浅析致密油渗流机理与体积压裂技术

合集下载

体积压裂技术的应用

体积压裂技术的应用

268体积压裂技术主要是针对致密油气层进行油气开发的一项技术,因为致密油气层自身具备的低渗、低压和低孔性,使储油层向裂缝的供液能力大大减弱,因此常规压裂技术无法达到理想的效果,体积压裂技术由此产生。

我国国内依据国外在体积压裂的基础上进行了进一步的研究,现已经在对储集层进一步进行体积压裂的改造。

未来通过对致密油层进一步开发和利用,体积压裂技术将成为最经济有效的关健技术。

1 体积压裂技术的含义我们常用的压裂技术为水压裂,在此基础上产生的主裂缝上形成为天然裂缝与支缝,从而形成了多于常规压裂方式形成的更加复杂的裂缝网络,这些网络的形成,使储油层与油筒的接触面积增加,使储集层的渗透能力明显提高,从而提高原油增产的结果,进一步提高原油产量。

2 体积压裂的特点2.1 通过网络压裂使裂缝呈现复杂的扩展形态传统压裂技术的目的是以形成对称裂缝为主增加岩层的渗透能力,而传统的网络压裂无法使致密油层形成更深的网络裂缝,这就很大程度的限制油层的产量,而通过体积压裂技术的应用,使致密岩层储层内形成了更多的树状网络裂缝,而这些裂缝增加了油体的渗出机率,从而有效的改善了泄油体积的增加。

2.2 裂缝之间形成错断和剪切等破坏岩层在体积压裂的作用下会发生错裂的现象,而这些裂缝随着岩层的不断运动形成位移或滑动的现象,这些都会在岩层表面形成一些不规则的形状,而这些裂缝之间会形成非常好的支撑能力。

在进行体积压裂的过程中,这些裂缝会以多分支的形式形成张开型裂缝,当压力低于主压力临界值时,就会形成剪切式断裂。

2.3 渗流机理的复杂性在进行体积压裂过程中对油气渗透机理的研究还有很长的路要走。

通过当前理论界的研究来看,大部分倾向于利用分形理论对缝网内渗进行理论阐述,同时根据这一理论基础对缝网建立的网络裂缝进行缝网内渗流特性模型。

人们可以利用这种模型方式进行科学分析和模拟。

3 体积压裂技术的应用和建议3.1 体积压裂技术的应用随着常规技术对致密油气层开发的局限性日益突出,为了提高致密油气层的油气产量,人们开始研究和应用体积压裂技术。

致密油气藏体积压裂技术

致密油气藏体积压裂技术

致密油气藏体积压裂技术(Stimulated Reservoir Volume)致密油气藏由于其储层本身具有低孔、低渗、低压等特点,因此储层的自然产能很低,相要实现高效商业化开发,必须采用压裂技术对储层进行改造。

由于储层基质向裂缝供液能力太差,仅靠单一压裂主缝的常规压裂技术很难取得预期的增产效果,因此必须探索研究新型的压裂改造技术,“体积压裂技术”的提出具有深刻意义。

国外已将此技术成功应用于页岩气、致密砂岩气以及页岩油的开发,国内也对体积压裂开展了初步研究,部分超低渗透区块已经成功实现了体积压裂技术对储集层的改造。

体积压裂技术必将逐步成为致密油藏经济有效开发的关键技术。

体积压裂技术(Stimulated Reservoir V olume)是指在水力压裂过程中,使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,从而增加改造体积,提高初始产量和最终采收率。

体积压裂改造的对象是基质孔隙性储层,天然裂缝不发育,低渗、超低渗油气藏。

这类油气藏的压裂裂缝仅扩大了井控面积,但由于垂直于人工裂缝壁面方向的渗透性很差,不足以提供有效的垂向渗流能力,导致压裂产量低或者压后产量递减快等问题。

通过体积压裂在垂直于主裂缝方向形成多条人工裂缝,改善了储层的渗流特性,提高了储层改造效果和增产有效期。

作用机理:在水力压裂的过程中,当裂缝延伸净压力大于两个主应力的差值与岩石的抗张强度之和时,容易形成分叉的裂缝,多条分叉裂缝相交就会形成一个“缝网”的系统,如图1所示,其中,以主裂缝为“缝网”系统的主干,分叉缝可能在距离主裂缝延伸一定长度后,又恢复到原来的裂缝方位上,最终形成了以主裂缝为主干的纵横“网状缝”系统。

