山东省高二上学期数学9月月考试卷
山东省威海市乳山市银滩高级中学2024-2025学年高三上学期9月月考 数学试题

2024—2025学年度第一学期高三9月模块检测数学试题一、单选题1.若集合{}21,S x x m m ==-∈N ,{}31,P x x n n ==-∈N ,{}61,T x x k k ==-∈N ,则()A.S T⊆ B.P T= C.S P T= D.S P T = 2.已知2sin cos 3A B +=,cos sin 1A B +=,则()sin A B +=()A.518-B.49C.13- D.163.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且3cos 25α=,则a b -=()A.12B.55C.22D.14.已知数列{}n a 是公差不为0的等差数列,则“2k =”是“11110k a a a a +=+”成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.已知等比数列{}n a 满足1524a a a ⋅=,且712a =,则21222log log log n a a a ++⋅⋅⋅+的最大值为()A.12B.13C.14D.156.定义在R 上的偶函数()f x 满足:对任意的(]()1212,,0x x x x ∈-∞≠,有()()21210f x f x x x -<-,且()20f =,则不等式()()02f x f x x+-<的解集是()A.()(),22,-∞-+∞B.()()2,02,-+∞C.()(),20,2-∞-D.()()2,00,2- 7.已知函数()()44sincos 022x x f x ωωω=+>,对任意的实数a ,()f x 在(),3a a +上的值域是1,12⎡⎤⎢⎥⎣⎦,则整数ω的最小值是()A.1B.2C.3D.48.数列{}n a 满足1a ∈Z ,123n n a a n ++=+,且其前n 项和为n S ,若13m S a =,则正整数m =()A.99B.103C.107D.198二、多选题9.若正实数x ,y 满足21x y +=,则下列说法正确的是()A.xy 有最大值为18B.14x y+有最小值为6+C.224x y +有最小值为12D.()1x y +有最大值为1210.已知函数()()f x x ωϕ=+(其中02ω<≤,22ππϕ-<<),函数()()12g x f x =+的部分图象如图所示,则下列说法中正确的是()A.()f x 的表达式可以写成()24f x x π⎛⎫=+ ⎪⎝⎭B.()f x 的图象向右平移38π个单位长度后得到的函数是奇函数C.()()1h x f x =+图象的对称中心为(),182k k ππ⎛⎫-+∈ ⎪⎝⎭Z D.若方程()1f x =在()0,m 上有且只有6个根,则513,24m ππ⎛⎤∈⎥⎝⎦11.已知函数()1f x x =+,设()()1g x f x =,()()()()11,n n g x f g x n n *-=>∈N.且关于x 的函数()()21ni i y x g x n *==+∈∑N 则()A.()n g x x n =+或()1n g x nx =+B.22242n n n y x +⎛⎫=++ ⎪⎝⎭C.当2n ≤时,存在关于x 的函数y 在区间(],1-∞-上的最小值为6,0n =D.当2n >时,存在关于x 的函数y 在区间(],1-∞-上的最小值为6,4n =三、填空题12.已知函数()221,0log ,0x x f x x x ⎧+≤=⎨>⎩,若()1f a =-,则实数a 的值为______.13.若函数()ln f x x a =-的四个零点成等差数列,则a =______.14.在锐角ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,若()223b a a c =+,则sin sin CA的取值范围为______.四、解答题15.ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,已知()sin sin A B c b c C--=.(1)求A ;(2)若BAC ∠的角平分线与BC 交于点D ,2AD =,AC =,求a c +.16.记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2A π=,2a =.(1)若1sin sin 2B C -=,求b ;(2)若sin sin 2sin B C A +=,求ABC △的面积.17.已知数列{}n a 是公差不为零的等差数列,且23a ,27a ,29a ,成等差数列,3a ,6a ,()m a m *∈N 成等比数列,3621m a a a ++=.(1)求m 的值及{}n a 的通项公式;(2)令35n n b a =+,n *∈N ,求证:2221211112n b b b ++⋅⋅⋅+<.18.已知数列{}n a 的前n 项和为n S ,满足2235n S n n =+,数列{}n b 是等比数列,公比0q >,16b =,3324b a =+.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足11c =,11,22,2k k n kk n c b n +⎧<<⎪=⎨=⎪⎩,其中k *∈N .(ⅰ)求数列{}n c 的前2024项和;(ⅱ)求()221ii ni ac n *=∈∑N .19.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a =时,证明:当1x >时,()1ex f x -<恒成立.2024—2025学年度第一学期高三9月模块检测数学参考答案1—5CAAAD 6—8CBB 9.ABC 10.BD11.ABD12.12.13.ln 32.14.317757,44⎛++⎝⎭.一.单选题1.【详解】因为()(){}61231321,T x x k k k k ==-=⋅-=⋅-∈N ,所以T S ⊆,T P ⊆且S P T = .故选:C.2.【详解】因为2sin cos 3A B +=,cos sin 1A B +=,所以()24sin cos 9A B +=,()2cos sin 1A B +=,即224sin 2sin cos cos 9A A B B ++=,22cos 2cos sin sin 1A A B B ++=,两式相加可得()422sin cos sin cos 19A B B A ++=+,所以()5sin 18A B +=-.故选:A 3.【详解】 角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且3cos 25α=,23cos 22cos 15αα∴=-=,解得24cos 5α=,cos α∴=sin α∴=,|sin |1tan 21|cos |2b a a b ααα-∴==-==-.故选:A.4.【详解】设等差数列的公式为()0d d ≠,当2k =时,则111210a a a a +=+,故充分性满足;当11110k a a a a +=+时,即()11111110210a a a a d a d +=++=+,()()()101111928k a a a k d⎡⎤+=+-++=++⎣⎦即()1121028a d a k d +=++,且0d ≠,则810k +=,即2k =,故必要性满足;所以“2k =”是“11110k a a a a +=+”成立的充分必要条件.故选:A5.【详解】设等比数列{}n a 的公比为q ,由1524a a a ⋅=,得41114a a q a q ⋅=,即314a q =,又67112a a q ==,得318q =,得12q =,所以13432a q ==,所以116113222n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭.易知当15n ≤≤时,1n a >,当6n =时,1n a =,当7n ≥时,01n a <<.令123n n T a a a a =⋅⋅⋅⋅⋅⋅⋅⋅,则125667,T T T T T T <<⋅⋅⋅<=>>⋅⋅⋅,故()5432156512345max 222222n T T T a a a a a ===⋅⋅⋅⋅=⨯⨯⨯⨯=,从而()()15212222122123452log log log log log log 215n n a a a a a a a a a a a ++⋅⋅⋅+=⋅⋅⋅⋅⋅⋅⋅≤⋅⋅⋅⋅==.故选:D.6.【详解】不妨设120x x <≤,210Qx x ->,()()210f x f x ∴-<,即()()12f x f x >,()f x ∴在(],0-∞上单调递减()f x 是定义在R 上的偶函数()f x ∴在[)0,+∞上单调递增,当0x >时,()()()()()()0022f x f x f x f x f x f x+-<⇒+-<⇒<,解得02x <<当0x <时,()()()()()()0022f x f x f x f x f x f x+-<⇒+->⇒>-,解得2x <-则该不等式的解集为:()(),20,2-∞- 故选:C7.