数学必修4第三章单元测试题

合集下载

数学必修四第三章试卷(含答案).

数学必修四第三章试卷(含答案).

必修四第三章姓名:___________班级:___________考号:___________一、单选题 1.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .432.计算212sin 22.5-︒的结果等于( )A .12B .2C D 3.已知1(0,),sin cos ,cos 22απααα∈+=且则的值为( ) )A .±B C D .-344.13cos80-的值为( ) A .2B .4C .6D .85.若3sin 5α=,,22ππα⎛⎫∈- ⎪⎝⎭,则5cos 4πα⎛⎫+= ⎪⎝⎭( )A .10-B .10C .10-D .106.若tan θ+1tan θ=4,则sin2θ= A .15 B .14C .13D .12—A .2πB .C .πD .4π 8.已知函数22()3cos sin 3f x x x =-+,则函数( ) A .()f x 的最小正周期为π,最大值为5B .()f x 的最小正周期为π,最大值为6C .()f x 的最小正周期为2π,最大值为5D .()f x 的最小正周期为2π,最大值为69.若1 s in 3α=,则2 c os +24απ⎛⎫= ⎪⎝⎭( ) A .23B .12C .13D .0}10.已知,则( )A .B .C .D .11.若α,β均是锐角,且αβ<,已知()3cos 5αβ+=,()12sin ,13αβ-=-,则sin 2α=( )A .1665-B .5665C .5665或1665D .5665或1665-12.若sinθcosθ=12,则tanθ+cosθsinθ的值是( )1二、填空题 13.已知1sin 23α=,则2cos ()4πα-= _ . @14.已知tan 3α=,则2sin sin 2αα-=______.15.如果tanα+tanβ=2, tan(α+β)=4,那么tanαtanβ等于_______.16.已知1tan 2α=,()2tan 5αβ-=-,则()tan 2βα-=____________.三、解答题17.已知函数23()cos()cos()2f x x x x ππ=+-+. (I )求()f x 的最小正周期和最大值; (II )求()f x 在2[,]63ππ上的单调递增区间. [18.已知3sin cos 0x x +=,求下列各式的值, (1)3cos 5sin sin cos x xx x+-;(2)22sin 2sin cos 3cos x x x x +-.\19.已知,2παπ⎛⎫∈⎪⎝⎭,且1sin 3α=..1)求sin 2α的值;(2)若()3sin 5αβ+=-.0,2πβ⎛⎫∈ ⎪⎝⎭,求sin β的值.]20.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.~21.已知函数2(cos cos f x x x x +. "(Ⅰ)求()f x 的最小正周期.(Ⅰ)求()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.—22.设函数f(x)=2cosx(cosx+√3sinx)(x∈R). (1)求函数y=f(x)的周期和单调递增区间;#]时,求函数f(x)的最大值.(2)当x∈[0,π2参考答案1.B 【解析】试题分析:sin cos tan 11,tan 3sin cos tan 12ααααααα++===---,22tan 63tan 21tan 84ααα-===--. 考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系. 2.B 【解析】 【分析】由余弦的二倍角公式可得结果. 【详解】由余弦的二倍角公式得 212sin 22.5cos 452-︒=︒=故选:B 【点睛】本题考查余弦二倍角公式的应用,属于简单题. 3.C 【解析】 【详解】试题分析:1sin cos 2αα+=,(0,)απ∈,3,24ππα⎛⎫∴∈ ⎪⎝⎭32,2παπ⎛⎫∴∈ ⎪⎝⎭,sin 44πα⎛⎫+= ⎪⎝⎭,cos 44πα⎛⎫∴+=- ⎪⎝⎭cos 2sin 22sin cos 224444πππαααα⎛⎛⎫⎛⎫⎛⎫=+=++=⨯-= ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭考点:二倍角公式的运用,同角三角函数间的关系. 4.B 【解析】 【分析】利用诱导公式、两角差的正弦公式和二倍角公式进行化简,求得表达式的值. 【详解】13cos80-13sin10=-cos103sin10-=()2sin 3010sin10cos10-=2sin 2041sin 202==. 故选:B 【点睛】本小题主要考查三角恒等变换,主要是诱导公式、两角差的正弦公式和二倍角公式的应用,考查化归与转化的数学思想方法,属于基础题.5.A 【解析】 【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据两角和的余弦函数公式,特殊角的三角函数值即可计算得解. 【详解】解:3sin 5α=, ,22ππα⎛⎫∈- ⎪⎝⎭,4cos 5α∴==,)5cos cos sin 4210πααα⎛⎫∴+=--=- ⎪⎝⎭. 故选:A . 【点睛】本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 6.D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等 7.A 【解析】 【分析】把三角函数式整理变形,变为()()sin f x A x =+ωϕ的形式,再用周期公式求出最小正周期. 【详解】()sin cos f x x x =+sin 22x x ⎫=+⎪⎪⎭4x π⎛⎫=+ ⎪⎝⎭,2T π∴=.故选:A. 【点睛】本小题主要考查辅助角公式,考查三角函数最小正周期的求法,属于基础题. 8.B 【解析】 【分析】利用降次公式化简()f x ,由此求出函数的最小正周期和最大值. 【详解】 依题意()1cos 21cos 2332cos 2422x x f x x +-=⨯-+=+,故最小正周期为2ππ2T ==,最大值为246+=,所以本小题选B. 【点睛】本小题主要考查降次公式,考查三角函数的最小正周期,考查三角函数的最大值的求法,属于基础题. 9.C 【解析】 【分析】直接利用降幂公式和诱导公式化简求值. 【详解】2cos +24απ⎛⎫= ⎪⎝⎭21cos()1sin 1322223παα++-===.故答案为:C. 【点睛】(1)本题主要考查降幂公式和诱导公式,意在考查学生对这些知识的掌握水平.(2)降幂公式:221cos 1cos sin ,cos 2222αααα-+==,这两个公式要记准,不要记错了. 10.C 【解析】分析:利用余弦的差角公式将cos 6x π⎛⎫-= ⎪⎝⎭展开,1sin 2x x += ,将cos cos 3x x π⎛⎫+-⎪⎝⎭展开合并化简,即可求出值.详解:∵cos 63x π⎛⎫-= ⎪⎝⎭1sin 2x x +=∵3cos cos cos 32x x x x π⎛⎫+-= ⎪⎝⎭1cos sin 22x x ⎫=+⎪⎪⎭13⎛⎫=-=- ⎪ ⎪⎝⎭所以选C点睛:本题考查了余弦差角公式的应用,主要注意符号的变化,属于简单题. 11.A 【解析】 【分析】根据α,β的范围,得到αβ+和αβ-的范围,结合条件,得到()sin αβ+和()cos αβ-,由()()sin2sin ααβαβ⎡⎤=++-⎣⎦,根据两角和的正弦公式,得到答案. 