现代轮胎结构设计3详解

合集下载

轮胎各部件结构设计

轮胎各部件结构设计

b'
的数据,综合权衡确定
R
R1的数据为165mm.
H L h
Rn
R1
a
13
⑽肩下反弧R的确定 对于全钢载重子午胎,肩下一般不采用切线,而采 用一反弧,反弧R过肩部端点和R1相切,一般b较 大,R较小, b较小,R较大。
以12.00R20 S811 18P.R为例 结合其它方法途径搜集的数据,综合权衡确定R为
DJ DF
DC
a
25
以12.00R20 S811 18P.R为例 冠部总厚=16.5+5.5+7.5+2+2.5=34mm
2.5 7.5 16.5 2 5.522 34
a
26
肩部总厚DJ的确定,一般DJ/DT ≤1.25
DI DT
DJ DF
B4 B1 B3
B2
DC
a
27
以12.00R20 S811 18P.R为例 肩部总厚=42mm,42/34=1.2353
HS HF HB1 Ф HZ HB2
DN DW
DL
a
W
34
以12.00R20 S811 18P.R为例 胎体反包点高度
=65mm 子口包布外端点高度
=50mm 胎体反包点到下胎侧 轮廓线的距离=10mm 胎体反包点到胎体帘 线的距离=13mm 填充胶的高度=140mm 140/150.5=0.9302
条形花纹 以条形为主 以横沟为主 越野花纹 混合花纹 混合花a 纹
M+S花纹
19
⑵花纹形状及尺寸的确定: 根据已确定的花纹类型,来确定其形状及尺寸。 花纹沟走向与带束层钢丝走向至少差5°. 以12.00R20 S811 18P.R为例 轮胎主要用于较好或一般路面

轮胎各部件结构设计课件

轮胎各部件结构设计课件
轮胎各部件结构设计
学习交流PPT
1
2、外胎技术设计
1) 、外胎断面轮廓曲线的设计; 2) 、 胎面花纹形状的设计;
3) 、外胎材料分布图的绘制.
学习交流PPT
2
L h
b b'
外 胎
技 术 设 计
D
d
H
H1
Hr
R1
B R2
R3 R4
R5
W
学习交流PPT C
Rn
R
3
1、外胎断面轮廓曲线的设计
⑴着合宽度C的确定:
R2=〔1/4×(326-252-2×24.5)2 +(150.5-46)2〕/(326-2522×24.5) =443.06mm.
取R2=353mm.
学习交流PPT
D
d
H
H1
B R2
3.3 C
15
⑿下胎侧弧度半径R3 的确定:
根据R2和轮辋曲线, 结合其它方法途径搜集 的数据,综合权衡确定 R3的数据。 以12.00R20 S811 18P.R 为例 取R3=90mm.
R3
取R4=21.5mm(轮辋23mm).
180mm. b'
R
H L h
Rn
R1
学习交流PPT
14
⑾下胎侧圆弧半径R2的确定:
R2=〔1/4×(B-C-2a)2
+(H1-Hc)2〕/(B-C-2a)
式中a为轮辋曲线宽的2/3.Hc为 轮辋曲线高.
一般情况下,R2 弧的延长线与 着合位置线的交点距离着合宽 度端点大约0~5mm.
以12.00R20 S811 18P.R为例
3.2
2

Φ508
8.50"X20"Ⅰ型平底轮辋

第 3 章 充气轮胎动力学讲解

第 3 章 充气轮胎动力学讲解
Z轴:与地面垂直, 向下为正。
汽车系统动力学
2、车轮运动参数
1)滑动率 s 车轮相对于纯滚动(或纯滑动)状态的偏离程度,
是影响轮胎产生纵向力的一个重要因素。 考虑为驱动与被驱动两种情况。
滑转率----驱动工况 滑移率----被驱动工况
车轮的滑动率
汽车系统动力学
若车轮滚动半径为 uw ,轮心前进速度(等于车辆
胎肩—用于散热 胎侧—用于帘布层侧壁,免受潮湿和机械损失
汽车系统动力学
3. 常用充气轮胎种类:两种
斜交轮胎 子午线轮胎
胎体帘线角度不同
帘线角:胎体帘布层单线与车轮中心线形成的夹角
子午线轮胎帘线角 85o ~ 90o 斜交轮胎的帘线角 20o ~ 40o
教材中列出了典型轮胎中各种材料所占的比例。