【详解】由題意可得()222222131sin cos 2sin cos 1sin cos 22222244x x x x f x x x ωωωωωω⎛⎫=+-=-=+ ⎪⎝⎭则()f x 的最小正周期22T ππωω==,因为对任意的实数a ,()f x 在(),3a a +上的值域是1,12⎡⎤⎢⎥⎣⎦,所以3T πω=<,解得3πω>,因为N ω∈,所以整数ω的最小值是2.故选:B8.【详解】由123n n a a n ++=+得()()1111n n a n a n +-+-=---,{}1n a n ∴--为等比数列,()()11112n n a n a -∴--=--,()()11121n n a a n -∴=--++,()()11121m m a a m -=--++,()()()131231213112241236102S a a a a a a a ∴=+++⋅⋅⋅++=+⨯++⋅⋅⋅++⨯=+①m 为奇数时,1121102a m a -++=+,103m =;②m 为偶数时,()1121102a m a --++=+,1299m a =+,1a Z ∈ ,1299m a =+只能为奇数,m ∴为偶数时,无解,综上所述,103m =.故选:B .9.【详解】对于A :因为21x y +=≥,则18xy ≤,当且仅当2x y =,即14x =,12y =时取等号,故A 正确,对于B ,()421428666x y x y x y x y x y y x +++=+=++≥=+8x yy x =,即212x -=,2y =B 正确,对于C :因为22x y +≤,则22142x y +≥,当且仅当2x y =,即14x =,12y =时取等号,故C 正确,对于D :因为()()()2211111212222x y x y x y ⎡⎤+++=⨯+≤⨯=⎢⎥⎣⎦,当且仅当21x y =+,即12x =,0y =时取等号,这与x ,y 均为正实数矛盾,故D 错误,故选:ABC 。
山东省菏泽市鄄城县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)

高二数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写济楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版选择性必修第一册第二章~第三章第2节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B. C. D.2.已知双曲线的焦距为4,则的渐近线方程为( )A. B.C.D.3.已知椭圆与椭圆有相同的焦点,则( )A.B.C.3D.44.已知点在圆的外部,则实数的取值范围为( )A.B.C.D.5.已知点为双曲线左支上的一点,分别为的左、右焦点,则( )A.2B.4C.6D.86.已知点,若过定点的直线与线段相交,则直线的斜率的取值范围103x --=π6π32π35π6()222:11x C y a a-=>C y =y x=±y =y x =()222:1016x y C b b +=>221125x y +=b =()0,1-22220x y x my +--+=m ()3,∞-+()3,2-()()3,22,∞--⋃+()2,2-M 22:1916x y C -=12,F F C 1122MF F F MF +-=()()2,3,3,2A B ---()1,1P l AB l k是( )A.B.C.D.7.当变动时,动直线围成的封闭图形的面积为( )A.C.D.8.已知椭圆,若椭圆上的点到直线的最短距离,则长半轴长的取值范围为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若直线与直线平行,则的值可以是()A.0B.2C.D.410.已知点是椭圆上关于原点对称且不与的顶点重合的两点,分别是的左、右焦点,为原点,则( )A.的离心率为B.C.的值可以为3D.若的面积为,则11.已知点及圆,点是圆上的动点,则( )A.过原点与点的直线被圆截得的弦长为B.过点作圆的切线,则切线方程为C.当点到直线的距离最大时,过点与平行的一条直线的方程为D.过点作圆的两条切线,切点分别为,则直线的方程为(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭34,4⎡⎤-⎢⎥⎣⎦1,5∞⎛⎫+ ⎪⎝⎭3,44⎡⎤-⎢⎥⎣⎦α2cos2sin24cos x y ααα+=π2π4π()2222:10x y E a b a b +=>>E 50x y ++=a (]0,2((⎤⎦()240a x y a -++=()()222420a x a a y -+++-=a 2-,A B 22:143x y C +=C 12,F F C O C 12228AF BF +=AB 12AF F V 3212154AF AF ⋅=()4,4P 22:40C x y x +-=Q C O P C P C 3440x y -+=Q PC Q PC 240x y ---=P C ,A B AB 240x y +-=三、填空题:本题共3小题,每小题5分,共15分.12.若方程表示椭圆,则的取值范围是__________.13.已知圆与两直线都相切,且圆经过点,则圆的半径为__________.14.把放置在平面直角坐标系中,点在直线的上方,点在边上,平分,且点都在轴上,直线的斜率为,则点的坐标为__________;直线在轴上的截距为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知直线及点.(1)若与垂直的直线过点,求与的值;(2)若点与点到直线的距离相等,求的斜截式方程.16.(本小题满分15分)已知双曲线的顶点为,且过点.(1)求双曲线的标准方程;(2)过双曲线的左顶点作直线与的一条渐近线垂直,垂足为为坐标原点,求的面积.17.(本小题满分15分)已知圆经过点,且与圆相切于原点.(1)求圆的标准方程;(2)若直线不同时为0与圆交于两点,当取得最小值时,与圆交于两点,求的值.18.(本小题满分17分)已知椭圆的上顶点与左,右焦点连线的斜率之积为.(1)求椭圆的离心率;(2)已知椭圆的左、右顶点分别为,且,点是上任意一点(与不重合),直线22164x y m m +=--m C 220,220x y x y -+=++=C ()1,1C ABC V A BC ,D E BC AD ,BAC AE BC ∠⊥,A E y AD 40,y AD -+==AC3-C AB x :210l x ay a -+-=()2,2A -l 320x my -+=A m a A ()1,1B -l l ()2222:10,0x y C a b a b-=>>()(),A B -()4P C C A C ,H O OHA V 1C ()2,0-222:480C x y x y +-+=O 1C :20(,l ax by a b a b ++-=)1C ,A B AB l 2C ,C D CD ()2222:10x y C a b a b+=>>45-C C ,A B 6AB =M C ,A B分别与直线交于点为坐标原点,求.19.(本小题满分17分)已知点是平面内不同的两点,若点满足,且,则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.,MA MB :5l x =,,P Q O OP OQ ⋅,A B P (0PAPBλλ=>1)λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()()()2,0,,2A B a b a -≠-(),A B λ221240x y x +-+=,,a b λQ (),A B OQ O 0,b λ==,a μ(),A B μ参考答案1.A 直线,所以其倾斜角为.故选A.2.D 由题意可知,所以,所以双曲线的渐近线方程为.故选D.3.C 因为椭圆与㮁圆有相同的焦点.所以,解得或(舍去).故选C.4.C 由题意可知解得或.故选C.5.B 因为为双曲线左支上的一点,分别为的左、右焦点,所以,故,由于,所以.故选B6.A 直线过定点,且直线与线段相交,由图象知,或,则紏率的取值范围是.故选A 7.D 方程可化为变动时,点到该直线的距离,则该直线是圆的切线,所以动直线围成的封闭图形的面积是圆的面积,面积为.