第4章多晶体方法
第4章多晶体分析方法-课件

X 射线衍射仪主要由 X射线发生器、测角仪、辐射探测器、 记录单元和自动控制单元等组成,其中测角仪是仪器的核 心部件
14
第三节 X射线衍射仪
一、 X射线测角仪
(一) 概述
图4-12是测角仪示意图,平板试样D安装在可绕轴O旋转 的试样台H上,S处发射的一束发散X射线照射到试样上时,
正比计数器输出的脉冲峰 值与所吸收的光子能量成 正比,强度测定较可靠
图4-17 正比计数管及其基本电路
反应快、能量分辨率高、 背底脉冲低、计数率高、 性能稳定;但对温度比较 敏感,电压稳定度要求高
20
第三节 X射线衍射仪
二、探测与记录系统
(一) 探测器
2) 闪烁计数器(SC) 如图4-18, 闪烁计数器主要由磷光体和 光电倍增管组成。磷光体一般为加入约0.5% 的铊活化的碘 化钠单晶体;光电倍增管有光敏阴极和10个联极,每个联 极递增100V正电压,最后一个联极与测量电路连接
图4-8 对称聚焦照相法 1-光阑 2-照相机壁 3-底片 4-试样
11
第二节 其他照相法简介
二、背射平板照相法(针孔法)
平板照相法分为透射和背射两种,图4-9为背射平板照相 法示意图,由于聚焦圆直径很大,一般采用平面试样。该法 要求试样、光阑和衍射环A与B四点共圆,且试样与圆相切
其衍射花样由同心衍射环组 成,由于衍射环太少,不适 用于物相分析,用于研究晶 粒大小、择优取向、晶体完 整性,及点阵参数精确测定
7) 查卡片 根据d系列和I系列,对照物质标准卡片。如果这 两个系列均与卡片符合很好,则可确定物相。其中d 系列 是物相鉴定的主要依据
4药物多晶型及分析方法

➢ 第一节 药物多晶型 ➢ 第二节 X射线粉末衍射法 ➢ 第三节 热分析法 ➢ 第四节 其他药物晶型分析法
一、概念
第一节 药物多晶型
药物的多晶型:同一化学组成的药物,具有两种或两 种以上的空间排列和晶胞参数,形成多种晶型的现象。
合成药物:甾体激素67% 、巴比妥63% 、磺胺40% 抗生素:无味氯霉素、利福霉素类、四环素类、半
➢
安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.12.2002:32:1802:32Dec-2020-Dec-20
吸收速率 1.4倍
Khalil S等. J Pharm Sci,61,1615,1972
并非所有药物多晶型均显示出显著的生物利用度差 异。
例:法莫替丁有两种晶型A、B,分别压片,人体口服 给药,A晶型片剂口服生物利用度为46.8%,B晶型片 剂口服生物利用度49.1%,经统计学处理,表明无显著 性差异。
➢
相信相信得力量。20.12.202020年12月 20日星 期日2时32分18秒20.12.20
谢谢大家!