图1 “缝网”形成示意图图2 单条裂缝形成示意图体积压裂缝网形成的影响因素:体积压裂能否形成复杂网络裂缝,取决于储集层地质和压裂施工工艺两个方面的因素。

1.地质因素(1)储集层岩石的矿物成分储集层岩石的矿物成分会影响岩石的力学性质,从而影响裂缝的起裂方式和延伸路径。

体积压裂技术在油田开发中的适用性分析

体积压裂技术在油田开发中的适用性分析

体积压裂技术在油田开发中的适用性分析体积压裂技术是一种常用的油田开发技术,其适用性取决于多个因素,包括地质条件、油藏特征和经济因素等。

本文将从这些方面进行分析。

一、地质条件:1. 储层岩性:体积压裂技术适用于岩石疏松、孔隙度高、渗透率低的储层,如砂岩和碳酸盐岩等。

对于非疏松储层如页岩等,压裂效果较差,适用性较低。

2. 差异性储层:体积压裂技术适用于具有水平、倾斜和弯曲井筒的储层。

通过水平井和多级压裂,可以最大限度地延伸裂缝,提高油气产能。

3. 快速排水储层:体积压裂技术适用于高渗透储层和对水敏感的快速排水储层。

通过压裂,可以提高渗透率,增大流动面积,加快采油速度。

二、油藏特征:1. 气候条件:体积压裂技术适用于气候温暖、气温变化不大的地区,以确保压裂液成分和性能的稳定性。

在极端气候条件下,如极低温或高温,压裂液的稳定性会受到很大影响,降低压裂效果。

2. 油藏压力:体积压裂技术适用于压力较高的油藏,可以有效地增加裂缝面积和渗透率,提高采收率。

对于低压油田,压裂效果较差,适用性较低。

3. 油藏温度:体积压裂技术对于高温油藏适用性较低,因为高温会导致压裂液流动性下降,增加压裂施工风险。

对于常温储层,适用性较高。

三、经济因素:1. 资金投入:体积压裂技术需要大量的资金投入,涉及到设备采购、作业费用和维护成本等。

只有对于有较高开发潜力和回报的油田才具备经济可行性。

2. 油价:高油价下,体积压裂技术的适用性较高,因为可以将更多的资源开采出来,提高经济效益。

低油价下,对于一些成本较高的油田,可能并不适合使用体积压裂技术。

3. 地区基础设施:体积压裂技术对基础设施的要求较高,包括供水、输油管道和天然气处理设施等。

如果地区基础设施不完善,可能会增加开发难度和成本,降低体积压裂技术的适用性。

体积压裂技术在油田开发中具有广泛的适用性,但需要根据具体地质条件、油藏特征和经济因素等综合考虑。

在选择使用体积压裂技术时,应做好技术评估与经济评估,确保其能够实现经济效益最大化。

致密油气桥塞体积压裂工艺异常分析及解决措施

致密油气桥塞体积压裂工艺异常分析及解决措施

122 |(1)套管形变。

(2)井筒异物。

(3)桥塞异常坐封。

(4)井筒异常泄压。

不同遇阻原因表现迹象也不同。

套管形变导致的桥塞遇阻多发生在水平井入窗点附近,施工表现为遇阻位置固定。

井筒异物造成的桥塞遇阻多表现为多点遇阻且无固定位置。

桥塞异常坐封引起的主要原因为桥塞质量问题、测井仪器异常、井筒压力异常激动。

井筒异常泄压造成的桥塞电缆卡死,主要是由于多家单位交叉作业时不慎造成下电缆作业时地面流程倒错造成,要建立严格的责任区及交接班制度来避免这种人为因素所造成的事故。

根据不同遇阻迹象可判断具体的遇阻原因,采取相应措施,避免造成事故复杂。

施工中途桥塞遇阻,不论哪种原因,在多次泵送无果后应起出射孔枪串,大排量(6~8m 3/min)清扫井筒后再行泵送。

若为套管形变所引起,则需通井修复套管。

严禁提高泵送排量强行推动桥塞下行通过遇阻位置,强行泵送易产生压力激动,会导致电缆断裂或桥塞半座封,造成事故复杂。

对于井筒异物导致的遇阻,一般大排量清扫井筒后可解决,若无果则需通井或打捞。