【详解】α,β均是锐角,且αβ<()0,αβπ∴+∈,,02παβ⎛⎫-∈- ⎪⎝⎭()3cos 5αβ+=, ()4sin 5αβ∴+==,()12sin 13αβ-=-,()5cos 13αβ∴-==, ∴()()sin2sin ααβαβ⎡⎤=++-⎣⎦()()()()sin cos cos sin αβαβαβαβ=+-++-45312513513⎛⎫=⨯+⨯- ⎪⎝⎭1665=-故选:A. 【点睛】本题考查同角三角函数关系,两角和的正弦公式,属于简单题. 12.B 【解析】依题意有:tanθ+cosθsinθ=1sinθcosθ=2.点睛:本题主要考查:同角三角函数的基本关系,是个简单题,主要要熟记两个同角三角函数的基本关系,即:tanθ=sinθcosθ和sin 2θ+cos 2θ=1.在运算过程中,主要采用的是切化弦的方法,即遇到正切,一般情况下是化为正弦和余弦来化简,化简过程中要注意通分和合并同类项,有时候还要结合二倍角公式来考虑. 13.23【解析】试题分析:21cos 21cos 21sin 2222cos 42223ππααπαα⎛⎫⎛⎫+-+- ⎪ ⎪+⎛⎫⎝⎭⎝⎭-==== ⎪⎝⎭.考点:1余弦的二倍角公式;2诱导公式. 14.310【解析】 【分析】利用二倍角公式将sin 2α化简,再把分母看做22sin cos αα+,分子分母同时除以2cos α,即可求得. 【详解】tan 3α=,22sin sin 2sin 2cos sin ααααα-=-222sin 2cos sin cos sin ααααα-=+ 22tan 2tan tan 1ααα-=+ 9691-=+ 310=. 故答案为:310. 【点睛】本题主要考查的是二倍角正弦公式的应用,以及同角三角函数基本关系式的应用,熟练掌握和应用这些公式是解决本题的关键,是基础题.15.【解析】 【分析】 由tan(α+β)=tanα+tanβ1−tanαtanβ可得tanαtanβ=1−tanα+tanβtan(α+β),从而可得结果.【详解】 因为tan(α+β)=tanα+tanβ1−tanαtanβ,tanα+tanβ=2, tan(α+β)=4,所以tanαtanβ=1−tanα+tanβtan(α+β)=1−24=12,故答案为12.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16.112-【解析】()25tan αβ-=-,()25tan βα∴-=()()()()211522tan 21112152tan tan tan tan tan βααβαβααβαα---⎡⎤-=--===-⎣⎦+-⨯+⨯ 17.(I )()f x 的最小正周期为π,最大值为1;(II )5[,]612ππ.【解析】试题分析:(I )利用三角恒等变换的公式,化简()sin(2)3f x x π=-,即可求解()f x 的最小正周期和最大值;(II )由()f x 递增时,求得51212k x k ππππ-≤≤+()k Z ∈,即可得到()f x 在5[,]612ππ上递增.试题解析:1cos 2()-cos )(sin )2x f x x x +=⋅-+(1sin 22sin(2)23x x x π==- (I )()f x 的最小正周期为π,最大值为1; (II ) 当()f x 递增时,222? ()232k x k k Z πππππ-≤-≤+∈,即51212k x k ππππ-≤≤+()k Z ∈, 所以,()f x 在5[,]612ππ上递增 即()f x 在2[,]63ππ上的单调递增区间是5[,]612ππ 考点:三角函数的图象与性质. 18.(1)-1;(2)165- 【解析】 【分析】(1)由题意可得1tan 3x =-,将原式化为含tan x 的表达式,代入可得答案;(2)将原式化为含tan x 的表达式,代入1tan 3x =-可得答案. 【详解】解:由题意得:3sin cos 0x x +=,可得1tan 3x =-,可得(1)533cos 5sin 35tan 311sin cos tan 113x x x x x x -++===-----; (2)222222sin 2sin cos 3cos sin 2sin cos 3cos sin cos x x x xx x x x x x+-+-=+222211()2()3tan 2tan 316331tan 15()13x x x -+⨯--+-===-+-+【点睛】本题主要考查三角恒等变化,相对简单,得出1tan 3x =-代入各式子是解题的关键.19.(1) .. 【解析】 【详解】分析:(1)根据正弦的二倍角公式求解即可;(2)由()βαβα=+-,然后两边取正弦计算即可.详解:(Ⅰ)2(,)παπ∈,且1sin 3α=,cos α∴=,-------2分于是 sin22sin cos 9ααα==-; (Ⅱ),2παπ⎛⎫∈⎪⎝⎭,02πβ∈(,),322(,)παβπ∴+∈,结合()3sin 5αβ+=-得:()4cos 5αβ+=-, 于是()()()sin sin sin cos cos sin βαβααβααβα⎡⎤=+-=+-+⎣⎦3414535315⎛+⎛⎫=-⋅---⋅= ⎪ ⎝⎭⎝⎭. 点睛:考查二倍角公式,同角三角函数关系,三角凑角计算,对于()βαβα=+-的配凑是解第二问的关键,属于中档题.20.(1)122f π⎛⎫=-⎪⎝⎭(2)(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦. 【解析】 【分析】先根据诱导公式及降幂公式化简得()f x cos2x =-;(1)代入求值即可;(2)由222,k x k k Z πππ≤≤+∈即可解出答案. 【详解】解:()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭22sin cos x x =-cos2x =-;(1)cos 1262f ππ⎛⎫=-=-⎪⎝⎭; (2)由222,k x k k Z πππ≤≤+∈得,,2k x k k Z πππ≤≤+∈,∴函数()f x 的单调递增区间是(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦. 【点睛】本题主要考查三角函数的化简与性质,属于基础题. 21.(Ⅰ)π(Ⅰ)最大值和最小值分别是32,0. 【解析】试题分析:(1)将()2cos cos f x x x x =+通过降幂公式、辅助角公式化简为()π1sin 262f x x ⎛⎫=++ ⎪⎝⎭,得到周期;(2)通过整体思想,得到ππ5π2,666x ⎡⎤+∈-⎢⎥⎣⎦,求得π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以最大值和最小值分别是32,0. 试题解析:解:(Ⅰ)()2cos cos f x x x x +1cos22xx +=+π1sin 262x ⎛⎫=++ ⎪⎝⎭.(Ⅰ)Ⅰππ,63x ⎡⎤∈-⎢⎥⎣⎦, Ⅰππ5π2,666x ⎡⎤+∈-⎢⎥⎣⎦, Ⅰπ1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, Ⅰ()30,2f x ⎧⎫∈⎨⎬⎩⎭,Ⅰ()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值分别是32,0.点睛:三角函数的化简需要对三角函数的二倍角公式(降幂公式)、辅助角公式熟悉应用,三角函数的性质考察通常利用整体思想解题,然后通过()sin f x x =的原始性质进行解题,得到对应的解。