1 12

E12
3

—相对总滑移率,

2 x


2 y
Dy —轮胎的侧向偏矩,Dy FY K cy K cy —侧向刚度,Kcy d1Fz d2 Fz2
式中 a1, a2 ,..., b1,b2 ,..., c1, c2 ,..., d1, d2 均由试验数据拟合得到。
汽车系统动力学
3)轮胎径向变形
轮胎径向变形是车辆行驶过程中遇到路面不平度而使 轮胎在半径方向上产生的变形,定义为无负载时的轮
胎半径 rtf 与负载时的轮胎半径 rt 之差,表达式为:
rt rtf
正的轮胎径向变形产生正的轮胎法向力 FS 。
汽车系统动力学
第二节 轮胎功能、结构及发展
1. 轮胎的垂向特性
充气轮胎的一个基本功能是在不平路面行驶时起缓冲 作用,该缓冲作用与充气轮胎的弹性有关,通常以轮 胎所受的载荷和变形的曲线来表示轮胎的刚度特性, 它对车辆的行驶平顺性行驶稳定性和制动性均有重要 影响。

轮胎结构讲解

轮胎结构讲解

轮胎结构讲解
轮胎啊,看着就是一圈黑乎乎的东西,但里面构造可丰富了,就像个复杂的汉堡包一样层层叠加。

最外面那层皮(胎面):这就是轮胎和路面对面battle的部分,上面有各种花纹,像是给轮胎穿的鞋子底,既能抓地防滑,还能排水,走起路来声音小,不吵人。

两边的肉夹馍(胎肩):胎面两侧鼓出来的部分,转弯时它俩上场,帮着稳住车身,别让车漂了,同时也能帮着快速排水。

侧面的花衣裳(胎侧):轮胎的侧面,印着各种信息,像是身份证一样,告诉你是啥牌子,多大号。

这层软软的,能吸收路上的小颠簸,让你坐车舒服些。

轮胎里的钢筋铁骨(帘布层):轮胎里面的骨架,一层层纤维布交叉织在一起,让轮胎既有弹性又结实,不怕撑破。

加固层(带束层):紧挨着胎面那一层,用钢丝或者特强尼龙做的,就像是给轮胎穿上护甲,让它在高速跑时更稳当,不容易变形。

密封圈(气密层):就像轮胎里的保鲜膜,保证气不漏,通常用橡胶做,有时候还会加点高科技材料,密封效果杠杠的。

轮胎的戒指(胎圈):轮胎和轮毂之间的连接环,得够硬够牢固,保证轮胎不乱跑。

内层保护膜(内衬层):贴在轮胎里面,和气密层一起工作,双重保险防漏气。

现在的轮胎技术,那是越来越高级,尺寸越来越大,设计也越来越炫酷,不光是为了好看,更是为了让车开起来更爽、更安全。

就像顶级赛车那样,连悬挂系统都要跟着轮胎的进化升级,一切都是为了让车手开得更快,轮胎用得更久。

所以说,轮胎虽然不起眼,但每一块、每一层都是精心设计的,为了让你的车跑得稳、跑得快、还跑得舒服。

全钢子午线轮胎结构设计

全钢子午线轮胎结构设计

全钢子午线轮胎结构设计
1.引言
全钢子午线轮胎是现代轮胎行业中的一种重要类型,其在汽车行业中
得到了广泛的应用。

全钢子午线轮胎一般由胎体、胎面、胎侧及胎底组成,其结构设计直接影响着轮胎的性能和使用寿命。

本文将对全钢子午线轮胎
的结构设计进行详细的介绍和分析。

2.全钢子午线轮胎的结构组成
2.1胎体
胎体是轮胎的主要组成部分,其主要作用是承载整个车辆的重量和提
供承载力。

胎体一般由多层高强度钢丝帘布叠加而成,这种结构可以提高
轮胎的稳定性和耐用性。

2.2胎面
胎面是轮胎与地面接触的部分,其主要作用是提供抓地力和减震功能。

胎面一般由橡胶混合物制成,其表面有复杂的花纹设计,以提供良好的抓
地力和抗滑性能。

2.3胎侧
胎侧是轮胎的两侧部分,其主要作用是保护胎体和提供支撑。

胎侧一
般由橡胶制成,其设计和厚度决定了轮胎的侧向刚性和防护性能。

2.4胎底
胎底是轮胎的底部部分,其主要作用是提供额外的支撑和保护。

胎底
一般由厚实的橡胶制成,其设计和结构决定了轮胎的耐磨性和抗损伤性能。

3.全钢子午线轮胎的结构设计原则
3.1强度和稳定性
3.2抓地力和耐磨性
3.3减震和舒适性
4.全钢子午线轮胎的结构设计方法
全钢子午线轮胎的结构设计通常通过计算和模拟分析来完成。

