应萃取法提纯赖氨酸的萃取平衡研究 (3)2.3 反应萃取集成在过氧化氢合成中的应用研究 (4)2.4 大型脉冲填料塔应用于反应萃取耦合技术 (4)2.5 反应萃取技术促进酯交换法合成碳酸二甲酯的反应研究. 52.6 超临界CO2萃取反应合成碳酸二甲酯的研究 (5)2.7反应萃取耦合技术合成硫酸烃胺的研究 (6)2.8 生物油超临界CO2酯化反应研究 (9)2.9 反应萃取精馏技术生产二氧五环的工艺研究 (10)2.10反应萃取生产三聚甲醛的新工艺 (10)2.11 富钙溶液中萃取与反应耦合强化CO2矿化过程 (11)2.12 离子液体反应萃取精馏合成乙酸乙酯 (12)2.13 反应-萃取-结晶过程制备碳酸钙 (12)3 结束语 (13)参考文献 (14)前言反应萃取是利用萃取剂与提取物之间的化学反应来达到分离目的一种技术。

即提取物与萃取剂之间通过化学反应形成的萃合物与分离物系中未发生反应的物质之间物理性质(主要是溶解性质)发生了改变,从而实现分离。

反应萃取也可指化学反应一萃取分离的耦合过程,即将产物不断萃入萃取相,只要能维持反应相中产物的浓度小于平衡浓度,反应就有向右进行的推动力,可以不断正向进行。

当今社会解决化学工业“高物耗、高污染和高能耗”的有效手段就是化工过程强化技术,这一技术被认为是彻底解决化学工业中三高问题的革命性手段。

而化工过程强化包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。

与传统方法相比,反应萃取技术作为一种新兴耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。

反应萃取的突出特点是可控的工艺变量多,通过改变条件可以控制相转移,而且分配比一般也较大,选择性也较强,还能分离反应精馏所不能分离的物质,例如分离沸点相近的混合物,如异构体;分离热敏性原料,如抗生素;水相中除去有机物,如废水中脱酚。

1 反应萃取的分类在萃取操作中,萃取剂与溶质之间不发生化学反应的萃取称为物理萃取;萃取剂和溶质之间发生化学反应的萃取成为化学萃取(即反应萃取)。

根据溶质与萃取剂之间发生的化学反应机理,反应萃取还可大致分为五类:络合反应、阳离子交换反应、离子缔合反应、加和反应、和带同萃取反应等。

在化工生产中,反应萃取主要应用于水解反应萃取,酯化反应萃取,酶化反应萃取以及硝化、肟化、醛化等过程[1]。

1.1 水解反应萃取反应萃取可应用于液-液条件下并且有酸性或碱性催化剂存在下的水解的反应。

可应用反应萃取的水解过程有:(1)在二氧化碳保护下,环氧丙烷与水和甲基三丁基碘铵共热,制备12-丙二醇。

采用反应萃取后,该过程可以得到很高的选择性,几乎没有聚乙二醇副产物产生;(2)磺酰氯在有季铵盐的液-液体系中的水解;(3)腈在吡啶/水/氢氧化钾体系中以NBu4Br作催化剂,或在二氯甲烷/水/氢氧化钠/30%H2O2体系中以NBu4HSO4为催化剂水解制酰胺的过程。

1.2 醣化反应萃取酯化反应萃取是反应萃取集成的重要应用之一,其中蔗糖和苯甲酰氯界面酯化与萃取集成生产甲酰基蔗糖已经实现了工业化。

此外,对醋酸和丁醇在液-液两相中反应萃取制醋酸丁酯的研究是目前反应萃取研究的热点之一。

1.3 酶反应萃取酶反应萃取能大大提高反应和分离效率,利用酶反应萃取和乳化液膜酶反应过程,已成功地实现了一些消旋物(L-苯丙氨酸)的拆分,酶反应萃取还主要应用于乳酸的生产中。

反应萃取的应用范围十分广泛,在化工,制药,石油等领域都扮演着重要的角色。

此外,反应萃取还和其他单元操作耦合,比如反应萃取精馏技术,反应萃取结晶技术以连续反应萃取技术等,都很好地实现了过程强化,为我们的工业生产做出及超临界CO2了巨大贡献。

2反应萃取的研究进展与应用2.1 酶促合成油酸香茅醇酯的超临界连续反应-分离过程许多研究业已表明在超临界条件下进行的化学反应,其收率、选择性,催化剂寿命及平衡态位置等多方面都可能与常规反应有较大的区别。