对于桥塞异常坐封,可溶桥塞可通过泵注10%KCL 溶液解卡,不可溶桥塞需利用连续油管穿心打捞的方式解决。

2.2 投球封堵压裂施工异常2.2.1 堵球遇阻及桥塞移位此种异常在桥塞体积压裂施工时经常出现,具体表现为泵送堵球理论到位但施工压力无到位迹象。

造成的主要原因有:(1)假性投球。

(2)井眼轨迹不规则。

(3)套管射孔毛刺。

(4)桥塞移位。

(5)储层低压。

在泵送堵球时,若注入液量超过井筒容积5~10m 3可判定出现异常,应再次投球泵送,解决假性投球造成的异常。

若二次送球后无到位迹象,则提高施工排量(4~6m 3/min)注入1.2倍井筒容积液量解决井眼轨迹不规则及套管射孔毛刺所造成的堵球遇阻异常。

若提排量泵送还无到位迹象,则需测井下工具探桥塞位置,排除由桥塞移位引起的送球异常。

如果桥塞无位移则判断为储层低压,若桥塞发生位移则需再次泵送桥塞。

《致密气藏体积压裂伤害机理实验研究》

《致密气藏体积压裂伤害机理实验研究》

《致密气藏体积压裂伤害机理实验研究》篇一一、引言随着油气资源的日益紧缺,致密气藏的开发成为了国内外研究的热点。

体积压裂技术作为一种有效的致密气藏开发手段,得到了广泛的应用。

然而,在体积压裂过程中,往往会出现伤害气藏的现象,影响了气藏的产能和经济效益。

因此,研究致密气藏体积压裂伤害机理,对于提高压裂效果和保障气藏长期稳产具有重要意义。

本文旨在通过实验研究致密气藏体积压裂的伤害机理,为实际工程提供理论依据。

二、实验材料与方法1. 实验材料实验所需材料主要包括致密岩心、压裂液、添加剂等。

其中,致密岩心应具有与实际气藏相似的物理性质和力学性质,以保证实验结果的可靠性。

2. 实验方法(1)制备致密岩心,模拟实际气藏条件下的物理性质和力学性质;(2)进行体积压裂实验,记录压裂过程中的压力变化、裂缝扩展情况等;(3)对压裂后的岩心进行观察和测试,分析体积压裂对岩心的伤害程度和伤害机理;(4)改变压裂液和添加剂的种类和浓度,进行多组实验,分析不同因素对体积压裂伤害的影响。

三、实验结果与分析1. 体积压裂过程分析在体积压裂过程中,随着压力的逐渐升高,岩心内部开始出现裂缝。

裂缝的扩展受到多种因素的影响,如岩心的物理性质、力学性质、压裂液的种类和浓度等。

在裂缝扩展的过程中,压裂液会进入裂缝中,进一步扩大裂缝的规模。

2. 体积压裂伤害机理分析(1)机械伤害:在体积压裂过程中,由于裂缝的扩展和压力的变化,岩心内部的结构会受到破坏,导致机械伤害。

机械伤害的程度与岩心的物理性质和力学性质有关。

(2)化学伤害:压裂液中可能含有一些化学物质,这些化学物质可能会与岩心中的某些成分发生反应,导致岩心的化学性质发生变化,从而产生化学伤害。

化学伤害的程度与压裂液的种类和浓度有关。

(3)综合伤害:机械伤害和化学伤害往往同时存在,相互影响,导致综合伤害。

综合伤害的程度取决于机械伤害和化学伤害的相对大小和作用方式。

3. 不同因素对体积压裂伤害的影响(1)压裂液种类:不同种类的压裂液对岩心的伤害程度不同。

体积压裂

体积压裂

体积压裂1体积压裂体积压裂是指在水力压裂过程中,使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,从而增加改造体积,提高初始产量和最终采收率。

1.1体积压裂机理体积压裂的作用机理:通过水力压裂对储层实施改造,在形成一条或者多条主裂缝的同时,使天然裂缝不断扩张和脆性岩石产生剪切滑移,实现对天然裂缝、岩石层理的沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生裂缝上继续分支形成二级次生裂缝,以此类推,形成天然裂缝与人工裂缝相互交错的裂缝网络。