➢
踏实,奋斗,坚持,专业,努力成就 未来。20.12.2020.12.20Sunday, December 20, 2020
➢
弄虚作假要不得,踏实肯干第一名。02:32:1802:32:1802:3212/20/2020 2:32:18 AM
四、多晶型的产生及其影响因素
• 结晶是一个复杂的过程,物质在结晶时由于受各种因 素影响,使分子内或分子间键合方式发生改变,致使 分子或原子在晶格空间排列不同,从而形成不同的晶 体结构。
1、结晶工艺和条件
温度、压力、冷却速度、溶剂 、干燥工艺条件、研磨 微粉化等。
材料分析方法习题

注: *的多少仅代表该题可能的难易程度。
第一章 X 射线物理学基础1、X 射线有什么性质,本质是什么?波长为多少?与可见光的区别。
(*)2、什么是X 射线管的管电压、管电流?它们通常采用什么单位?数值通常是多少?(*)3、X 射线管的焦点与表观焦点的区别与联系。
(*)4、X 射线有几种?产生不同X 射线的条件分别是什么?产生机理是怎样的?晶体的X 射线衍射分析中采用的是哪种X 射线?(*)5、特征X 射线,连续X 射线与X 射线衍射的关系。
(*)6、什么是同一线系的特征X 射线?不同线系的特征X 射线的波长有什么关系?同一线系的特征X 射线的波长又有什么关系?7、什么是临界激发电压?为什么存在临界激发电压?(**)8、什么是、射线?其强度与波长的关系。
什么是、射线其强度与波长的关系。
(**)αK βK 1αK 2αK 9、为什么我们通常只选用Cr 、Fe 、Co 、Ni 、Mo 、Cu 、W 等作阳极靶,产生特征X 射线的波长与阳极靶的原子序数有什么关系。
10、 什么是相干散射、非相干散射?它们各自还有什么名称?相干散射与X 射线衍射的关系。
(*)11、 短波限,吸收限,激发限如何计算?注意相互之间的区别与联系。
(**)12、 什么是X 射线的真吸收?比较X 射线的散射与各种效应。
(*)13、 什么是二次特征辐射?其与荧光辐射是同一概念吗?与特征辐射的区别是什么?(**)14、 什么是俄吸电子与俄吸效应,及与二次特征辐射的区别。
(**)15、 反冲电子、光电子和俄歇电子有何不同? (**)16、 在X 射线与物质相互作用的信号中,哪些对我们进行晶体分析有益?哪些有害?非相干散射和荧光辐射对X 射线衍射产生哪些不利影响?(**)17、 线吸收系数与质量吸收系数的意义。
并计算空气对CrK α的质量吸收系数和线吸收系数(假如空气中只有质量分数80%的氮和质量分数20%的氧,空气的密度为1.29×10-3g/cm 3)(**)18、 阳极靶与滤波片的选择原则是怎样的?(*)19、 推导出X 射线透过物质时的衰减定律,并指出各参数的物理意义。
多晶体的物相分析

二、定性分析
1、标准物质的粉末衍射卡片物相的x射线衍 射花样:德拜图底片和衍射图 缺点:难以保存,难以进行比较。 卡片:将衍射花样经过计算,换算成衍射 线的面网间距d值和强度i,制成卡片进行保 存
编辑课件
2:基本原理
各种晶体的谱线有自已特定的位 置,数目和强度。 其中更有若干条较强的特征衍射线, 可供物相分析。
sys. 物相所属晶系;
S·G. 物相所属空间群;
a0,b0,c0 物相晶体晶格常数,A= a0/b0 , B= c0/b0轴率比; α,β,γ 物相晶体的 晶轴夹角;
Z.
晶胞中所含物质化学式的分子数;
Ref. 第四区域数据的出处。
编辑课件
(5)第五区间是该物相晶体的光学及其他物理
常数:
εα,nωβ,eγ 晶体折射率;
编辑课件
(10)第10区为卡片编号 若某一物相需两张卡片才能列出所
有数据,则在两张卡片的序号后加字 母A标记。
编辑课件
四: PDF卡片索引及检索方法
PDF卡片的索引: Alphabetical Index Hanawalt Index Fink Index
编辑课件
Alphabetical Index
该索引是按物相英文名称的字母顺序排 列。在每种物相名称的后面,列出化学分 子式,三根最强线的d值和相对强度数据, 以及该物相的粉末衍射PDF卡号。由此,若 已知物相的名称或化学式,用字母能利用 此索引方便地查到该物相的PDF卡号。