有鉴予此,近年来有关超临界)既是一相中化学反应的理论和应用研究都倍受重视。

超临界二氧化碳(以下简称SC-CO2种临界温度低的超临界流体又是一种对入体无害、化学惰性的非极性溶剂,因此它特别中能适合用作酶催化反成的非水介质。

事实上,已有许多研究表明多种生物酶在SC-CO2中进行生物合成提供了广阔而有人的很好地保持其原有的活性和稳定性,这为在SC-CO2应用前景。

曾健青、张耀谋[2]等人将固定床动态酶促反应过程和超临界二氧化碳萃取分离过程相耦合,设计并建立了一套超临界相反应分离一体化的实验装置。

在该装置上初步考察了反应压力和温度对脂肪酶催化油酸甲酯和外消旋香茅醇酯交换的影响,结果表明,其建立的反应装置能有效地实现反应分离一体化,当体系压力接近二氧化碳的临界压力时反应速率最高,9MPa压力下反应温度为328K时反应转化率最高,而在14MPa压力下反应转化率在308K-328K之间随着温度的升高而增大。

2.2 反应萃取法提纯赖氨酸的萃取平衡研究赖氨酸是一种碱性氨基酸,由于食物中赖氨酸含量较低,加工过程中易被破坏,引起赖氨酸缺乏,故常称为第一限制性赖氨酸。

它广泛应用于食品、饲料和医药工业,在平衡氨基酸组成方面,起着十分重要的作用。

目前,工业上采用发酵法生产赖氨酸的工艺比较成熟,但分离和提纯赖氨酸的下游技术还比较薄弱最近,采用溶剂萃取法分离和提纯赖氨酸的技术,引起了普遍的关注,形成了一个研究热点。

一般情况下,工业上采用溶剂萃取法分离和提纯氨基酸的技术。

董军芳[3]采用二磷酸酯为萃取剂萃取分离赖氨酸的工艺,在不同赖氨酸初始浓度和不同二( 2-乙基已基) 磷酸酯浓度下9测定用二( 2-乙基已基) 磷酸酯萃取分离赖氨酸的分配系数。

提出赖氨酸正一价阳离子和正二价阳离子与二( 2-乙基已基)磷酸酯萃取反应的机理,建立萃取达到平衡时分配系数的计算模型,得到萃取反应平衡常数计算模型对实验数据进行处理的结果表明,实验结果与所建模型吻合较好。

同时,说明赖氨酸不仅有正一价的阳离子参加反应,还有正二价的阳离子参加反应。

结果表明,氨基酸的初始浓度对萃取分配系数和萃取率没有明显的影响,萃取分配系数和萃取率随二磷酸酯的浓度的增加而显著增大随温度的升高而降低,得到的赖氨酸萃取率可达60%以上。

2.3 反应萃取集成在过氧化氢合成中的应用研究H 2O2是一种性能优良的氧化剂,目前H2O2主要生产方法为蒽醌法,其过程中萃取是关键步骤之一。

工业上一般利用筛板塔逆流液液萃取H2O2,为达到一定的生产效率,往往以增加萃取塔的高度来完成给定的分离要求。

而塔内引入扰动气体,进行气体扰动萃取,则可以在无须任何塔内构件的条件下,增加相际接触面积,降低塔的传质单元高度,提高萃取效率。

研究者认为在塔内引人惰性气体可以大大提高萃取效率,Sohn等提出了径向气体扰动的溶剂萃取过程,该过程在水平放置的萃取容器中以一定的间距于底部设置多处喷嘴,扰动气体由喷嘴进入。

此过程轴向返混小,无塔内构件,但此过程适合于连续相与分散相密度差比较大的体系。

关于H2O2生产中氧化与萃取的集成国外专利有所报道,但其只是将氧化与萃取两独立过程在同一塔内重复连续进行,没有实现真正意义上的集成和反应的原位萃取。

颜延哲、王莅等[4]人以蒽醌氧化液(OWS)或蒽醌氢化液(HWS)为塔底分散相,在H 2O2-OWS-H2O体系中进行H2O2的气体扰动萃取实验研究,在H2O2-OWS-H2O体系中进行反应气体扰动萃取实验研究。

以蒽醌氢化液为分散相进行反应萃取时,以含氧气体或氧气为扰动气体,实现H2O2的原位反应萃取,达到氧化与萃取相互促进的集成目的,提高H2O2的萃取效率。

结果表明:在一定萃取比范围内,在相同分散相流量下,萃取剂用量对H2O 2的萃取率影响很小;填料塔内的气体扰动萃取率比液液萃取率提高2~3倍;蒽醌氢化液的氧化与蒽醌氧化液的萃取过程集于一塔由进行是可行的。

相关文档
最新文档