首先,通过对车辆的负荷和运行条件的分析,确定胎体的强度和层数。

然后,通过对胎面的各种花纹设计的评估和比较,选择适合的花纹形式。

最后,通过模拟分析和试验验证,确定最终的轮胎结构设计。

5.结论。

汽车子午线轮胎的结构

汽车子午线轮胎的结构

汽车子午线轮胎的结构汽车子午线轮胎是现代汽车上常见的一种轮胎类型,它采用了子午线结构,具有许多优点。

本文将介绍汽车子午线轮胎的结构及其特点。

一、胎体结构汽车子午线轮胎的胎体结构由多层帆布和钢丝帘构成。

其中,帆布层是由尼龙、聚酯纤维等材料制成,它可以增加轮胎的强度和耐磨性。

钢丝帘被编织成环状,以增强轮胎的刚性和稳定性。

这种结构使得轮胎能够承受车辆的重量,并具有良好的抗扭转能力。

二、胎面花纹汽车子午线轮胎的胎面花纹是由一系列凸起的线条和图案组成的。

这些花纹的设计不仅起到了美观的作用,还对轮胎的性能有着重要的影响。

胎面花纹的主要功能是提供良好的抓地力和排水性能。

凸起的线条可以增加轮胎与地面的摩擦力,提高车辆的操控性能。

同时,花纹中的槽道可以有效排除胎面下的水,减少轮胎打滑的风险。

三、侧壁结构汽车子午线轮胎的侧壁也是其重要的组成部分。

侧壁上通常印有轮胎的基本信息,如尺寸、载荷指数和速度级别等。

侧壁的材料通常是橡胶,它具有良好的弹性和耐磨性。

侧壁的设计可以提高轮胎的稳定性和舒适性,以及对路面的吸震能力。

同时,侧壁还起到保护轮胎内部结构的作用,避免因外界物体的碰撞而导致损坏。

四、气室结构汽车子午线轮胎内部有一个气室,用来装入充气的空气。

气室的结构通常由胎内衬胶和胎带组成。

胎内衬胶是一种特殊的橡胶材料,具有良好的密封性能,可以防止气体泄漏。

胎带则是一种纤维材料,用来增强气室的强度和稳定性。

气室的设计合理与否直接关系到轮胎的使用寿命和安全性,因此必须严格控制充气压力,避免过高或过低。

五、其他构造除了以上几个主要部分外,汽车子午线轮胎还包括许多其他构造。

例如,内衬胶可以起到防止气体渗透的作用;胎侧垫可以增加轮胎的刚性;胎底胶可以提高轮胎与轮毂的粘合力。

这些构造的设计和制造都需要严格遵循相关的标准和工艺要求,以确保轮胎的质量和性能。

总结起来,汽车子午线轮胎的结构包括胎体结构、胎面花纹、侧壁结构、气室结构和其他构造。

第三章轮胎结构设计子午胎部分

第三章轮胎结构设计子午胎部分
4、 缺点是备胎携带不方便,前后轮不能互换。 这种轮胎在发达国家已普遍使用,在我国还是空白。它也将成为我国轮胎发展的一个方向。
(四)低断面轮胎
随着汽车速度的加快,必须提高其稳定性。减小轮胎和轮辋直径,降低汽车重心,增大轮胎断面宽和轮辋的宽度, 提高轮胎的侧向刚性,都可以提高其稳定性。
但减小轮辋直径受到制动性限制,直径过小不能保证有效的制动性,因此降低轮胎轮胎断面高,增大断面宽的方 法得以实现,从而出现了低断面轮胎。通常宽比在0.8以下就为低断面轮胎。
补强填充体系原材料
子午线、 低断面、
无内胎 三位一体是世界轮胎工业发展的方向,发达国家在很大的程度上已经达到了这个方向,在我国也得到较快的发展
架,承受轮胎的内压负荷、载重负荷、牵引力、转向力和制动力,由纤维(尼龙、聚酯、人造丝、芳纶)帘线 或钢丝帘线构成。
胎面胶通过及地面的接触, 承受冲击和磨损,传递牵引力、转 向力、和制动力。通常根据轮胎的 不同用途和使用路况,在胎面胶上 设计有不同类型和样式的花纹。
胎侧胶、内衬(密封)层是从轮胎的内外保护轮胎的胎体帘线免受机械和化学损伤(如摩擦和氧化)。无内胎 轮胎的密封层还具有良好的防空气渗漏性。
(三)宽断面轮胎 其结构特点是断面宽比一般轮胎的断面宽0.51倍,断面高宽比为0.600.75,胎侧及通常的轮胎一样。宽断面
轮胎按行驶面形状分为单行驶面轮胎和双行驶面轮胎两种类型,宽断面轮胎负荷能力达,代替双胎并装具有以 下优点: 1、行驶性能好
轮胎与路面的接触面积大,接触压力小,压力分布均匀,因而抓着、牵引、越野性能好,急转弯时不易发 生侧向滑移。此外安全减震性能好,并且可以克服并装双胎磨耗不均匀的现象。
1、胎面耐磨 子午线轮胎冠部刚性大,行驶中的滑移量小,滚动周长大于斜交胎,因此它的胎面耐磨性比斜交轮胎高40120%。