编辑课件
哈氏索引
索引的构成:在哈氏索引中,每一种物相的数 据占一行,成为一个项。由每个物质的八条最强线 的d值和相对强度、化学式、卡片号、显微检索号 组成。 8条强线的构成:首先在2θ<90°的线中选三条最 强线,d1、d2、d3。然后在这三条最强线之外, 再选出五条最强线,按相对强度由大而小的顺序其 对应的d值依次为d4、d5、d6、d7、d8,它们按 如下三种排列: 8条强线的排列:它们按如下三种排列: d1、d2、d3、d4、d5、d6、d7、d8 d2、d3、d1、d4、d5、d6、d7、d8 d3、d1、d2、d4、d5、编辑d课件6、d7、d8
《材料科学基础》课件之第四章----04晶体缺陷

41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l
正
负
b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型
材料科学基础(第04章晶体结构)

化学亲和力(电负性):化学亲和力越强,倾向于生成化合物而
不利于形成固溶体;生成的化合物越稳定则溶解度越小。只有电 负性详尽的元素才可能具有大的溶解度。
原子价因素:当原子尺寸因素较为有利时,在某些以一价金属为
基的固溶体中,溶质的原子价越高,其溶解度越小。
2.3 合金相结构
2.3.1 固溶体 2. 间隙固溶体: ① ② 溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙 固溶体。 影响间隙固溶度的因素
4.2 晶体学基础
4.2.1 空间点阵( lattice)和晶胞(cell) 1. 为了便于分析研究晶体中质点的排列规律性,可先将 实际晶体结构看成完整无缺的理想晶体并简化,将其 中每个质点抽象为规则排列于空间的几何点,称之为 阵点。 这些阵点在空间呈周期性规则排列并具有完全相同的 周围环境,这种由它们在三维空间规则排列的阵列称 为空间点阵,简称点阵。 具有代表性的基本单元(最小平行六面体)作为点阵 的组成单元,称为晶胞。同一空间点阵可因选取方式 不同而得到不相同的晶胞。
晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶 面。另外,在晶体内凡晶面间距和晶面上原子的分布完全相同,只 是空间位向不同的晶面可以归并为同一晶面族,以{h k l}表示, 它代表由对称性相联系的若干组等效晶面的总和。 正交点阵中一些晶面的面指数
4.2 晶体学基础
第四章晶体的塑性形变

MB/DDW的取向可以是晶体学的(即平行于滑移面)和非晶体
学的。根据晶粒原始取向不同导致开动的滑移系数目不同,使得
MB/DDW的取向不同。 如果开动的滑移系属于一个或两个滑移面,则MB/DDW倾向
于平行于滑移面{111),即它的取向是晶体学的; 如果开动的滑移系属于3个和4个滑移面,则MB/DDW是非晶
原因:位 错群集降 低能量。
LED
纯镍经20%形变量冷轧的显微组织
滑移系开动的数目为3-5个
稠密位错墙DDW “碎化” 胞块
显微带MB
几何必须边界GNB
(胞壁)伴生位错
边界IDB
36
所以,GNB和IDB两侧的取向差都随应变量加大而增大,而 它们间的间距都随应变量加大而减小,但GNB两侧的取向差增 加量和间距的减小量比较大,而IDB两侧的取向差增加量和间距 的减小量比较小,如图所示。
形变时晶界保持应变连续而 不产生空洞或张开(形变连续)。 不足之处是应力不连续。
不协调时,出现空洞和重叠
25
实现任一变形的条件:要使晶粒间的变形连续,必须有5个独立的 滑移系开动。
原因:描述任一应变状态用6个分量,但形变体积不变,即3个 正应变之和不变,因此只有5个是独立的。
为检查所提出的模型是否和实际相符,通常是对比由单晶拉伸 的σ-ε曲线导出多晶拉伸σ-ε 曲线,与实际的多晶σ-ε曲线,看它们符 合的程度。