从而将可以进行渗流的有效储层打碎,实现长、宽、高三维方向的全面改造,增大渗流面积及导流能力,提高初始产量和最终采收率。

1.2体积压裂的地层条件1)天然裂缝发育,且天然裂缝方位与最小主地应力方位一致。

在此情况下,压裂裂缝方位与天然裂缝方位垂直,容易形成相互交错的网络裂缝。

天然裂缝的开启所需要的净压力较岩石基质破裂压力低50%。

同样,有模型研究复杂天然裂缝与人工裂缝的关系,以及天然裂缝开启的应力变化等,建立了天然裂缝发育与扩展模型,研究表明,在体积改造中,天然裂缝系统会更容易先于基岩开启,原生和次生裂缝的存在能够增加复杂裂缝的可能性,从而极大地增大改造体积。

2)岩石硅质含量高(大于35%),脆性系数高。

岩石硅质(石英和长石)含量高,使得岩石在压裂过程中产生剪切破坏,不是形成单一裂缝,而是有利于形成复杂的网状缝,从而大幅度提高了裂缝体积。

3)敏感性不强,适合大型滑溜水压裂。

弱水敏地层,有利于提高压裂液用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝扩展到更大范围,大大扩大改造体积。

2太沙基有效应力原理太沙基(K. Terzaghi)早在1923年就提出了有效应力原理的基本概念,阐明了粒材料与连续固体材料在应力--应变关系上的重大区别,从而使土力学成为一门独立学科的重要标志。

σσ+μ=’式中σ为平面上法向总应力, kPa; σ′为平面上有效法向应力, kPa; μ为孔隙水压力, kPa。

致密油藏开发方式探讨

致密油藏开发方式探讨

致密油藏开发方式探讨致密油藏是指储层孔隙度低、渗透率低、储集空间小的油气藏。

由于储层特性的限制,致密油藏的开发一直是石油工业面临的重大难题。

随着技术的不断进步和研究的深入,针对致密油藏的开发方式也得到了不断地探讨和改进。

本文将探讨致密油藏的开发方式,并针对其中的一些关键技术进行分析和讨论。

一、致密油藏的特点及挑战1. 储层特性致密油藏的储层孔隙度低,渗透率低,储集空间小,使得其开发难度较大。

储层孔隙度低意味着储层的吸附能力强,难以释放储层中的油气;渗透率低意味着储层对流体的渗透能力差,难以形成有效的采收;储集空间小则意味着油气分布不均匀,导致开采困难。

2. 传统开发方式不适用传统的石油开发方式往往以储层中原生孔隙中的游离流体为主要开采对象,而致密油藏中的原生孔隙中的常规油气资源相对较少,大部分油气储存在毛细孔喉裂隙中,这就导致了传统的开采方式不再适用于致密油藏的开发。

二、致密油藏的开发方式1. 压裂技术目前,压裂技术是致密油藏开发的主要方式之一。

通过使用高压液体将储层中的毛细孔隙进行人工压裂,从而形成油气流通通道,提高油气的产能和采收率。

目前,压裂技术已经在致密油藏的开发中得到了广泛应用,但是由于压裂技术需要大量的水资源和化学添加剂,存在着对环境的潜在危害,因此在实际开发中需要合理使用和管理。

2. 气体驱替技术气体驱替技术是指通过注入高压天然气等气体,推动储层中的原油向井口移动,提高采收率的一种方法。

相比于传统的水驱法和聚合物驱替法,气体驱替技术能够有效地改善储层的渗透性,并且对储层有很好的适应性,因此在致密油藏的开发中具有很大的潜力。

3. 气矿扩容技术气矿扩容技术是指通过注入高压二氧化碳等气体,将其与储层中的原油相溶,从而提高原油的粘度,减小原油与孔隙介质之间的相互作用力,显著改善了储层的微观流体动力学性质,提高了产量和采收率。

4. 水平井技术水平井技术是指通过水平钻井技术,将井眼在垂直方向上延伸到油气层水平方向上,从而利用水平井眼提高储层的有效接触面积,提高油气采收的效率。

体积压裂技术在石油开发中的应用

体积压裂技术在石油开发中的应用

根据相关统计,发现我国低渗低压油气藏占量非常多,实现对其的开采和利用,能够有效缓解我国目前石油资源的紧张局面,该类石油开发存在一定难度,可以在开发当中积极应用体积压裂技术,全面提高石油开发效率。