高一数学必修4第三章综合练习题

高一数学必修4第三章综合练习题

必修四第三章综合检测题1.sin 2π12-cos 2π12的值为( )A .-12 B.12 C .-32 D.322.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π2 B .π C .2π D .4π3.已知cos θ=13,θ∈(0,π),则cos(3π2+2θ)=( )A .-429B .-79 C.429 D.794.若tan α=3,tan β=43,则tan(α-β)等于( )A .-3B .-13C .3 D.135.cos 275°+cos 215°+cos75°·cos15°的值是( )A.54B.62C.32 D .1+236.y =cos 2x -sin 2x +2sin x cos x 的最小值是( )A. 2 B .- 2 C .2 D .-27.若tan α=2,tan(β-α)=3,则tan(β-2α)=( )A .-1B .-15 C.57 D.178.函数y =cos2x +sin2x cos2x -sin2x的最小正周期为( ) A .2π B .π C.π2 D.π49.若函数f (x )=sin 2x -12(x ∈R ),则f (x )是( ) A .最小正周期为π2的奇函数 B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数10.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若cosα=17,⎪⎪⎪⎪⎪⎪sinα sinβcosα cosβ=3314,0<β<α<π2,则β等于( ) A.π12 B.π6 C.π4 D.π311.y =sin(2x -π3)-sin2x 的一个单调递增区间是( )A .[-π6,π3]B .[π12,712π]C .[512π,1312π]D .[π3,5π6]12 . 若,且,则的值是( )A. B. C. D.13. 在△ABC 中,若,则△ABC 的形状一定是 ( )A.等腰三角形B.直角三角形C.等腰直角三角形D. 等边三角形14.(1+tan17°)(1+tan28°)=________.15.已知cos2α=13,则sin 4α - cos 4α=________.16.设向量a =(32,sin θ),b =(cos θ,13),其中θ∈(0,π2),若a ∥b , 则θ=________.17函数y x x x =82sin cos cos 的周期T=_______最大值A=________.18.已知ABC ∆中,23sin ,cos 34C B ==-,则A cos = .19、已知tan α、tan β是方程22370x x +-=的两个实数根,求tan()αβ+的值。

高一数学必修4第三章综合检测题

高一数学必修4第三章综合检测题

第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。

人教版高中数学必修4第三章单元综合测试

人教版高中数学必修4第三章单元综合测试

高中数学学习材料金戈铁骑整理制作单元综合测试三时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.对任意的锐角α,β,下列不等关系中正确的是( ) A .sin(α+β)>sin α+sin β B .sin(α+β)>cos α+cos β C .cos(α+β)<sin α+sin βD .cos(α+β)<cos α+cos β解析:当α=β=30°时可排除A ,B ;当α=β=15°时,代入C 得0<cos30°<2sin15°,平方得34<4sin 215°=4×1-cos30°2=2-3≈0.268,矛盾.故选D.答案:D2.化简cos 2(π4-α)-sin 2(π4-α)得到( ) A .sin2α B .-sin2α C .cos2αD .-cos2α解析:原式=cos2(π4-α)=cos(π2-2α)=sin2α.答案:A3.3-sin70°2-cos 210°=( ) A.12 B.22 C .2D.32解析:原式=3-sin70°2-1+cos20°2=2(3-sin70°)3-cos20°=2.答案:C4.已知tan α=12,tan(α-β)=-25,那么tan(β-2α)的值为( ) A .-34 B .-112 C .-98D.98解析:tan(β-2α)=tan[(β-α)-α]=-112. 答案:B5.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈ZB.⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈ZC.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈ZD.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z解析:f (x )=3sin ωx +cos ωx =2sin(ωx +π6),由已知得周期T =π. ∴ω=2,即f (x )=2sin(2x +π6).由2k π-π2≤2x +π6≤2k π+π2(k ∈Z )得k π-π3≤x ≤k π+π6(k ∈Z ). 答案:C6.在△ABC 中,sin A sin B <cos A cos B ,则△ABC 为( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .等腰三角形解析:sin A sin B <cos A cos B ,即sin A sin B -cos A cos B <0, -cos(A +B )<0,所以cos C <0,从而角C 为钝角,△ABC 为钝角三角形.答案:B7.2sin2α1+cos2α·cos 2αcos2α等于( ) A .tan α B .tan2α C .1D.12解析:原式=2sin2α1+2cos 2α-1·cos 2αcos2α=2sin α·cos αcos 2α-sin 2α=2tan α1-tan 2α=tan2α. 答案:B8.若cos2θ+cos θ=0,则sin2θ+sin θ=( ) A .0 B .±3 C .0或 3D .0或±3解析:由cos2θ+cos θ=0得2cos 2θ-1+cos θ=0, 所以cos θ=-1或12.当cos θ=-1时,有sin θ=0; 当cos θ=12时,有sin θ=±32.于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3. 答案:D9.已知等腰三角形顶角的余弦值等于45,则这个三角形底角的正弦值为( )A.1010 B .-1010 C.31010D .-31010解析:设等腰三角形的底角为α(0<α<π2),则其顶角为π-2α.由已知cos(π-2α)=45,∴cos2α=-45.故1-2sin 2α=-45,sin 2α=910. 又0<α<π2,∴sin α=31010. 答案:C10.已知sin2α=35(π2<2α<π),tan(α-β)=12,则tan(α+β)=( ) A .-2 B .-1 C .-211D.211解析:由sin2α=35,且π2<2α<π, 可得cos2α=-45,∴tan2α=-34, ∴tan(α+β)=tan[2α-(α-β)] =tan2α-tan (α-β)1+tan2αtan (α-β)=-2.答案:A11.已知向量a =(cos2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则tan(α+π4)=( )A.13 B.27 C.17D.23解析:由题意,得cos2α+sin α(2sin α-1)=25, 解得sin α=35.又α∈(π2,π), 所以cos α=-45,tan α=-34, 则tan(α+π4)=tan α+tan π41-tan αtan π4=17.答案:C12.将函数f (x )=12sin2x sin π3+cos 2x cos π3-12sin(π2+π3)的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,则函数g (x )在[0,π4]上的最大值和最小值分别为( )A.12,-12B.14,-14C.12,-14D.14,-12解析:f (x )=12×32sin2x +12cos 2x -12sin 5π6 =34sin2x +12cos 2x -14=34sin2x +12×1+cos2x 2-14=12sin(2x +π6), 所以g (x )=12sin(4x +π6).因为x ∈[0,π4],所以4x +π6∈[π6,7π6],所以当4x +π6=π2时,g (x )取得最大值12;当4x +π6=7π6时,g (x )取得最小值-14.答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知α,β为锐角,且cos(α+β)=sin(α-β),则tan α=________. 解析:∵cos(α+β)=sin(α-β),∴cos αcos β-sin αsin β=sin αcos β-cos αsin β. ∴cos α(sin β+cos β)=sin α(sin β+cos β). ∵β为锐角,∴sin β+cos β≠0,∴cos α=sin α, ∴tan α=1. 答案:114.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值为________. 解析:由已知得32cos α+32sin α=453, 所以12cos α+32sin α=45, 即sin(α+π6)=45,因此,sin(α+7π6)=-sin(α+π6)=-45. 答案:-4515.已知0<x <π2,化简:lg(cos x ·tan x +1-2sin 2x 2)+lg[2cos(x -π4)]-lg(1+sin2x )=________.解析:原式=lg(sin x +cos x )+lg(sin x +cos x )-lg(sin x +cos x )2=0. 答案:016.设函数f (x )=2cos 2x +3sin2x +a ,已知当x ∈[0,π2]时,f (x )的最小值为-2,则a =________.解析:f (x )=1+cos2x +3sin2x +a =2sin(2x +π6)+a +1.∵x ∈[0,π2],∴2x +π6∈[π6,7π6]. ∴sin(2x +π6)∈[-12,1],∴f (x )min =2×(-12)+a +1=a .∴a =-2.答案:-2三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知cos(x -π4)=210,x ∈(π2,3π4). (1)求sin x 的值; (2)求sin(2x +π3)的值.解:(1)∵x ∈(π2,3π4),∴x -π4∈(π4,π2), ∵cos(x -π4)=210,∴sin(x -π4)=7210. ∴sin x =sin[(x -π4)+π4] =sin(x -π4)cos π4+cos(x -π4)sin π4 =7102×22+210×22=45. (2)由(1)可得cos x =-35, ∴sin2x =-2425,cos2x =-725, ∴sin(2x +π3)=sin2x cos π3+cos2x sin π3 =-24+7350.18.(12分)已知cos α=17,cos(α-β)=1314,且0<β<α<π2. (1)求tan2α的值; (2)求β的值.解:(1)∵0<α<π2且cos α=17, ∴sin α=1-cos 2α=437, ∴tan α=sin αcos α=4 3.tan2α=2tan α1-tan 2α=2×431-(43)2=-8347. (2)∵0<β<α<π2,∴0<α-β<π2, 由cos(α-β)=1314.得sin(α-β)=1-cos 2(α-β)=3314, ∴sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32, ∵0<β<π2 ∴β=π3.19.(12分)已知函数f (x )=2cos(x -π12),x ∈R . (1)求f (-π6)的值;(2)若cos θ=35,θ∈(3π2,2π),求f (2θ+π3). 解:(1)f (-π6)=2cos(-π6-π12) =2cos(-π4)=2cos π4=1. (2)f (2θ+π3)=2cos(2θ+π3-π12)=2cos(2θ+π4) =cos2θ-sin2θ.因为cos θ=35,θ∈(3π2,2π),所以sin θ=-45.所以sin2θ=2sin θcos θ=-2425,cos2θ=cos 2θ-sin 2θ=-725. 所以f (2θ+π3)=cos2θ-sin2θ=-725-(-2425)=1725.20.(12分)已知函数f (x )=sin(x -π6)+cos(x -π3),g (x )=2sin 2x2. (1)若α是第一象限角,且f (α)=335,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解:f (x )=sin(x -π6)+cos(x -π3) =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x ,(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1. 于是sin(x +π6)≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.21.(12分)点P 在直径为AB =1的半圆上移动,过点P 作圆的切线PT ,且PT =1,∠P AB =α,问α为何值时,四边形ABTP 的面积最大?解:如图,因为AB 为直径,PT 切圆于P 点,所以∠APB =90°,P A =cos α,PB =sin α,S 四边形ABTP =S △P AB +S △TPB=12P A ·PB +12PT ·PB sin α=12sin αcos α+12sin 2α=14sin2α+1-cos2α4=14(sin2α-cos2α)+14 =24sin(2α-π4)+14.因为0<α<π2,因为-π4<2α-π4<3π4,所以当2α-π4=π2,即α=3π8时,四边形ABTP 的面积最大.22.(12分)已知向量a =(3sin2x ,cos2x ),b =(cos2x ,-cos2x ).(1)若x ∈(7π24,5π12)时,a ·b +12=-35,求cos4x 的值;(2)cos x ≥12,x ∈(0,π),若方程a ·b +12=m 有且仅有一个实根,求实数m 的值.解:(1)∵a ·b =3sin2x cos2x -cos 22x∴a ·b +12=3sin2x cos2x -cos 22x +12 =32sin4x -1+cos4x 2+12 =32sin4x -12cos4x=sin(4x -π6)=-35,∵x ∈(724π,512π),∴4x ∈(76π,53π),4x -π6∈(π,32π),∴cos(4x -π6)=-45,∴cos4x =cos[(4x -π6)+π6]=cos(4x -π6)cos π6-sin(4x -π6)sin π6=(-45)×32-(-35)×12=3-4310.(2)因为cos x ≥12,又余弦函数在(0,π)上是减函数,所以0<x ≤π3,令f (x )=a ·b +12=sin(4x -π6),g (x )=m ,在同一坐标系中作出两个函数的图象,由图可知m =1或m =-12.。