Schmid 定律
外加拉伸应力s和滑移面 内沿着滑移方向分切应力t之 间的关系。
6
m-取向因子,又称Schmid因子
实验看出:滑移系开 动所需要的分切应力 是一个常数,和外加 力的取向无关。滑移 系开动所需要的最小 分切应力称为临界分
切应力tc。
材料分析方法-第四章

式中,K 值对于某一底片 是恒定的。
四、立方系物质德拜相的计算
➢通过德拜相的计算,可以获得物相、点阵类型和点阵参数等 初步资料。 ➢德拜法衍射花样测量:测量衍射线条相对位置和相对强度。 然后,再计算出衍射θ角和晶面间距d。 ➢每个德拜像:包括一系列衍射弧对,每衍射弧对是相应衍射 圆锥与底片相交痕迹,代表一族{hkl}干涉面的反射。
Z靶=Z样+1
K靶 K样 K靶
按样品的化学成分选靶
c. 对含多种元素样品,按含量较多元素中Z 最小元素选靶。 此外:选靶还应考虑: 入射线波长λ对衍射线条数的影响。 因sinθ≤1,衍射条件:d≥λ/2 , 则波长λ越长,可产生的衍射线条越少。
Z靶 Z试样+1
2)滤波片选择( X射线单色化): 滤波片材料:根据阳极靶材来选择。同样用吸收限原理。 使滤波片材料吸收限λK滤 处于入射线Kα与Kβ波长之间,
在测量之前,要判断底片的安装方法,区分高角区和低角区。
•低角线条较窄且清晰,附近背底较浅。 •高角线条则相反。
步骤
1) 弧对标号 如图4-7所示,过底片中心画一条基准线,从低角
区起按递增顺序标1-1、2-2ቤተ መጻሕፍቲ ባይዱ3-3等。
2) 测量C0 在高低角区分别选一个 弧对,测量A和B,用式(4-2) 算C0 (精确到0.1mm)
就可确定物相组成、点阵类型、晶胞尺寸等重要的问题。
4)实验方法
1.试样的制备 ➢ 圆柱试样:粉末集合体或多晶体细捧。Φ0.5mm×10mm。
➢ 块状金属或合金:用锉刀挫成粉末,但内应力大,会导致衍射 线变宽,不利于分析,故须在真空退火。
➢ 脆性样:先打碎-研磨-过筛,约250~325目(微米级)。
高角弧线 中心孔
低角弧线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
一、照相法
特征X射线照射多晶体样品 多晶体样品发生衍射 产生衍射花样 采用照相底片记录衍射花样.
第一节 德拜-谢乐法
一、德拜花样的爱瓦尔德图解
德拜花样为一系列同心 衍射环或一系列衍射弧段
O* 反射球
图4-1 粉末法的厄瓦尔德图解
5. 荧光屏 6. 铅玻璃
10
第一节 德拜-谢乐法
二、德拜相的摄照
(一) 相机3种
1) 正装法 X 射线从底片接口射入,从中心孔射出,几何关系 及计算简单,用于一般物相分析
正装法
反装法
偏装法
图4-3 底片安装法
2) 反装法 X 射线从底片中心孔 射入,从接口射出,谱线记录较 全,底片收缩误差小,适用于点 阵参数测定
德拜法中的试样尺寸为φ0.4-0.8×5-10mm的圆柱样品。 制备方法: • (1)用细玻璃丝涂上胶水后,捻动玻璃丝粘结粉末。 • (2)采用石英毛细管、玻璃毛细管来制备试样。将粉末填
入石英毛细管或玻璃毛细管中即制成试样。 • (3)用胶水将粉末调成糊状注入毛细管中,从一端挤出2-
3mm长作为试样。
阳极靶
UK,kV U,kV
滤片
K1, nm K2, nm K, nm K, nm K, nm
Cr 5.98 20~25
V 0.228970 0.229361 0.229100 0.208487 0.207020
Fe 7.10 25~30 Mn 0.193604 0.193998 0.193736 0.175661 0.174346
德拜相机的结构
• 光阑的作用是限制照射到样品光束 的大小和发散度。
• 承光管包括让X射线通过的小铜管 以及在底部安放的黑纸、荧光纸和 铅玻璃。
➢ 黑纸可以挡住可见光到相机的去路, ➢ 荧光纸可显示X射线的位置, ➢ 铅玻璃则可以防护X射线对人体的
有害影响。
第一节 德拜-谢乐法
二、德拜相机的摄照
(一) 相机、底片安装及试样
上式可用于修正试样吸收引起的衍
射线的位置误差
17