故选D.103x --=π6214a +=23a =22213x C y -=y x =()22221016x y C b b +=>221125x y +=216125b -=-3b =3b =-222(1)20,(2)420,m m ⎧-++>⎨-+-⨯>⎩32m -<<-2m >M 22:1916x y C -=12,F F C 212MF MF a -=112222MF F F MF c a +-=-3,4,5a b c ====1122221064MF F F MF c a +-=-=-= l ()312131,1,4,21314PA PA P k k ----==-==--- AB ∴34k …4k -…k (]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭2cos2sin24cos x a y a a +=()2cos2sin22,x a y a α-+=()2,02d ==22(2)4x y -+=2cos2sin24cos x y ααα+=22(2)4x y -+=4π8.C 设直线与,则的方程为,由整理,得,因为上的点到直线的最短,所以,整理得,由椭圆的离心,可知,所以,所以,则,所以.故选C.9.AB 因为两直线平行,由斜率相等得,所以或,解得或0或,当时两直线重合,舍去.故选.10.AD 对于A ,椭圆中,,离心率为,A 正确;对于B.由对称性可得,所以,B 错误;对于C ,设且,则,故,所以C 错误;对于D ,不妨设在第一象限,,则,是,则,则,故,故D 正确.故选AD.11.ACD 圆的标准方程为,圆的半径,对于,直线的方程为0,点到直线,所以直线被圆截得的弦长为正确;对于,圆的过点的切线斜率存在时,设其方程为,即,,解得,此时切线方程为,另一条切线是斜率不存在的切线错误;对于C ,当点到直线的距离最大时,过点与平行的一条直线,即为与直线距离为2的图的切线,直线的斜率为2,设该切线方程为,则正确;对于D ,设,,可得切线的方程分别为l 50x y ++=l 30x y ++=22221,30,x y ab x y ⎧+=⎪⎨⎪++=⎩()2222222690a b x a x a a b +++-=E 50x y ++=()()422222Δ36490a a baa b =-+-…2290a b +-…E 22112b a -=2212b a =221902a a +-…26a …0a <…222424a a a a ---=-++20a -=2244a a ++=2a =2-2a =-AB 22:143x y C +=2,1a b c ===12c a =21BF AF =222124AF BF AF AF a +=+==(),,B m n n <<0n ≠22143m n +=)2OB ===()24,AB OB =∈A ()00,A x y 12013222AF F S c y =⋅⋅=V 032y =31,2A ⎛⎫⎪⎝⎭21335,4222AF AF ==-=12154AF AF ⋅=C ()22(2) 4.2,0x y C -+=C 2r =A OP x y -=C OP OP C A =B C P ()44y k x -=-440kx y k --+=234k =3440x y -+=4,x B =Q PC Q PC PC C PC 20x y t -+=2,4t =-±(11,A x y ()22,B x y ,PA PB,将代入两方程得,所以者在直线上,所以直线的方程为,即,D 正确.故选ACD.12.且且也给分) 由题意得,且6—,所以且,所以实数的取值范围是.易知直线与关于轴对称或关于对称,又当圆心在上时,该圆不存在,所以圆的圆心在轴上,设圆的方程为,由题意可知,,整理得,解得或,当时,,当时,.14.(2分)(3分) 直线的方程与直线联立得,因为直线的斜率为3,所以直线的方程为,由,得直线的斜率为0,由,得,所以直线的方程为,与联立得.设直线与轴交于点,点关于直线的对称点为,则点在直线上,所以.联立解得代入,得,所以直线在轴上的截距为15.解:(1)因为直线过点,所以,解得,因为与垂直,()()11122220,20x x y y x x x x y y x x +-+=+-+=()4,4P ()()11122244240,44240x y x x y x +-+=+-+=()()1122,,,A x y B x y ()44240x y x +-+=AB ()44240x y x +-+=240x y +-=()()4,55,6{|46m m ⋃<<5},46m m ≠<<5m ≠60,40m m ->->4m m ≠-46m <<5m ≠m ()()4,55,6⋃220x y -+=220x y ++=x 2x =-2x =-C x C 222()x a y r -+==22730a a -+=12a =3a =12a =r =3a =r =(1,1)AE 0x =AD 40y -+=()0,4A AC -AC 34y x =-+AE BC ⊥BC AD =AD 3AE =BC 1y =34y x =-+()1,1C AB x (),0F t F AD (),G a b G AC b a t =-402b -+=122,a tb ⎧=--⎪⎪⎨⎪=+⎪⎩34y x =-+t =AB x 320x my -+=()2,2A -6220m --+=2m =-3220x y ++=l所以.(2)解法一,若点与点到直线的距离相等,则直线与的斜率相等或的中点在上,又直钱的斜率为的中点坐标为,所以或.解得或.当时,的斜截式方程为,当时,的斜截式方程为.解法二:因为点与点到直线的距离相等,.解得,当时,的斜截式方程为,当时,的斜截式方程为.16.解:(1)因为双曲线的顶点为,且过点,所以,且,解得的标准方程为.(2)由双曲线方程,得渐近线方程为,,又,所以所以.123,32a a ==A()1,1B -l AB l AB l AB ()211,21AB --=---11,22⎛⎫- ⎪⎝⎭11a =-1121022a a --+-=1a =-1a =1a =-l 3y x =-+1a =l 1y x =+A ()1,1B -l =1a =±1a =-l 3y x =-+1a =l 1y x =+()2222:10,0x y C a b a b-=>>()(),A B -()4P a =2254161a b -=a b ==C 221188x y -=221188x y -=230x y ±=,OH HA OA ⊥=OH =11542213OHA S OH HA =⨯⨯==V17.解:(1)因为圆与图相切,且点在圆的外部,所以圆与圆外切,则三点共线,图化为.所以圆心,故圆心在直线上.设圆的标准方程为,又圆过原点,则,圆经过点,则,解得,故圆的标准方程为.(2)由(1)可知,圆的圆心坐标为,由直线化为,所以直线恒过点,易知点在圆的内部,设点到直线的距离为,则,要使取得最小值,则取得最大值,所以,此时.所以,则直线的方程为,即.又圆心到直线的距离,所以.18.解:(1)椭圆的上顶点的坐标为,左、右焦点的坐标分别为,由题意可知,即,1C 2C ()2,0-2C 1C 2C 12,,C O C 222:480C x y x y +-+=22(2)(4)20x y -++=()22,4C -1C 2y x =-1C 222()(2)x t y t r -++=1C ()0,0O 225r r =1C ()2,0-222(2)(02)5t t t --++=1t =-1C 22(1)(2)5x y ++-=1C ()1,2-:20l ax by a b ++-=()()210a x b y ++-=L ()2,1P -P 1C 1C l d AB ==AB d 1PC l ⊥121112PC k -==-+1t k =-l ()12y x -=-+10x y ++=2C 10x y ++=d 'CD ==C ()0,b ()(),0,,0c c -45b b c c ⎛⎫⋅-=- ⎪⎝⎭2245b c =又,所以,即的离心率.(2)由,得,即,所以椭圆的方程为.设,则,即,又,则,因为直线分别与直线交于点,所以,所以.19.(1)解:因为以为“稳点”的一阿波罗尼斯圆的方程为,设是该圆上任意一点,则,所以,因为为常数,所以,且,所以.(2)解:由(1)知,设,由,所以,,監理得,即,所以,222a b c =+2295a c =225,9c ca a ==C e =6AB =26a =3,2a c b ===C 22194x y +=()00,M x y 2200194x y +=22003649x y -=()()3,0,3,0A B -()()0000:3,:333y yMA y x MB y x x x =+=-+-,MA MB :5L x =,P Q 0000825,,5,33y y P Q x x ⎛⎫⎛⎫⎪ ⎪+-⎝⎭⎝⎭()()220000220000163648216641615,5,2525253399999x y y y OP OQ x x x x -⎛⎫⎛⎫⋅=⋅=+=+=-= ⎪ ⎪+---⎝⎭⎝⎭(),A B λ221240x y x +-+=(),P x y 22124x y x +=-22222222222222||(2)4416||()()22(122)24PA x y x y x xPB x a y b x y ax by a b a x by a b +++++===-+-+--++--+-+22||||PA PB 2λ2240,0a b b -+==2a ≠-2,0,a b λ====()()2,0,2,0A B -(),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--…42890x x --…()()22190x x +-…209x ……由,得,即的取值范围是.(3)证明:若,则以一阿波罗尼斯圆的方程为,整理得,该圆关于点对称.由点关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称OQ ==209r ……13OQ ……OQ []1,30b =(),A B 2222(2)2()x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()()2,0,,0A B a -2,02a -⎛⎫ ⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-,a μ(),A B μ。