轮胎构造以及胎侧参数解读

轮胎构造以及胎侧参数解读

轮胎基本知识轮胎构造以及胎侧参数解读轮胎结构胎面(直接和路面接触的部分)厚橡胶层为胎面与路面间提供了界面。

耐磨橡胶可以保护胎体和带束层断裂和影响,延长行驶寿命。

胎肩(轮胎肩状突出部位)胎肩位于胎面与胎侧之间,肩部橡胶最厚,因此,该设计必须允许轮胎在行驶过程中产生的热量容易扩散。

胎侧(轮胎的侧面)这部分位于肩部和胎圈之间,具有良好弹性的胎侧保护着胎体,并提升驾驶体验。

轮胎的型号、尺寸、结构、模型、生产公司,产品名及各种特征都将在此进行说明。

胎圈(直接和轮辋接触的部分)胎圈把轮胎附在轮辋上,在接口处包覆帘布。

胎圈由胎圈钢丝,胎圈,胎圈包布和其他零件组成。

胎圈的设计一般是能够胎圈紧凑地绕着轮辋,并保证万一气压突然膨胀时,轮胎也不会脱离轮辋。

胎体(轮胎结构)作为轮胎最重要的结构,整个内层帘布被称为胎体。

胎体的主要作用是维持气压,垂直负荷同时吸收震动。

缓冲层或带束层(位于胎面与胎体之间)缓冲层是位于胎面与胎体之间的一个帘布层,用以保护斜交轮胎的胎体。

缓冲层可减少震动,防止断裂或防止直接来自于胎体对胎面的伤害,同时也能防止橡胶层与胎体之间的断裂。

带束层是子午线轮胎或带束斜交轮胎的胎面与胎体之间的一个强化层。

它的功能与缓冲层相似,通过紧紧包裹胎体,以增加胎面的刚性。

内部衬里内部衬里是由一层橡胶组成,它可以防止气体扩散并代替轮胎内部的内胎。

内部衬里一般由一种被称为丁基橡胶的合成橡胶或聚异戊二烯的各种橡胶组成,内部衬里可保持轮胎内部的气体。

胎侧参数许多驾驶员并不了解自己车上用的或准备购买的是什么类别的轮胎。

如果同一辆车上用了不同胎体的轮胎,会影响车的使用性能。

因此,在换轮胎时最好先了解一下自己车上使用的是什么胎体的轮胎,如果是半钢丝的,仍然选用半钢丝的,如果是全纤维的,就仍然选用全纤维的。

下面是钢丝、尼龙和纤维的表示方法,它们铭刻在轮胎的胎壁上。

STEEL——钢丝;NYLON——尼龙;——纤维POLYESTER每一条轮胎的胎壁上都镌着该条轮胎的构造详情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荷能力较单胎负荷能力小。轿车轮胎只计算单胎负荷。 理想轮辋:轮辋宽W与充气轮胎断面宽B1之比等于62.5%的轮 辋称之为理想轮辋。
高分子科学与工程学院
(2)海尔公式:负荷能力的计算公式为海尔公式,是一 个在轮辋与充气轮胎断面宽之比等于62.5%的标准条 件下(理想轮辋)得出的实验式, 若比值超出此范 围,必须换算为在标准理想轮辋的充气轮胎断面宽 才能使用此公式。 斜交轮胎负荷计算基本公式及负荷系数K值的选 取与斜交载重轮胎和轿车轮胎负荷计算公式与负荷 系数K的选取不相同。
在完成设计后,提出技术设计和施工设计说明书。
高分子科学与工程学院