数学必修4第三章单元测试题

数学必修4第三章单元测试题
(2)已知 ,求 的值.
C.第三象限D.第四象限
6、化简 ( )
17、细胞学说的建立被誉为19世纪自然科学的三大发现之一。A. B. C. D.
10、由于煤、石油等化石燃料消耗的急剧增加,产生了大量的二氧化碳,使空气中的二氧化碳含量不断增加,导致全球气候变暖、土壤沙漠化、大陆和两极冰川融化,给全球环境造成了巨大的压力。7、已知 ,则 ( )
三、解答题(共44ቤተ መጻሕፍቲ ባይዱ)
4、科学家研究表明昆虫头上的触角就是它们的“鼻子”,能分辨出各种气味,比人的鼻子灵敏得多。15、(10分)已知 ,求 的值
13、1663年,英国科学家罗伯特.胡克用自制的复合显微镜观察一块软木薄片的结构,发现它们看上去像一间间长方形的小房间,就把它命名为细胞。16、(12分)(1)已知 求 的值;
A.
B.答:水分和氧气是使铁容易生锈的原因。 B. C. D.
1、填空题(每题4分,共16分)
11、 =____________;
2、1969年7月,美国的“阿波罗11号”载人飞船成功地在月球上着陆。12、
13、已知 是方程 的两根,且. 都是锐角,则 ___________;
6、蚜虫是黄色的,在植物的嫩枝上吸食汁液,每个蚜虫只有针眼般大小,在10倍放大镜下我们可以看清它们的肢体。14、已知 ,那么 ;.
1、 的值是( )
A. B. C. D.
2、已知 都是锐角, 则 ( )
A. B. C. D.
3、已知 ,那么 ( )
A. B. C. D.
4、已知 则 ( )
六年级下册科学复习资料A. B. C. D.
预计未来20年,全球人均供水量还将减少1/3。5、已知 ,那么角 的终边所在的象限为( )

北师大版数学必修4第三章单元检测题及答案

北师大版数学必修4第三章单元检测题及答案

第1页 共11页第三章 命题人:吴亮 检测人: 李丰明第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分) 1.已知,,则的值为(的值为( ) A. B.C.或 D.或 2. 如果,那么等于(等于( ) A.B. C. D. 3.sin163°sin223°+sin253°sin313°等于(等于( )A .-12 B.12 C .-32 D.324.化简:的值为(的值为( ) A. B. C. D. 5.在△ABC 中,如果sinA =2sinCcosB ,那么这个三角形是,那么这个三角形是A .锐角三角形.锐角三角形B .直角三角形.直角三角形C .等腰三角形.等腰三角形D .等边三角形.等边三角形6.若β∈(0,2π),且1-cos 2β+1-sin 2β=sinβ-cosβ,则β的取值范围是的取值范围是A .[0,π2]B .[π2,π]C .[π,3π2]D .[π2,2π] 7.若为锐角三角形的两个锐角,则的值(的值( ) A.不大于B.小于 C.等于 D.大于8.已知θ为第四象限角,sinθ=-32,则tanθ等于(等于( ) A.33 B .-33 C .±33 D .-3 9.已知sinα+sinβ+sinγ=0,cosα+cosβ-cosγ=0,则cos(α-β)的值是的值是4cos()5αβ+=4cos()5αβ-=-cos cos αβ045045045±sin()sin()mnαβαβ+=-tan tan βαm n m n -+m n m n +-n m n m -+n mn m+-ππcos sin 44ππcos sin 44x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan2xtan 2x tan x -cot x A B ,tan tan A B 1111A .-1B .1C .-12D.D.112 10.已知sin(α-β)=1010,α-β是第一象限角,tanβ=12,β是第三象限角,则cosα的值等于值等于A.7210 B .-7210 C.22 D .-22二、填空题(本大题共6小题,每小题5分,共30分)把答案填第Ⅱ卷题中横线上1111.若.若0<α<π2,0<β <π2且tanα=17,tanβ=34,则α+β的值是________.1212.已知函数.已知函数f(x)=(sinx -cosx)sinx ,x ∈R ,则f(x)的最小正周期是________.13.若,则______.14. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是为增函数的区间是。