山东省威海市数学高二上学期理数第一次(9月)月考试卷

山东省威海市数学高二上学期理数第一次(9月)月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知数列{ },那么给出的数不是数列中的其中一项的是()A . 0B . 21C . 2016D . 20182. (2分)(2017·昌平模拟) 在△ABC中,已知AB=3,AC=5,A=120°,则 =()A .B .C .D .3. (2分) (2016高一下·枣阳期中) 等差数列{an}中,a3=2,a5=7,则a7=()A . 10B . 20C . 16D . 124. (2分) (2019高一下·嘉兴期中) 实数数列,,为等比数列,则等于()A .B .D . 或5. (2分)设{an}是等比数列,且a1= ,S3= ,则它的通项公式为an=()A . •()n﹣1B .C . •(﹣)n﹣2D . •(﹣2)n﹣1或6. (2分) (2016高二上·西湖期中) 在△ABC中,tanA•sin2B=tanB•sin2A,那么△ABC一定是()A . 锐角三角形B . 直角三角形C . 等腰三角形D . 等腰三角形或直角三角形7. (2分)设等差数列的前项和为,若,,则()A . 63B . 45C . 36D . 278. (2分)设数列{an},a1=1,前n项和为Sn ,若Sn+1=3Sn(n∈N*),则数列{an}的第5项是()A . 81B .D . 1629. (2分) (2016高一下·宝坻期末) 设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=()A .B .C .D .10. (2分)中,三边长a,b,c满足,那么的形状为()A . 锐角三角形B . 钝角三角形C . 直角三角形D . 以上均有可能11. (2分)已知数列是等差数列,且,则的值为()A .B .C .D .12. (2分)在中,若,则这个三角形一定是()A . 等腰三角形B . 直角三角形C . 等腰直角三角形D . 等边三角形二、填空题 (共4题;共4分)13. (1分) (2017高二上·景县月考) 在△ABC中,若B=30°,AB=2 ,AC=2,求△ABC的面积________.14. (1分)(2020·贵州模拟) 已知数列的各项均为正数,其前项和为,且满足,则 ________.15. (1分)(2019·延安模拟) 在中,若,,,则 ________.16. (1分) (2017高三上·高台期末) 已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2016=________.三、解答题 (共6题;共55分)17. (10分) (2018高二下·普宁月考) 已知在数列中, .(1)求数列的通项公式;(2)设,求的前项和 .18. (10分) (2019高二上·会宁期中) 在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2 , a6=b3.(1)求等差数列{an}的通项公式an和等比数列{bn}的通项公式bn;(2)求数列{an·bn}的前n项和Sn.19. (10分) (2017高二上·南通期中) 设等差数列{an}的前n项和为S,a2+a6=20,S5=40.(1)求{an}的通项公式;(2)设等比数列{bn}满足b2=a3,b3=a7.若b6=ak,求k的值.20. (5分)(2017·盐城模拟) 一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延长线上,α为锐角).圆E与AD,BC都相切,且其半径长为100﹣80sinα米.EO是垂直于AB的一个立柱,则当sinα的值设计为多少时,立柱EO最矮?21. (10分) (2017高一下·资阳期末) △ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(1)求角C;(2)若,△ABC的面积为,求a+b的值.22. (10分) (2017高一下·宜昌期中) 已知首项都是1的两个数列{an},{bn} 满足anbn+1﹣an+1bn﹣2an+1an=0.(1)令,求证数列{cn}为等差数列;(2)若,求数列{bn}的前n项和Sn.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、。
山东省济宁市实验中学2024-2025学年高二上学期9月月考数学试题

山东省济宁市实验中学2024-2025学年高二上学期9月月考数学试题一、单选题1.以下事件是随机事件的是( )A .标准大气压下,水加热到100C ︒,必会沸腾B .走到十字路口,遇到红灯C .长和宽分别为,a b 的矩形,其面积为abD .实系数一元一次方程必有一实根2.抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 A .至多两件次品 B .至多一件次品 C .至多两件正品D .至少两件正品3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )A .12B .14C .13D .164.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为( )A .13B .12C .23D .565.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===u u u r u u u r u u u u r r r r ,则1A B =u u u r( )A .a b c +-r r rB .a b c -+r r rC .a b c -++r r rD .a b c -+-r r r6.已知空间向量0a b c ++=r r r r,2a =r ,3b =r ,4c =r ,则cos ,a b =r r ( ) A .12B .13C .12-D .147.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( ) A .5960B .35C .12D .1608.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为( ) A .4.33%B .3.33%C .3.44%D .4.44%二、多选题9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为( ) A .(2,1,3) B .(2,1,3)-- C .(4,2,6)-D .(4,2,6)-10.下列各组事件中,是互斥事件的是( )A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C .播种100粒菜籽,发芽90粒与发芽80粒D .检验某种产品,合格率高于70%与合格率低于70%11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-u u u ru u ur u u u ru u u r(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n = C .12m =-,1n =- D .32m =,1n =三、填空题12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=.14.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA u u u r ,DC u u ur ,1DD u u u u r 方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =u u u u r,若点P 为线段AB 的中点,则P 到平面11A BC 距离为.四、解答题15.(1)已知2,3a b ==r r ,且a b ⊥r r求2a b a b +⋅r r r r ()(-) (2)已知a b a b +=-r r r r ,求a b ⋅r r16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局. (1)求再赛2局结束这次比赛的概率; (2)求甲获得这次比赛胜利的概率.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB AF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.。