第一节 德拜-谢乐法
三、德拜相的误差及修正(自学)
(一) 试样吸收误差
试样对X射线的吸收将使衍射线偏离理论位置。 X射线照
射到半径为的试样,产生顶角为4的衍射圆锥,底片上衍射
弧对的平均理论间距为2L0。但由于试样吸收,使衍射线弧对 间距增大,且衍射线有一定宽度
b
图4-4 试样吸收误差
弧对外缘距离为2L外缘,则有
2L0 = 2L外缘 - 2
(4-1)
Mo 20.0 50~55 Zr 0.070930 0.071359 0.071073 0.063229 0.061978
14
德拜法的实验参数选择
• 获得单色光的方法除了滤波片以外,还可以采用单色 器。
• 单色器实际上是具有一定晶面间距的晶体,通过恰当 的面间距选择和机构设计,可以使入射X射线中仅Kα 产生衍射,其它射线全部被散射或吸收掉。
德拜相机如图4-2所示,X射线从光栏的中心进入,照射 圆柱试样后再进入承光管
相机为圆筒形暗盒,直径一般为 57.3 mm或114.6 mm; 试样长约 10 mm、直径为0.2~1.0 mm,在 曝光过程中,试样以相机轴为轴 转动,以增加参与衍射晶粒数
图4-2 德拜相机示意图
1. 光阑 2. 外壳 3. 试样 4. 承光管
第一篇 材料X射线衍射分析
第一章 X射线物理学基础 第二章 X射线衍射方向 第三章 X射线衍射强度 第四章 多晶体分析方法 第五章 物相分析及点阵参数精确测定 第六章 宏观残余应力的测定及其他应用
1
多晶衍射法
德拜法 照相法 聚焦法
针孔法 衍射仪法
单晶衍射法
劳埃法 周转晶体法 四周衍射仪
第四章 多晶体分析方法
• 以Kα的衍射线作为入射束照射样品是真正的单色光。 • 单色器获得的单色光强度很低,实验中必须延长曝光
时间或衍射线的接受时间。
德拜相的指数标定
• 在获得一张衍射花样的照片后,我们必须确定照 片上每一条衍射线条的晶面指数,这个工作就是 德拜相的指标化。
第一节 德拜-谢乐法
三、德拜相的误差及修正(自学)
3) 偏装法 X 射线从底片的两个
孔射入、射出,可直接计算相机
周长,能消除底片收缩等误差,
是较常用的方法
11
德拜法的试样制备
试样要求: ①试样必须具有代表性; ②试样粉末尺寸大小要适中; ③试样粉末不能存在应力; 脆性材料可以用碾压或用研钵研磨的方法获取;对于塑性 材料(如金属、合金等)可以用锉刀锉出碎屑粉末。
5
德拜照相法
将一个长条形底片圈成一个圆,以试样为圆
德拜
心,以X射线入射方向为直径放置圈成的圆
底片。这样圆圈底片和所有反射圆锥相交形
成一个个弧形线对,从而可以记录下所有衍
射花样,这种方法就是德拜-谢乐照相法。
德拜相机
物理学全明星梦之队
1927年第5届索尔维会议参加者的合影。
德拜相机的结构
• 组成:相机圆筒、光阑、 承光管和位于圆筒中心 的试样架。
4) 管电流 管电流不能超过许用的最大管电流
5) 曝光时间 通常通过试验确定,因为曝光时间与试样、相机
及上述摄照规程的选择等诸多因素有关。如用Cu靶、小直
径相机拍摄Cu试样,曝光时间为30 min,若用Co靶拍摄Fe
样品,则需2 h
13
第一节
二、德拜相的摄照 (二) 摄照规程的选择
德拜-谢乐法
表4-1 拍摄粉末相的常用数据
Co 7.71 30 Fe 0.178897 0.179285 0.179026 0.162079 0.160815
Ni 8.29 30~35 Co 0.165791 0.166175 0.165919 0.150014 0.148807
Cu 8.86 35~40 Ni 0.154056 0.154440 0.154184 0.139222 0.138059
第一节 德拜-谢乐法
二、德拜相的摄照
(二) 摄照规程的选择
1) X 射线管阳极靶材 一般原则为Z靶 ≤Z样 ;若不能满足时, 选择极限为Z靶 =Z样 + 1;Z极小的样品,选用Cu或Mo靶
2) 滤片 Z靶 40 时,Z滤 = Z靶 – 1; Z靶 40 时,Z滤 = Z靶 - 2 3) 管电压 管电压为阳极靶K系谱临界激发电压的3~5倍