2019-2020学年高中数学人教A版必修4同步作业与测评:第三章 单元质量测评 Word版含解析

第三章 单元质量测评对应学生用书P97 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2sin 275°-1的值是( ) A .12 B .-12 C .32 D .-32 答案 C解析 2sin 275°-1=2cos 215°-1=cos30°=32.2.函数f (x )=2sin ωx cos φ+2cos ωx sin φω>0,-π2<φ<π2的部分图象如图所示,则φ的值是( )A .-π3B .-π6C .π6D .π3 答案 A解析 f (x )=2sin ωx cos φ+2cos ωx sin φ=2sin(ωx +φ).由图象,得34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,所以ω=2.因为图象过点⎝ ⎛⎭⎪⎫5π12,2,且-π2<φ<π2,所以2×5π12+φ=π2,所以φ=-π3,故选A .3.设a =12cos6°-32sin6°,b =2tan13°1-tan 213°,c =1-cos50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 ∵a =sin30°cos6°-cos30°sin6°=sin(30°-6°)=sin24°,b =tan(2×13°)=tan26°,c =sin 50°2=sin25°,∴a <c <b .4.2cos10°-sin20°cos20°的值为( )A . 3B .62C .1D .12 答案 A解析 原式=2cos (30°-20°)-sin20°cos20°=2(cos30°cos20°+sin30°sin20°)-sin20°cos20°=3cos20°cos20°=3.5.已知θ是锐角,那么下列各值中,sin θ+cos θ能取得的值是( ) A .43 B .34 C .53 D .12 答案 A解析 ∵0<θ<π2,∴θ+π4∈π4,3π4, 又sin θ+cos θ=2sin θ+π4, 所以22<sin θ+π4≤1, 所以1<sin θ+cos θ≤2.6.函数y =sin2x +π3·cos x -π6+cos2x +π3·sin π6-x 的图象的一条对称轴方程是( )A .x =π4B .x =π2C .x =πD .x =3π2 答案 C解析 y =sin ⎣⎢⎡⎦⎥⎤2x +π3-x -π6=sin π2+x =cos x ,当x =π时,y =-1.故x =π是图象的一条对称轴方程.7.sin163°sin223°+sin253°sin313°等于( ) A .-12 B .12 C .-32 D .32 答案 B解析 sin163°sin223°+sin253°sin313°=sin163°sin223°+sin(90°+163°)sin(90°+223°) =sin163°sin223°+cos163°cos223° =cos(223°-163°) =cos60°=12.8.函数f (x )=3sin2x -cos2x 的图象可以由函数g (x )=4sin x cos x 的图象________得到.( )A .向右移动π12个单位B .向左移动π12个单位 C .向右移动π6个单位 D .向左移动π6个单位 答案 A解析 ∵g (x )=4sin x cos x =2sin2x ,f (x )=3sin2x -cos2x =2sin2x -π6=2sin2x -π12,∴f (x )可以由g (x )向右移动π12个单位得到.9.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos2θ等于( ) A .22 B .12 C .0 D .-1 答案 C解析 a =(1,cos θ),b =(-1,2cos θ). ∵a ⊥b ,∴a ·b =-1+2cos 2θ=0, ∴cos2θ=2cos 2θ-1=0.10.设函数f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-4,则a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin2x +a =1+cos2x +3sin2x +a =2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.当x ∈0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴f (x )min=2×⎝ ⎛⎭⎪⎫-12+a +1=-4.∴a =-4.故选C .11.已知1-cos x +sin x1+cos x +sin x=-2,则sin x 的值为( )A .45B .-45C .-35D .-155 答案 B 解析 原式=(1-cos x )+sin x(1+cos x )+sin x=2sin 2x 2+2sin x 2cos x 22cos 2x 2+2sin x 2cos x 2=tan x2=-2,∴sin x =2sin x 2cos x 2sin 2x 2+cos 2x 2=2tan x 21+tan2x 2=2×(-2)1+4=-45,故选B . 12.已知方程x 2+4ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则tanα+β2的值是( ) A .12 B .-2 C .43 D .12或-2 答案 B解析 由题意知:⎩⎨⎧tan α+tan β=-4a ,tan α·tan β=3a +1,∴tan(α+β)=tan α+tan β1-tan αtan β=-4a 1-3a -1=43,tan(α+β)=2tan α+β21-tan 2α+β2=43,∴tan α+β2=12或tan α+β2=-2. 由a >1,可得 tan α+tan β=-4a <0, tan α·tan β=3a +1>0, ∴tan α<0,tan β<0, 结合α,β∈⎝ ⎛⎭⎪⎫-π2,π2,∴α,β∈⎝ ⎛⎭⎪⎫-π2,0,α+β2∈⎝ ⎛⎭⎪⎫-π2,0,∴tan α+β2<0,故tan α+β2=-2,故选B .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 因为向量a ∥b ,所以sin2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.14.若(tan α-1)(tan β-1)=2,则α+β=________. 答案 k π-π4,k ∈Z解析 (tan α-1)(tan β-1)=2⇒tan αtan β-tan α-tan β+1=2⇒tan α+tan β=tan αtan β-1⇒tan α+tan β1-tan αtan β=-1.即tan(α+β)=-1,∴α+β=k π-π4,k ∈Z .15.已知sin ⎝ ⎛⎭⎪⎫x +π6=33,则sin ⎝ ⎛⎭⎪⎫5π6-x +sin 2π3-x =________.答案2+33解析 sin ⎝ ⎛⎭⎪⎫5π6-x +sin 2⎝ ⎛⎭⎪⎫π3-x =sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫5π6-x +cos 2⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π3-x =sin ⎝ ⎛⎭⎪⎫x +π6+1-sin 2⎝ ⎛⎭⎪⎫x +π6=33+1-13=2+33.16.关于函数f (x )=cos2x -23sin x cos x ,下列命题: ①存在x 1,x 2,当x 1-x 2=π时,f (x 1)=f (x 2)成立; ②f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上是单调递增;③函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形;④将函数f (x )的图象向左平移5π12个单位长度后将与y =2sin2x 的图象重合.其中正确命题的序号是________(注:把你认为正确命题的序号都填上).答案 ①③解析 ∵f (x )=2sin ⎝ ⎛⎭⎪⎫π6-2x =2sin ⎝ ⎛⎭⎪⎫2x +5π6=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +5π12,∴周期T =π,故①正确;∵π2≤2x +5π6≤3π2,解之得x ∈⎣⎢⎡⎦⎥⎤-π6,π3,是其递减区间,故②错误;∵对称中心的横坐标满足2x +5π6=k π⇒x =k π2-5π12,当k =1时,x =π12,故③正确;④中应该是向右平移,故④不正确.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知cos α-sin α=325,且π<α<3π2,求sin2α+2sin 2α1-tan α的值.解 因为cos α-sin α=325,所以1-2sin αcos α=1825.所以2sin αcos α=725.又α∈π,3π2,故sin α+cos α=-1+2sin αcos α=-425. 所以sin2α+2sin 2α1-tan α=(2sin αcos α+2sin 2α)cos αcos α-sin α=2sin αcos α(cos α+sin α)cos α-sin α=725×-425325=-2875.18.(本小题满分12分)已知向量a =cos x ,-12,b =(3sin x ,cos2x ),x ∈R ,设函数f (x )=a ·b .(1)求f(x)的最小正周期;(2)求f(x)在0,π2上的最大值和最小值.解f(x)=cos x,-12·(3sin x,cos2x)=3cos x sin x-12cos2x=32sin2x-12cos2x=cos π6sin2x-sin π6cos2x=sin2x-π6.(1)T=2π2=π,即函数f(x)的最小正周期为π.(2)∵0≤x≤π2,∴-π6≤2x-π6≤5π6.由正弦函数的性质知,当2x-π6=π2,即x=π3时,f(x)取得最大值1;当2x-π6=-π6,即x=0时,f(x)取得最小值-12.因此,f(x)在0,π2上的最大值是1,最小值是-12.19.(本小题满分12分)在斜△ABC中,sin A=-cos B·cos C,且tan B tan C=1-3,求角A.解在△ABC中,有A+B+C=π,所以sin A=sin(B+C).所以-cos B cos C=sin B cos C+cos B sin C.上式两边同时除以cos B cos C,得tan B+tan C=-1.又tan(B+C)=tan B+tan C1-tan B tan C=-11-(1-3)=-33=-tan A . 所以tan A =33. 又0<A <π,所以A =π6.20.(本小题满分12分)函数f (x )=3sin ωx ·cos ωx +sin 2ωx +k ,ω>0. (1)若f (x )图象中相邻两条对称轴间的距离不小于π2,求ω的取值范围; (2)若f (x )的最小正周期为π,且当x ∈-π6,π6时,f (x )的最大值是12,求f (x )最小值,并说明如何由y =sin2x 的图象变换得到y =f (x )的图象.解 f (x )=32sin2ωx +1-cos2ωx 2+k =32sin2ωx -12cos2ωx +12+k =sin ⎝ ⎛⎭⎪⎫2ωx -π6+k +12. (1)由题意可知T 2=π2ω≥π2,∴ω≤1.又ω>0, ∴0<ω≤1.(2)∵T =πω=π,∴ω=1. ∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+k +12.∵x ∈⎣⎢⎡⎦⎥⎤-π6,π6,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π2,π6.从而当2x -π6=π6,即x =π6时, f (x )max =f ⎝ ⎛⎭⎪⎫π6=sin π6+k +12=k +1=12,∴k =-12,故f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,∴当2x -π6=-π2,即x =-π6时f (x )取最小值-1.把y =sin2x 的图象向右平移π12个单位得到y =sin (2x -π6 )的图象. 21.(本小题满分12分)已知函数f (x )=2cos x -π3+2sin ⎝ ⎛⎭⎪⎫3π2-x . (1)求函数f (x )的单调减区间;(2)求函数f (x )的最大值并求f (x )取得最大值时的x 的取值集合;(3)若f (x )=65,求cos ⎝ ⎛⎭⎪⎫2x -π3的值. 解 (1)f (x )=2cos x cos π3+2sin x sin π3-2cos x=cos x +3sin x -2cos x =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6. 令2k π+π2≤x -π6≤2k π+3π2(k ∈Z ),∴2k π+2π3≤x ≤2k π+5π3(k ∈Z ),∴单调递减区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ). (2)f (x )取最大值2时,x -π6=2k π+π2(k ∈Z ),则x =2k π+2π3(k ∈Z ).∴f (x )的最大值是2,取得最大值时的x的取值集合是⎩⎨⎧⎭⎬⎫xx =2k π+2π3,k ∈Z . (3)f (x )=65,即2sin ⎝ ⎛⎭⎪⎫x -π6=65,∴sin ⎝ ⎛⎭⎪⎫x -π6=35. ∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝ ⎛⎭⎪⎫x -π6=1-2×⎝ ⎛⎭⎪⎫352=725. 22.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且2sin 2A +B 2+cos2C =1.(1)求角C 的大小;(2)若sin 2A -sin 2B =12sin 2C ,试求sin2A +π3的值.解 (1)由2sin 2A +B 2+cos2C =1,得1-cos(A +B )+2cos 2C -1=1.又由A +B +C =π,将上式整理,得2cos 2C +cos C -1=0,即(2cos C -1)(cos C +1)=0.∴cos C =12或cos C =-1(舍去).由0<C <π,得C =π3.(2)由sin 2A -sin 2B =12sin 2C ,得2sin 2A -2sin 2B =sin 2C ,即1-cos2A -1+cos2B =34,cos2B -cos2A =34,∵A +B =2π3,∴B =2π3-A .∴cos ⎝ ⎛⎭⎪⎫4π3-2A -cos2A =34,∴-32cos2A -32sin2A =34. 得32cos2A +12sin2A =-34,∴sin ⎝ ⎛⎭⎪⎫2A +π3=-34.。