2024年人教版高二数学上册月考试卷544

2024年人教版高二数学上册月考试卷544考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、三角形ABC中,角A、B、C的对边分别是a,b,c,且a>b>c,a2<b2+c2;则角A的取值范围是()A. (π)B. ()C. ()D. (0,)2、已知则f(f(-2))的值是()A. -2B. 2C.D.3、【题文】△ABC中,∠C=90°,则k的值()A. 5B. -5C.D. -4、已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于()A.B.C.D.5、如图,在山底测得山顶仰角∠CAB=450,沿倾斜角为30o的斜坡走1000m至S点,又测得山顶仰角∠DSB=750;则山高BC=()A. 1000mB. 1000mC. 100mD. 100m6、函数的导数f'(x)=()A.B.C.D. x2+lnx7、不等式9x2+6x+1≤0的解集是()A. {x|x≠-}B. {-}C. {x|≤x≤}D. R8、直线l:x-y+1=0关于y轴对称的直线方程为()A. x+y-1=0B. x-y+1=0C. x+y+1=0D. x-y-1=09、将4名学生分配到甲、乙、丙3个实验室准备实验,每个实验室至少分配1名学生的不同分配方案共有()A. 12种B. 24种C. 36种D. 48种评卷人得分二、填空题(共5题,共10分)10、在数列{a n}中,已知a1=a2=1,a n+2=a n+1+a n(n∈N*),则a6=____.11、某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙两名员工必须分配至同一车间,则不同的分配方法总数为(用数字作答).12、在(1-x)4-x3(1+3x)的展开式中,含x4项的系数为____.13、曲线y=xe x+2x+1在点(0,1)处的切线方程为 ______ .14、若函数f(x)=x2(x-a)在(2,3)上不单调,则实数a的取值范围是 ______ .评卷人得分三、作图题(共9题,共18分)15、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?16、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)17、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)18、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?19、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)20、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)21、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共4题,共20分)22、设函数记(1)求曲线在处的切线方程;(2)求函数在上的最值.23、已知函数f(x)=x+ g(x)=x+lnx,其中a>0.(I)若x=1是函数h(x)=f(x)+g(x)的极值点;求实数a的值;(Ⅱ)若对任意的x1∈[1,e],都存在x2∈[1,e](其中为e自然对数的底数)使得f(x1)<g(x2)成立;求实数a的取值范围.24、【题文】若曲线上有关于直线对称的不同的两点求实数的取值范围.25、已知a>0b>0且a+b>2求证:1+ba1+ab中至少有一个小于2.评卷人得分五、计算题(共4题,共16分)26、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.27、1. (本小题满分10分)某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率。
山东省高二上学期数学月考试卷

山东省高二上学期数学月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018高二上·哈尔滨月考) 一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是()A . 40.6,1.1B . 48.8,4.4C . 81.2,44.4D . 78.8,75.62. (2分) (2020高二下·南昌期末) 某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A . 36种B . 30种C . 24种D . 6种3. (2分)(2017·泉州模拟) 设,且的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数之和是()A . 1B .C . 64D .4. (2分) (2017高三上·东莞期末) 在投篮测试中,每人投3次,其中至少有两次投中才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学能通过测试的概率为()A . 0.352B . 0.432C . 0.36D . 0.6485. (2分) (2020高三上·宁海月考) 一只小虫从数轴上的原点出发爬行,若一次爬行过程中,小虫等概率地向前或向后爬行1个单位,设爬行次后小虫所在位置对应的数为随机变量,则下列说法错误的是()A .B .C .D .6. (2分) (2018高二下·阿拉善左旗期末) 设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A . n=8,p=0.2B . n=4,p=0.4C . n=5,p=.32D . n=7,p=0.457. (2分) (2019高二下·赣县期中) 4种不同产品排成一排参加展览,要求甲、乙两种产品之间至少有1种其它产品,则不同排列方法的种数是A . 12B . 10C . 8D . 68. (2分)(2017·宝山模拟) 设M,N为两个随机事件,给出以下命题:(1.)若M、N为互斥事件,且,,则;(2.)若,,,则M、N为相互独立事件;(3.)若,,,则M、N为相互独立事件;(4.)若,,,则M、N为相互独立事件;(5.)若,,,则M、N为相互独立事件;其中正确命题的个数为()A . 1B . 2C . 3D . 49. (2分)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P 移动5次后位于点,则的概率为()A . 1B .C .D .10. (2分)(2017·安徽模拟) 若随机变量X服从正态分布N(μ,σ2)(σ>0),则P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,已知某随机变量Y近似服从正态分布N(2,σ2),若P(Y>3)=0.1587,则P(Y<0)=()A . 0.0013B . 0.0228C . 0.1587D . 0.5二、多选题 (共2题;共6分)11. (3分) (2020高三上·高密月考) 从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论正确的是()A . 2个球都是红球的概率为B . 2个球不都是红球的概率为C . 至少有1个红球的概率为D . 2个球中恰有1个红球的概率为12. (3分) (2020高二下·东台期中) 下列说法中正确的有()A . 在复平面内,复数对应的点位于第二象限B . 两个事件相互独立的充要条件是C . 若函数在区间上存在最小值,则实数的可能取值是D . 若随机变量服从正态分布,且 ,则实数的值为三、填空题 (共4题;共4分)13. (1分) (2019高二下·上海月考) 4个不同的球放入3个不同的盒子中,每盒至少1个球,则共有________种不同的放法14. (1分) (2019高二下·吉林期末) 如图,在菱形中,,,以该菱形的4个顶点为圆心的扇形的半径都为 .