一、体积压裂技术概述常规压裂增产理念主要是在压裂时抑制次生裂缝的扩展,主要形成一条主裂缝,产能源自裂缝的高渗流能力;体积压裂与常规压裂改造理念相反,压裂时通过各种工艺形成更多的裂缝,沟通更大的渗流区域,充分发挥主裂缝和天然裂缝增产优势。

当水力压裂时人工裂缝中产生的裂缝延伸净压力大于储层本身存在的最大最小应力差值,以及储层天然裂缝或者胶结面张开需要的临界压力时,人工裂缝就有极大机会在储层中出现多个分支缝,人工主裂缝和分支缝相互穿过,扭曲,交叉,形成初步的缝网结构。

这种结构类似与多裂缝形态,但比多裂缝稍显复杂,缝网仍然以主裂缝为主体,分支缝分布在主裂缝周围。

当主裂缝延伸一定长度以后,其缝内净压力小于应力差时,其分支裂缝会闭合,或者张开一些与主裂缝成一定角度的分支缝,裂缝形态会回归到主裂缝形态。

形成的这种主裂缝与分支缝不断交错分布的裂缝形态就叫做缝网,实现这种裂缝形态的压裂技术被称作体积压裂技术。

二、体积压裂技术在石油开发中的应用1.裂缝封堵压裂技术裂缝封堵技术包括缝内封堵以及缝口封堵。

缝内封堵与“端部脱砂”压裂技术核心机理类似,均是通过一定的裂缝封堵来增加裂缝中的净压力。

缝内封堵相对更加注重微观,天然裂缝发育储层,压裂时一般会开启多条裂缝并同时延伸,裂缝之间相互作用,裂缝狭窄,不利于加砂压裂提高砂比,对支撑剂颗粒大小要求较高,同时还增加了液体的滤失作用。

其一般采用粉砂或者缝内暂堵剂对主裂缝进行封堵,缝内净压力逐渐升高,达到一定程度便可改变原有裂缝走向,产生分支裂缝。

采用缝内暂堵进行缝网压裂时,缝网系统由人工主裂缝与天然裂缝或弱面形成的次生网络组成。

缝口封堵,常常也叫缝口暂堵压裂,其技术伴随着多簇射孔压裂而发展,通过北美页岩气生产测井分析,大约50%的射孔簇无效,29%的射孔簇低效,而21%的射孔簇贡献了70%的产量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析致密油渗流机理与体积压裂技术作者:张雨良
来源:《石油研究》2019年第09期
摘要:致密油气是世界上近20年来勘探、开发和研究的热点,致密油是非常规油气资源的一种,现在是比较火的一个概念,随着国民经济的高速发展,石油和天然气的需求量越来越大,开发和供应面临严峻挑战。

常规石油储量的增长有一定的限度,新增储量品位下降,已开发油田都已进入开发中后期,油田递减严重,矛盾突出;对非常规油气资源需求迫切,本文重点介绍致密油,致密油是指以吸附或游离状态赋存于生油岩中,或与生油岩互层、紧邻的致密砂岩、致密碳酸盐岩等储集岩中,未经过大规模长距离运移的石油聚集,致密储层孔隙度φ
关键词:致密油;非常规油气资源;基质覆压渗透率;渗流机理;体积压裂
引言
由于致密油储层孔隙度和渗透率极低的地质特征,加上油藏压力系数低,致密油一般无自然产能,必须采用压裂技术进行储层改造。

传统油气藏的水力压裂目的是造长缝,努力沟通远井地带的储层,增加泄流面积,从而将径向流改变为从地层到人工裂缝和从人工裂缝到井筒的近似双线性流,最终实现增产的目的。

然而张应力主导形成双翼对称裂缝,压裂后仍然是基质向裂缝“长距离”的渗流模式,导致传统压裂无法有效开采致密油。

在这个背景下,产生了体积压裂的理念,体积压裂理念的提出,颠覆了经典压裂理论,形成了现代压裂理论:除了张应力外,还有剪切、滑移、错断等复杂的力学行为,形成复杂的人工裂缝与天然裂缝的缝网系统以有效开采致密油。