高一数学高中数学必修4:第三章++三角恒等变换+单元同步测试(含解析)


答案 A
二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.将答案填在题中
横线上 )
13.已知 α,β为锐角,且 cos(α+β)=sin(α-β),则 tanα=________.
解析 ∵cos(α+β)=sin(α-β),
∴ cosαcosβ-sinαsinβ=sinαcosβ- cosαsinβ.
高中同步学习方略
3
1
3sinA-cos(B+C)= 3sinA+ cosA=2( 2 sinA+2cosA)
=2cos(60 °- A)=2cos45°= 2.
答案 A
ห้องสมุดไป่ตู้
5.已知
tanθ=13,则
cos2θ+
1 2sin2θ等于
(
)
6
4
4
6
A.- 5 B.- 5
C.5
D.5
cos2θ+sinθcosθ 1+tanθ 6 解析 原式= cos2θ+sin2θ =1+tan2θ=5.
时,
y
有最大值
1+ 2
2 ;

sin
2x+π4 =- 1
时, y
有最小值
1- 2
2 .
3
新课标 A 版·数学·必修 4
高中同步学习方略
∴值域为
1- 2
2 1+ ,2
2 .答案
C
2cos10 °-sin20 ° 11. sin70 ° 的值是 ( )
1
3
A. 2 B. 2
C. 3
D. 2
解析
2cos 30°-20°-sin20 °
新课标 A 版·数学·必修 4
高中同步学习方略
第三章测试

高一数学必修4:第三章章末检测Word版含解析(2)


解析: sinx+ 3cosx- a= 0,∴ a=sinx+ 3cosx
=2
1 2sin x+
3 2 cosx
=2sin
x+
π 3
,-
1≤sin
x+π3 ≤ 1,∴- 2≤ a≤2.
9.若
α, β为锐角,
2 sinα= 5
5, sin(α+ β)= 35,则
cosβ等于 (
)
25 A. 5
25 B. 25
故 f(x)=
2sin
2πx+
π 4 .将
x=-
1代入得函数值为 8
0.
1,故 2π= 1,∴ a= 2π, a
7. tan20 +°tan40 +° 3(tan20 +°tan40 °)等于 ( )
3 A. 3 B . 1
C. 3 D. 6 答案: C
解析: tan60 °= tan20 +°tan40 °, 1- tan20 ·°tan40 °
C.2 5或 2 5
5
25
D .-
2 25
5
答案: B
解析: cosβ= cos[( α+β)-α]
= cos(α+ β)cosα+sin(α+ β)sinα,
∵ α为锐角 cosα=
1- 2205= 55,

sin(α+
β)=
35<
sinα,∴
α+
β>
π 2.
∴ cos(α+ β)=-
1- 295=- 45,
D.1
解析: 原式=
sin68 °cos23°- cos68°sin23 °= sin(68
°- 23°)= sin45 °=
2 2.
2.已知