若在菱形内随机取一点,则该点取自黑色部分的概率是________.15. (1分) (2019高二下·新城期末) 一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为 .其中所有正确结论的序号是________.16. (1分) (2020高二下·嘉兴月考) 设随机变量,则 ________;________.四、解答题 (共6题;共57分)17. (15分) (2016高二下·晋江期中) 有4名男生,3名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法?(3)要求女生必须站在一起,则有多少种不同的排法?(4)若3名女生互不相邻,则有多少种不同的排法?18. (10分) (2019高二下·台州期末) 已知的展开式中第4项和第8项的二项式系数相等.(Ⅰ)求n的值和这两项的二项式系数;(Ⅱ)在的展开式中,求含项的系数(结果用数字表示).19. (10分)(2017·重庆模拟) 某高中学校为了了解在校学生的身体健康状况,从全校学生中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如图:根据学生体质健康标准,成绩不低于76的为为优良(1)将频率视为概率,根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(2)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.20. (10分) (2019高一下·惠州期末) 某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578附:对于一组数据,,…… ,其回归直线的斜率的最小二乘估计值为;本题参考数值:.(1)若销量y与单价x服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。
山东省青岛市青岛第二中学2024-2025学年高二上学期第一次月考数学试题(无答案)

青岛二中2024-2025学年第一学期10月份阶段练习一高二数学试题时间:90分钟 满分:120分一、选择题:本题共8小题;每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量,,且,则()A.-16B.16C.4D.-42.已知点,,若过点的直线与线段相交,则该直线斜率的取值范围是()A. B.C. D.3.已知空间向量,,若与垂直,则等于()4.设,为两个随机事件,以下命题正确的为( )A.若,是对立事件,则B.若,是互斥事件,,,则C.若,,且,则,是独立事件D.若,是独立事件,,,则5.已知点关于直线-对称的点在圆上,则()A.4B.5C.-4D.-56.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A.B.CD.7.边长为1的正方形沿对角线折叠,使,则三棱锥的体积为()()1,3,5a =-()2,,b x y = a b ∥x y -=()2,3A -()3,2B --()1,1P -AB 32,,43⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭][43,,32⎛⎫-∞-⋃+∞ ⎪⎝⎭34,23⎡⎤-⎢⎥⎣⎦43,32⎡⎤-⎢⎥⎣⎦()1,,2a n = ()2,1,2b =- 3a b - b aA B A B ()1P AB =A B ()13P A =()12P B =()16P A B +=()13P A =()12P B ≡()13P AB =A B A B ()13P A =()23P B =()19P A B ⋂=()0,1P -10x y -+=Q 22:50C x y mx +++=m =m n (),a m n =()1,1b =- θ0,2πθ⎛⎤∈ ⎥⎝⎦5121271256ABCD AC 14AD BC ⋅= D ABC -8.已知空间向量,,两两的夹角均为,且,.若向量,满足,,则的最大值是()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.下列说法正确的是()A.8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是B.若样本数据,,,的平均数为2,则数据,,,的平均数为3C 一组数据,,,,,的分位数为6D.某班男生30人、女生20人,按照分层抽样的方法从该班共抽取10人答题.若男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为6.810.已知,若过定点的动直线和过定点的动直线:交于点(与,不重合),则以下说法正确的是()A.B 点的坐标为B.为定值C.最大值为D.的最大值为11.在棱长为1的正方体中,,,,,,若直线与的夹角为,则下列说法正确的是()A.线段的最小值为1C.对任意点,总存在点,使得D.存在点,使得直线与平面所成的角为三、填空题:本题共4个小题,每小题5分,共20分.12.已知,,,若不能构成空间的一个基底,则_________.13.已知半径为1的圆经过点,则其圆心到直线距离的最大值为_______.a b c 602a b == 4c = x y ()x x a x b ⋅+=⋅ ()y y a y c ⋅+=⋅ x y -1+1+261111x 2x ⋯10x 121x -221x -⋯1021x -43265860%m ∈R A 1:20l x my m -+-=B 2l 240mx y m ++-=P P A B ()2,4-22PA PB +PAB S △2522PA PB +1111ABCD A B C D -1BP xBB yBC =+ x ()0,1y ∈11A Q z A C = []0,1z ∈1A P 11A B 45 1A P 1A Q PQ +P Q 1D Q CP⊥P 1A P 11ADD A 60()11,0,1n =- ()2,3,2n m =- ()30,1,1n =- {}123,,n n nm =()3,43430x y --=14.在长方体中,已知异面直线与,与所成角的大小分别为和,为中点,则点到平面的距离为_______.15.平面直角坐标系中,矩形的四个顶点为,,,,,光线从边上一点沿与轴正方向成角的方向发射到边上的点,被反射到上的点,再被反射到上的点,最后被反射到轴上的点,若,则的取值范围是_______.四、解答题:本题共3小题,共42分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分10分)已知直线,,且满足,垂足为.(I )求的值及点的坐标.(II )设直线与轴交于点,直线与轴交于点,求的外接圆方程.17.(本题满分15分)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送时,收到0的概率为,收到1的概率为.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到,,,则译码为1,若依次收到,,,则译码为1).(I )已知,,(1)若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率;(2)若采用单次传输方案,依次发送,,,判断事件“第三次收到的信号为”与事件“三次收到的数字之和为2”是否相互独立,并说明理由;(II )若发送1,采用三次传输方案时译码为0的概率不大于采用单次传输方案时译码为0的概率,求的取值范围.18.(本题满分17分)1111ABCD A B C D -1AC 11B C 1AC 11C D 6045 E 1CC E 1A BC ()0,0O ()8,0A ()8,6B ()0,6C OA ()04,0P x θAB 1P AB BC 2P BC OC 3P OC x ()4,0P t ()4,6t ∈tan θ()1:220l x m y +-=2:220l mx y +-=12l l ⊥C m C 1l x A 2l x B ABC △()1101p p <<11p -1()2201p p <<21p -101111134p =223p =00112p如图,四面体中,为等边三角形,且,为等腰直角三角形,且.第(I )问图(I )当时,(1)求二面角的正弦值;第(II )问图(2)当为线段中点时,求直线与平面所成角正弦值;(II )当时,若,且平面,为垂足,中点为,中点为;直线与平面的交点为,当三棱锥体积最大时,求的值.ABCD ABC △2AB =ADC △90ADC ∠= BD =D AC B --P BD AD APC 2BD =()01DP DB λλ=<<PH ⊥ABC H CD M AB N MN APC G P ACH -MGGN。