轮 胎 结 构 设 计 程 序 图
绘制 外胎 总图
设计任务 轮胎设计前的准备工作
确定技术要求 确定外胎外轮廓曲线
设计外胎胎面花纹 确定外胎内轮廓曲线
优选方案
确定成型机头型 式、直径、肩ቤተ መጻሕፍቲ ባይዱ 曲线、绘制材料 分布图
制定外胎施 工标准表
确定水胎(胶 囊)断面尺寸、 绘制断面轮廓 图
高分子科学与工程学院
3.外胎充气外缘尺寸 包括充气外直径D′和充气断面宽B′,按国家标准(或部
颁标准)所规定的尺寸执行。暂无国家标准(或部颁标准)的 轮胎,可以按设计任务书所规定的充气轮胎外缘尺寸或参考 国外轮胎轮辋标准所规定的尺寸进行设计。 4.负荷能力计算 (1)标准负荷和理论负荷 轮胎的负荷能力是衡量轮胎质量重要指标之一,其最大负荷 能力与速度、内压、充气断面宽、轮辋直径和宽度有关。 确定外胎充气外缘尺寸D′和B′后,必须通过计算,验算 其负荷能力是否符合国家标准,再进行外缘轮廓设计及计算, 因此验算轮胎负荷能力是进行轮胎结构设计的基础。
高分子科学与工程学院
2.道路情况 (1)路面性质,包括硬基路面(水泥、柏油和碎石)、混合路面
(石土或城乡间的水泥路)、软基路面(雪、砂及土路),还有特 殊的作业环境,如矿山、林场、水田、沼泽等 (2)路面拱度、坡度和弯路。 (3)使用地区的年平均气温和降雨量。 3、国内外同规格或类似规格轮胎的结构和使用情况 (1)技术参数,例如轮胎的层数、内压、负荷及花纹形式等。 (2)轮胎充气前后及使用过程中外缘尺寸的变化。 (3)室内试验数据。 (4)实际使用中的性能及主要优缺点。 (5)使用部门的要求。
高分子科学与工程学院
5
标准负荷:国家标准规定的负荷简称为标准负荷,是指在保证 轮胎耐久性前提下要求轮胎承受的负荷。
理论负荷:通过计算得到的轮胎的负荷可称为理论负荷,它必 须大于标准负荷,但也不能过大,以大2~5%为宜。
轮胎负荷标准分为单胎负荷和双胎负荷两种。 一般具有双胎并装的载重汽车应计算双胎负荷,双胎负
高分子科学与工程学院
2
第一阶段:技术设计。 任务是收集为设计提供依据的技术资料;确定轮胎的技
术性能;设计外胎外轮廓曲线和胎面花纹;设计内胎、垫带 和水胎(或胶囊)断面曲线;绘制外胎,内胎和垫带设计总图, 写出设计说明书。
第二阶段:施工设计。 任务是根据技术设计确定成型机头型式、直径及肩部轮
廓;绘制外胎材料分布图;制定外胎、内胎及水胎(或胶囊) 施工标准表;提出外胎,内胎及水胎制造附属工具的技术要 求。
高分子科学与工程学院
2、根据内缘平衡形状曲线,从内往外设计 有数学模型作为计算依据,是当代科学的方法,轮胎结
构设计现在广泛采用的传统设计方法,是以静态平衡轮廓理 论为设计依据,用薄膜-网络理论为原理指导轮胎设计,轮 胎在模型内的轮廓用几何作图法,从外缘轮廓向内进行设计。
轮胎结构设计分技术设计和施工设计两个阶段进行。