人教版高中数学必修4第三章单元测试(二)- Word版含答案

2018-2019学年必修四第三章训练卷三角恒等变换(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.22cos 15sin 15︒-︒的值为( )A .12B .2 C .3 D .62.函数sin 2cos cos 2sin 3636y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+⋅-++⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的图象的一条对称轴方程是( ) A .4x π=B .2x π=C .x =πD .2x 3π=3.已知()5sin 45α︒=+,则sin 2α等于( ) A .45-B .35-C .35D .454.sin 2sin 23y x x π⎛⎫=-- ⎪⎝⎭的一个单调递增区间是( )A .,63ππ⎡⎤-⎢⎥⎣⎦B .,1212π7π⎡⎤⎢⎥⎣⎦C .,12125π13π⎡⎤⎢⎥⎣⎦D .,36π5π⎡⎤⎢⎥⎣⎦5.已知θ是锐角,那么下列各值中,sin cos θθ+能取得的值是( ) A .43B .34 C .53D .126.sin163sin223sin253sin313︒︒+︒︒等于( ) A .12-B .12C .3-D .3 7.已知tan 222θ=-,22θπ<<π,则tan θ的值为( ) A .2 B .2-C .2D .2或2-8.函数sin cos y x x =-的图象可以看成是由函数sin cos y x x =+的图象平移得到的.下列所述平移方法正确的是( ) A .向左平移2π个单位 B .向右平移4π个单位 C .向右平移2π个单位 D .向左平移4π个单位 9.设sin17cos45cos17sin45a =︒︒+︒︒,22cos 131b =︒-,3c =,则有( ) A .c a b << B .b c a <<C .a b c <<D .b a c <<10.化简1sin 4cos41sin 4cos4αααα+-++的结果是( )A .1tan 2αB .tan 2αC .1tan αD .tan α11.如图,角α的顶点在坐标原点O ,始边在y 轴的正半轴,终边经过点()3,4P --.角β的顶点在原点O ,始边在x 轴的正半轴,终边OQ 落在第二象限,且tan 2β=-,则cos POQ ∠的值为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A.B.CD12.设12(,)a a =a ,12(,)b b =b .定义一种向量积:1212(,)(,)a a b b ⊗⊗=a b 1122(,)a b a b =.已知12,2⎛⎫= ⎪⎝⎭m ,,03π⎛⎫= ⎪⎝⎭n ,点,()P x y 在sin y x =的图象上运动,点Q 在()y f x =的图象上运动.且满足OQ OP =⊗+uuu v uu u vm n (其中O 为坐标原点),则()y f x =的最大值A 及最小正周期T 分别为( ) A .2,π B .2,4π C .12,4π D .12,π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13的值是________.14.已知sin cos2αα=,,2απ⎛⎫∈π ⎪⎝⎭,则tan α=________.15.函数2sin si o (n c s )y x x x =+的最大值为________.16.已知α、β均为锐角,且()cos s n(i )αβαβ=+-,则tan α=________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知tan α,tan β是方程26510x x +=-的两根,且02απ<<,2β3ππ<<. 求:tan()αβ+及αβ+的值.18.(12分)已知函数()22cos 2sin 4cos f x x x x -=+. (1)求3f ⎛⎫⎪⎝⎭π的值;(2)求()f x 的最大值和最小值.19.(12分)已知向量3si ()n ,cos αα=a ,2sin 5sin 4cos ()ααα=-,b ,3,22απ⎛⎫∈π ⎪⎝⎭,且⊥a b .(1)求tan α的值; (2)求cos 23απ⎛⎫+ ⎪⎝⎭的值.20.(12分)已知函数()2s 2sin o 24f x x x π⎛⎫=+ ⎪⎝⎭.(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,求实数m 的取值范围.21.(12分)已知函数()()2cos 2s co 1f x x x x x +-=∈R . (1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)若()065f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值.22.(12分)已知02αβπ<<<<π,1tan 22α=,1os (0c )βα=-. (1)求sin α的值; (2)求β的值.2018-2019学年必修四第三章训练卷三角恒等变换(二)答 案一、选择题 1.【答案】C【解析】由题可知:22cos 15sin 15cos30︒-︒=︒=,故选C .2.【答案】C【解析】sin 2sin cos 362y x x x x ⎡ππ⎤π⎛⎫⎛⎫⎛⎫=+--=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当x =π时,1y =-.故选C . 3.【答案】B【解析】()()sin cos sin 45ααα=+︒+,∴sin cos αα+ 两边平方,∴21sin 25α+=,∴3sin 25α=-.故选B . 4.【答案】B【解析】1sin 2sin 2sin 2cos cos 2sin sin 2sin 223332y x x x x x x x πππ⎛⎫=--=--=- ⎪⎝⎭sin 23x π⎛⎫=-+ ⎪⎝⎭当12x π=时,min 1y =-;当12x 7π=时,max 1y =, 且T =π.故选B . 5.【答案】A 【解析】∵02θπ<<,∴,444θππ3π⎛⎫+∈ ⎪⎝⎭,又sin cos 4θθθπ⎛⎫+=+ ⎪⎝⎭,sin 14θπ⎛⎫<+≤ ⎪⎝⎭,1sin cos θθ<+≤.故选A . 6.【答案】B【解析】sin163sin223sin253sin313︒︒+︒︒sin 9073sin 270()()()(47sin 18073sin 36)047+=︒+︒︒-︒︒+︒︒-︒ cos73cos47si ()()n73sin 47---=︒︒︒︒ cos73cos47sin73sin 4(7)︒︒-︒=︒- cos 73)4(7=-︒+︒ 1cos1202=-︒=.故选B . 7.【答案】B【解析】∵22θπ<<π,∴2θπ<<π, 则tan 0θ<,22tan tan 21tan θθθ==--2tan 0θθ-=,解得tan 2θ=或tan θ=(舍去),∴tan 2θ=.故选B . 8.【答案】C【解析】sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭∴sin cos 424y x x x x π⎡ππ⎤⎛⎫⎛⎫=-=-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选C .9.【答案】A【解析】sin62a =︒,cos26sin64b =︒=︒,sin60c =︒. ∵sin y x =,0,2x π⎛⎫∈ ⎪⎝⎭为递增函数,∴c a b <<.故选A .10.【答案】B【解析】原式()()222sin 2sin 2cos 22sin 22sin 2cos 2tan 22cos 22sin 2cos 22cos 2cos 2sin 2ααααααααααααα++===++. 故选B . 11.【答案】A【解析】11t ()an tan tan 2βθθ=π--=-=, ∴1tan 2θ=,2tan 43θ=.∴1212tan tan 21tan tan tan POQ θθθθ+-==-∠,∴2POQ <∠π<π.∴cos POQ ∠=.故选A . 