山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

济宁市高二年级第一学期九月模块测试数学试题(答案在最后)注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码. 2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以下事件是随机事件的是()A.标准大气压下,水加热到100C ,必会沸腾B.走到十字路口,遇到红灯C.长和宽分别为,a b的矩形,其面积为abD.实系数一元一次方程必有一实根【答案】B【解析】【分析】根据随机事件的概念判断即可【详解】解:A.标准大气压下,水加热到100℃必会沸腾,是必然事件;故本选项不符合题意;B.走到十字路口,遇到红灯,是随机事件;故本选项符合题意;C.长和宽分别为,a b的矩形,其面积为ab是必然事件;故本选项不符合题意;D.实系数一元一次方程必有一实根,是必然事件.故本选项不符合题意.故选:B.2.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品【答案】B【解析】【详解】试题分析:事件A 不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A 的对立事件为至多一件次品.故B 正确.考点:对立事件.3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为()A.12B.14C.13D.16【答案】B 【解析】【分析】列举出所有的可能事件,结合古典概型概率计算公式,计算出所求概率.【详解】两名同学分3本不同的书,记为,,a b c ,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.故选:B4.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为()A.13B.12C.23D.56【答案】C 【解析】【分析】由互斥事件的概率可知(()(1())P A B P A P B +=+-,从而得解.【详解】由已知得:1()3P A =,2()3P B =,事件B 表示“小于5的点数出现”,则事件B 表示“出现5点或6点”故事件A 与事件B 互斥,122()()(1())(1)333P A B P A P B ∴+=+-=+-=故选:C5.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===,则1A B = ()A.a b c+-r r r B.a b c-+r r r C.a b c -++D.a b c-+- 【答案】D 【解析】【分析】由空间向量线性运算法则即可求解.【详解】()11111A A B B a b B A B c CC C CB =+=-+=-+--+.故选:D .6.已知空间向量0a b c ++=,2a = ,3b = ,4c = ,则cos ,a b = ()A.12B.13C.12-D.14【答案】D 【解析】【分析】设,,AB a BC b CA c ===,在ABC V 中由余弦定理求解.【详解】空间向量0a b c ++= ,2a = ,3b = ,4c =,则,,a b c三向量可能构成三角形的三边.如图,设,,AB a BC b CA c === 2a = ,则ABC V 中,||2,||3,||4AB BC CA === 2a =,222||||cos ,cos 2AB BC CA a b ABC AB BC+-∴=-∠=-⨯⨯ 491612234+-=-=⨯⨯.故选:D7.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为()A.5960 B.35 C.12 D.160【答案】B【解析】【分析】这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,由此能求出这段时间内至少1人回老家过节的概率.【详解】端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,∴这段时间内至少1人回老家过节的概率为:1113 11113455 p⎛⎫⎛⎫⎛⎫=----=⎪⎪⎪⎝⎭⎝⎭⎝⎭.故选:B.8.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为()A.4.33%B.3.33%C.3.44%D.4.44%【答案】B【解析】【分析】推理出回答第一个问题的150人中大约有一半人,即75人回答了“是”,故回答服用过兴奋剂的人有5人,从而得到答案.【详解】因为抛硬币出现正面朝上的概率为12,大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的,在回答第一个问题的150人中大约有一半人,即75人回答了“是”,共有80个“是”的回答,故回答服用过兴奋剂的人有5人,因此我们估计这群人中,服用过兴奋剂的百分率大约为5150≈3.33%.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为()A.(2,1,3)B.(2,1,3)--C.(4,2,6)-D.(4,2,6)-【答案】BC 【解析】【分析】由已知可得//AB C D '',所以它们的方向向量共线,利用向量共线的坐标关系,即可判断各个选项.【详解】由已知可得//AB C D '',故它们的方向向量共线,对于B 选项,(2,1,3)(2,1,3)--=--,满足题意;对于C 选项,(4,2,6)2(2,1,3)-=-,满足题意;由于A 、D 选项不满足题意.故选:BC.10.下列各组事件中,是互斥事件的是()A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%【答案】ACD 【解析】【分析】根据互斥事件的定义,两个事件不会同时发生,命中环数大于8与命中环数小于6,发芽90粒与发芽80粒,合格率高于0070与合格率为0070均为互斥事件,而平均分数不低于90分与平均分数不高于90分,当平均分为90分时可同时发生,即得解.【详解】根据互斥事件的定义,两个事件不会同时发生,对于A ,一个射手进行一次射击,命中环数大于8与命中环数小于6,为互斥事件;对于B ,统计一个班级数学期中考试成绩,平均分数不低于90分与平均分数不高于90分当平均分为90分时可同时发生,不为互斥事件;对于C ,播种菜籽100粒,发芽90粒与发芽80粒,为互斥事件;对于D ,检查某种产品,合格率高于0070与合格率为0070,为互斥事件;故选:ACD.11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为()A.1m =,12n =- B.12m =,1n = C.12m =-,1n =- D.32m =,1n =【答案】CD 【解析】【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++ ,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=,而12OP OA mOB nOC =+- ,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能;当32m =,1n =时,12m n -=,所以选项D 可能,故选:CD第Ⅱ卷(非选择题)三.填空题:本题共3小题,每小题5分,共15分.12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.【答案】34【解析】【详解】从长度分别为2,3,4,5的四条线段中任意取出三条这一事件共有4种,而不能构成三角形的情形为2,3,5.所以这三条线段为边可以构成三角形的概率是P =34.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=______.【答案】0.9##910【解析】【分析】由互斥事件与对立事件的相关公式求解【详解】由题意得()1()0.4P B P B =-=,则()()()()0.9P A P P A B C B P C ⋃⋃=++=.故答案为:0.914.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA ,DC ,1DD方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =______,若点P 为线段AB 的中点,则P 到平面11A BC 距离为______.【答案】①.(1,2,2)-②.6【解析】【分析】第一空,根据向量的坐标运算可得答案;第二空,求出平面11A BC 的法向量,利用向量法求点到平面的距离即可得解.