岛 科
第三章 普通轮胎外胎结构设计

大 第一部分 轮胎技术设计

第一节、轮胎设计前的准备工作
第二节、轮胎技术要求的确定

第三节、外胎外轮廓设计
分 子
第四节、外胎胎面花纹设计

第五节、外胎内轮廓设计

第二部分 轮胎施工设计

第六节、外胎施工设计




学习目的与要求 通过学习掌握: 1.轮胎外胎设计流程,技术要求的确定 2.轮胎负荷的计算方法,海尔公式的应用 3.轮胎外轮廓个尺寸的名称、代号、取值方法 4.花纹的作用和设计原则、分类、饱和度 5.胎体帘布层数的确定、胎体安全倍数、缓冲层宽度确定原则 6.外胎内轮廓的确定原则、外胎各部位压缩率 7.常用外胎成形机头的种类、选择原则 8.成形机头直径和肩部曲线的确定原则 9.成形机头宽度计算的步骤和思路 10.轮胎外胎各组成部件的尺寸确定方法
确定内胎 断面尺寸、 绘制内胎 总图
制定水胎(胶囊) 制定内胎施
施工标准表
工标准表
确定垫带 断面尺寸、 绘制内胎 总图
制定垫带施 工标准表
提出外胎、内胎、垫带及水胎(胶 囊)制造附属工具的技术要求
提出结构设计文件
高分子科学与工程学院
3
二、轮胎设计前的准备 1.车辆的技术性能 (1)车辆类别、厂牌、型号、用途和外形尺寸。 (2)车辆自重、载重量、整车重量在各轴上的分布和车轴所需 承担的牵引负荷。 (3)车辆驱动形式、轴数、轴距、轮数和轮距。 (4)轮辋类型、代号及轮辋断面曲线。 (5)轮胎最大外缘尺寸及双轮间距离。 (6)车辆平均速度和最高速度。 (7)最小离地间隙、最小转弯半径和最大爬坡度。 (8)对轮胎的特殊要求。 (9)该车辆发展前景。
高分子科学与工程学院
1
§3-1 轮胎设计前的准备工作
一、轮胎结构设计概论 轮胎结构设计是指通过计算、选择、绘图等方法确定轮
胎整体及各部件的结构和尺寸并拟定出施工标准及设计辅助 工具的过程。轮胎结构设计直接影响轮胎质量及使用性能。 结构设计有两种方法 1、从轮胎外缘曲线开始,从外往内设计。
古典方法,历史悠久,经验丰富,但缺乏计算数据,只 凭经验数据进行
高分子科学与工程学院
4
§3-2 轮胎设计主要技术参数确定
1.轮胎类型 包括轮胎规格、结构、层级、胎面花纹、胎体骨架材料品
种、规格和基本技术性能。 2.轮辋的选择
应根据轮胎类型和规格,按国家标准(或部颁标准)及车辆 技术状况和发展趋势选定。例如轿车采用深槽式轮辋和深槽 式宽轮辋,轻型载重汽车采用半深槽式轮辋,中型和重型载 重汽车一般采用平底式轮辋和平底式宽轮辋(即5°斜底轮辋)。 不同类型车辆有其相对应的轮辋类型、规格及轮廓曲线。
相关文档
最新文档