12.【答案】C【解析】112,(),02,2332,OQ OP x x y y ππ⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝=⊗+=⊗⎭⎝⎭uuu v uu u v m n ,则023x x π=+,012y y =,所以0126x x π=-,02y y =, 所以()11sin 226x y f x π⎛⎫=- ⎪⎝⎭=.所以最大值12A =,最小正周期4T =π.故选C .二、填空题 13.【答案】1【解析】tan 60tan15tan 4511tan 60tan15︒-︒==︒=+︒︒1=. 14.【答案】 【解析】∵2sin cos212sin ααα==-,∴22sin sin 10αα+-=,∴1sin 2α=或1-. ∵,2απ⎛⎫∈π ⎪⎝⎭,∴1sin 2α=,∴56α=π,∴tan α=.15.1【解析】2sin sin co ()1cos 2sin 2s n 214x y x x x x x π⎛⎫=-+- ⎝++⎪⎭=,∴max 1y . 16.【答案】1【解析】∵()cos s n(i )αβαβ=+-∴cos cos sin sin sin cos cos sin αβαβαβαβ-=- ∴()cos sin cos s ()in cos sin αββαββ=++ ∵α、β均为锐角, ∴sin cos 0ββ+≠,∴cos sin αα=,∴tan 1α=.三、解答题 17.【答案】1,54π. 【解析】∵tan α,tan β是方程26510x x +=-的两根,∴5tan tan 6αβ+=,1tan tan 6αβ=,()115tan tan 6tan 1tan t n 61a αβαβαβ==--+=+. ∵02απ<<,2β3ππ<<, ∴2αβπ<+<π,∴54αβπ+=. 18.【答案】(1)94-;(2)6,73-.【解析】(1)2392cos sin 4cos 12333344f π2ππ⎛⎫= ⎪⎝⎭π+-=-+-=-.(2)()()()2222cos 11cos 4cos 3cos 4cos 12f x x x x x x -+--=--=2273cos 33x ⎛⎫=-- ⎪⎝⎭,x ∈R .因为[]cos 1,1x ∈-,所以,当cos 1x =-时,()f x 取得最大值6; 当2cos 3x =时,()f x 取得最小值73-. 19.【答案】(1)43-;(2).【解析】(1)∵⊥a b ,∴0⋅=a b .而3si ()n ,cos αα=a ,2sin 5sin 4cos ()ααα=-,b , 故226sin 5sin cos 4cos 0αααα⋅=+-=a b . 由于cos 0α≠,∴26tan 5tan 40αα+-=. 解之,得4tan 3α=-,或1tan 2α=.∵3,22απ⎛⎫∈π ⎪⎝⎭,tan 0α<,故1tan 2α= (舍去).∴4tan 3α=-.(2)∵3,22απ⎛⎫∈π ⎪⎝⎭,∴3,24απ⎛⎫∈π ⎪⎝⎭.由4tan 3α=-,求得1tan 22α=-或tan 22α=(舍去).∴sin2α=cos 2α=,1cos cos cos sin sin 2323223αααπππ⎛⎫+=-=-= ⎪⎝⎭20.【答案】(1)π,2,1212k k k π5π⎡⎤π-π+∈⎢⎥⎣⎦Z ;(2)[]0,1m ∈.【解析】(1)()2s 2sin o 24f x x x π⎛⎫=+ ⎪⎝⎭1cos 222x x π⎛⎫=-+ ⎪⎝⎭1sin 2x x =+2sin 213x π⎛⎫=-+ ⎪⎝⎭,周期T =π;222232k x k ππππ-≤-≤π+, 解得()f x 的单调递增区间为,1212k k k π5π⎡⎤π-π+∈⎢⎥⎣⎦Z .(2),42x ππ⎡⎤∈⎢⎥⎣⎦,所以22,363x πππ⎡⎤-∈⎢⎥⎣⎦,1sin 2,132x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈. 21.【答案】(1)π,最大值为2,最小值为1-;(2. 【解析】(1)由()2cos 2c o s 1f x x x x =+-,得())2()2cos 22sin 22sin cos 2co 6s 1x x f x x x x x π⎛⎫++=+ ⎪⎝⎭-,所以函数()f x 的最小正周期为π.因为()2sin 26x f x π⎛⎫=+ ⎪⎝⎭在区间0,6π⎡⎤⎢⎥⎣⎦上为增函数,在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数,又()01f =,26f π⎛⎫= ⎪⎝⎭,12f π⎛⎫=- ⎪⎝⎭, 所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为1-.(2)由(1)可知()002sin 26f x x π⎛⎫=+ ⎪⎝⎭.因为()065f x =,所以03sin 265x π⎛⎫+= ⎪⎝⎭.由0,42x ππ⎡⎤∈⎢⎥⎣⎦,得0272,636x πππ⎡⎤+∈⎢⎥⎣⎦,从而04cos 265x π⎛⎫+=- ⎪⎝⎭.∴0000cos 2cos 2cos sin 2sin 66666cos 26x x x x ⎡ππ⎤ππππ⎛⎫⎛⎫⎛⎫=+-=+++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.22.【答案】(1)45;(2)34π. 【解析】(1)22tan42tan 31tan 2ααα==-,∴sin 4cos 3αα=.又∵22sin cos 1αα+=, 解得4sin 5α=. (2)∵02αβπ<<<<π,∴0βα<-<π.∵os (c )βα=-,∴()sin βα=- ∴[]sin sin sin cos cos s ()()()in ββααβααβαα-+-+==-3455=+=∵,2βπ⎛⎫∈π ⎪⎝⎭,∴34βπ=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
1
' sin15 cos75 sin 75 cos15 的值是(
)
4 3
5,sin
5 '那么角2的终边所在的象限为(
9、已知 ABC 中,ta nA tan B •- 3
3 tan Atan B ,贝
U
C ()
A.—
B. —
C.
D.
2 6
4
3
3
10、已知口 a 丄,
一3
,b sin ,cos
2 2
A.-
2 B.
扌C.子D.
2、已知, 都是锐
角, sin
4 ,cos 5…
,则 sin (
5
13
A 16 B.
16
C.
56 A. — D.
65
65
65
3、已知tan 1 + ,ta n
2 ,那么
tan
2 ()
2
5
A 3 1 C.
9 9 A. B
D. 4 12
8
8
4、已知tan
1,则 sin 2 sin 2
(
)
2
)
56 65
A.
B.
- C . 1
2
D.
A.第一象限 B .第二象限
6、 化简 cos 22.5 si n 422.5 sin 23 cos78
sin67 sin 78
() A. 1
B. 1
C.
1
D.
1
2
2
7

已知口 sin x 3
,则 sin 2x ()
4 5
19 c 16 c 14 7
A.
B.
C.—
D.—
25
25
25
25
8、 在 ABC 中,若 sin AsinB cosAcosB ,, 则ABC 必是() A 、
直角三角形 B 钝角三角形
C 、 锐角三角形 D
等边三角形
C •第三象限 D.第四象限
5、已知cos
,a b,则满足此条件的的一个值是
精品文档
一、填空题(每题4分,共16分)
11、sin15 sin30 cos15 = _____________
13、已知tan ,tan 是方程x2 3..3x 4 0的两根,且
14、已知13sin 5 cos 9,13cos 5sin
三、解答题(共44分)
15、(10分)已

cos
6
3
J
5
c 5 卡
0, 6,求
:cos 的值
16、(12 分)
(1)
已知c os
3
J
5
3,求
2
sin cos—
2 2
(2)已知cos2
3
5,
求sin4 4 cos 的值•
2

值;
A.—
6
B. -
C. -
3 2
D.
12、1
sin10
都是锐角,则
15,那么sin
cos10。

相关文档
最新文档