1致密油渗流机理研究
致密油藏渗流环境复杂、孔喉狭小,使得储层渗透率很低,油水赖以流动的通道很细微,渗流阻力很大,液一固界面的相互作用力显著。

同时,低渗透多孔介质的物性参数受上覆有效应力的影响较大,导致渗流规律产生某种程度的变化而偏离达西定律,呈现低速非线性渗流现象,而常规油气渗流机理为达西渗流。

1.1渗流主要通道为微纳米级孔隙
致密储层渗流的主要通道为微纳米级孔隙。

在微纳尺度下多孔介质的比表面大,孔隙壁面与其附近流体的相互作用强,基质与流体之间的微观作用力必然会对流体的渗流规律产生影响。

国内外多位研究者的试验结果也证实经典的达西定律难以适用。

1.2微纳通道固液作用机理
在常规孔隙流动中,液体的黏性起因于分子间的吸引力,分子间吸引力越大,黏性越大,所以黏性与分子间吸引力成正比,在温度压力一定的条件下,黏度一般为常数;而在微納通道中,黏性由两部分组成,一部分是液体的常规黏度,另一部分是由固壁和液体分子相互作用所导致的附加黏度,进一步增加了渗流阻力。

1.3启动压力梯度研究
在中高渗透储层多孔介质中,由于孔隙孔道直径大,吸附滞留层的影响可以忽略,在渗流规律上表现为线性达西流,而在致密储层多孔介质中,孔隙孔道直径异常细小,启动压力梯度现象是致密油藏渗流区别于常规油藏渗流的主要差异,启动压力梯度受原油黏度、有效围压和岩石润湿性的影响。

在相似孔隙结构的储层中,渗透率一定的情况下,原油黏度越高,岩心测得的启动压力梯度就越大。

压力敏感:岩石受到的上覆压力增大,会使岩石颗粒间胶结物受挤压缩,孔隙体积和喉道半径减小,岩石颗粒受压发生弹性形变。

岩石孔隙的减小将增加渗流流体中边界流体的比重,边界层流体黏度增大,从而使启动压力梯度增大。

从图2中可以看出,致密油藏在较低的压力梯度下,水测渗透率也较低,体现了地层中流动的非线性特征.所以当驱替压力梯度大于启动压力梯度时,流体才可以发生流动。

体积压裂技术
体积压裂是在水力压裂的过程中,通过在主裂缝上形成多条分支缝或者沟通天然裂缝,最终形成不同于常规压裂的复杂裂缝网络,增加井筒与储集层接触体积,改善储集层的渗流特征及整体渗流能力,从而提高压裂增产效果和增产有效期。

2.1体积压裂的特点
(1)复杂网络裂缝扩展形态(2)复杂的渗流机理(3)裂缝发生错断、滑移、剪切破坏
(4)诱导应力和多缝应力干扰裂缝发生转向
2.2体积压裂改造储层的核心
(1)储层岩性具有显著的脆性特征,是实现体积改造的物质基础
储层岩石具有显著的脆性特性,是实现体积压裂的物质基础。

根据国外对致密油储层可压裂性的评价经验,脆性指数可以表示压裂的难易程度,反映的是储层压裂后所形成裂缝的复杂程度。

脆性指数是基于岩石的弹性模量和泊松比定义的,一般弹性模量越大、泊松比越小,脆性指数越高。

(2)裂缝以复杂缝网形态扩展,打碎储层,实现人造“渗透率”
体积压裂与传统压裂对比:理论基础由经典理论变为现代理论,裂缝形态由平面对称双翼裂缝变为非平面对称裂缝(弯曲缝、多裂缝)。

(3)裂缝发生剪切破坏,错断、滑移。

体积压裂与传统压裂对比:由传统的张开型破坏变为剪切等复杂的力学破坏。

内涵:剪切缝是岩石在外力作用下破裂并产生滑动位移,岩层表面形成不规则或凹凸不平的几何形状,具有自我支撑特性的裂缝;条件:当压力低于最小水平应力,产生剪切断裂;
地质力学特性:形成剪切缝的岩石具有较高的偏应力和强度,是不易发生塑性形变的脆性岩石(杨式模量高,泊松比低),富含强度较低的岩石结构或天然裂缝;剪切裂缝在径向上更为发育。

3 结论
(1)致密油渗流机理与常规油气渗流机理不同,在开发上,需要特殊的手段。

(2)体积压裂基于现代压裂理论是致密油开发的关键技术。

相关文档
最新文档