【详解】如图,建立空间直角坐标系,因为122AB AA AD ===,则(1,0,0)A ,1(0,2,2)C ,1(1,0,2)A ,(1,2,0)B ,(1,1,0)P ,所以1(1,2,2)AC =- ,11(1,2,0)A C =- ,1(0,2,2)A B =- ,(0,1,0)PB =,设平面11A BC 的法向量为(,,)n x y z = ,则11100A B n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x y -=⎧⎨-+=⎩,令1y =,则2,1x z ==,故(2,1,1)n =,则P 到平面11A BC距离为66n PB d n⋅== .故答案为:(1,2,2)-;66.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)已知2,3a b == ,且a b ⊥ 求2a b a b +⋅()(-)(2)已知a b a b +=- ,求a b⋅ 【答案】(1)1-(2)0【解析】【分析】(1)由已知,利用向量数量积运算,结合向量垂直的向量表示即可求解;(2)由a b a b +=-,两边平方,展开运算即可.【详解】(1)因为2,3a b == ,且a b ⊥ ,所以22222222031a b a b a a b b +⋅+⋅-=⨯+-=- ()(-)=.(2)因为a b a b +=- ,则22a b a b +=- ,所以222222a a b b a a b b +⋅+=-⋅+ ,化简得22a b a b ⋅=-⋅ ,所以0a b ⋅=.16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)3,2,2(2)(i)见解析(ii)5 21【解析】【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=5 21.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=5 21.点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【答案】(1)0.52(2)0.648【解析】【分析】(1)再赛2局结束这次比赛分“第三、四局甲胜”与“第三、四局乙胜”两类情况,根据根据互斥事件的概率和及独立事件同时发生的概率求解可得;(2)由题意,甲获得这次比赛胜利只需后续比赛中甲先胜两局即可,根据互斥事件的概率和及独立事件同时发生的概率求解即可.【小问1详解】用i A 表示事件“第i 局甲胜”,j B 表示事件“第j 局乙胜”(,3,4,5i j =),设“再赛2局结束这次比赛”为事件A ,则3434A A A B B =+,由于各局比赛结果相互独立,且事件34A A 与事件34B B 互斥.所以()()()()()()()()343434343434P A P A A B B P A A P B B P A P A P B P B =+=+=+0.60.60.40.40.52=⨯+⨯=.故再赛2局结束这次比赛的概率为0.52.【小问2详解】记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜一局,故甲成为胜方当且仅当在后面的比赛中,甲先胜2局,从而34345345B A A B A A A B A =++,由于各局比赛结果相互独立,且事件34A A ,345B A A ,345A B A 两两互斥,所以()0.60.60.40.60.60.60.40.60.648P B =⨯+⨯⨯+⨯⨯=.故甲获得这次比赛胜利的概率为0.648.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,ABAF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.【答案】(1)见解析(2)见解析【解析】【详解】(1)建立如图所示的空间直角坐标系,设AC∩BD =N ,连结NE.则N 22,,022⎛⎫ ⎪ ⎪⎝⎭,E(0,0,1),220),M 22,,122⎛⎫ ⎪ ⎪⎝⎭.∴NE =22,,122⎛⎫-- ⎪ ⎪⎝⎭,AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭.∴NE =AM 且NE 与AM 不共线.∴NE ∥AM.∵NE ⊂平面BDE ,AM ⊄平面BDE ,∴AM ∥平面BDE.(2)由(1)知AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭,∵2,0,0),22,1),∴DF =(02,1),∴AM ·DF=0,∴AM ⊥DF.同理AM ⊥BF.又DF∩BF =F ,∴AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.【答案】(1)0(2)存在,12AP =【解析】【分析】(1)建立空间直角坐标系,设AB a =,写出点的坐标,求出110B E AD ⋅= ,得到异面直线夹角余弦值为0;(2)设()00,0,P z ,求出平面1B AE 的一个法向量1,,2a n a ⎛⎫=-- ⎪⎝⎭,根据0DP n ⋅= 得到方程,求出12z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.【小问1详解】以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z轴,建立空间直角坐标系,设AB a =,则()()()11,0,1,,1,0,0,0,0,0,1,12a B a E A D ⎛⎫ ⎪⎝⎭,故()()()()11,1,0,0,1,1,1,0,1,10,0,00,1,122a a B E a AD ⎛⎫⎛⎫=-=--=-= ⎪ ⎪⎝⎭⎝⎭ ,则()11,1,10,1,11102a B E AD ⎛⎫⋅=--⋅=-= ⎪⎝⎭,故直线1B E 与直线1AD 所成的角的余弦值为0;【小问2详解】存在满足要求的点P ,理由如下:设棱1AA 上存在点()00,0,P z ,使得//DP 平面1B AE ,0,1,0,则()00,1,DP z =- ,设平面1B AE 的一个法向量为(),,n x y z =,则()()()1,,,0,10,,,1,0022n AB x y z a ax z a a n AE x y z x y ⎧⋅=⋅=+=⎪⎨⎛⎫⋅=⋅=+= ⎪⎪⎝⎭⎩,取1x =得,2a y z a =-=-,故1,,2a n a ⎛⎫=-- ⎪⎝⎭,要使//DP 平面1B AE ,则n DP ⊥,即()00,1,1,,02a DP n z a ⎛⎫⋅=-⋅--= ⎪⎝⎭ ,所以002a az -=,解得012z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省高二上学期数学9月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共4题;共8分)
1. (2分) (2019高一下·丽水月考) 将函数的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()
A .
B .
C .
D .
2. (2分) (2017高二下·黑龙江期末) 下列说法错误的是()
A . 是或的充分不必要条件
B . 若命题,则
C . 线性相关系数的绝对值越接近1,表示两变量的相关性越强
D . 用频率分布直方图估计平均数,可以用每个小矩形的高乘以底边中点横坐标之和
3. (2分) (2019高三上·黄冈月考) 在中,角、、的对边分别为、、,若,
,点是的重心,且,则()
A . 或
B .
C . 或
D .
4. (2分) (2019高一下·包头期中) 在中,已知面积,则角的度数为()
A .
B .
C .
D .
二、填空题 (共12题;共12分)
5. (1分) (2019高三上·汉中月考) 已知向量,,,若,则
________.
6. (1分)已知集合M={x|﹣1≤x<3 },N={x|2<x≤5},则M∪N=________.
7. (1分) (2019高一下·益阳月考) 函数的单调增区间是________.
8. (1分) (2017高三上·涪城开学考) 函数f(x)=2x+b,点P(5,2)在函数f(x)的反函数f﹣1(x)图象上,则b=________.
9. (1分) (2015高一下·兰考期中) 已知平面内有O、A、B、C四点,其中A、B、C三点共线,且 =x
+y ,则x+y=________
10. (1分) (2016高三上·崇明期中) 设函数y=f(x)由方程x|x|+y|y|=1确定,下列结论正确的是________(请将你认为正确的序号都填上)
·(1)f(x)是R上的单调递减函数;
·(2)对于任意x∈R,f(x)+x>0恒成立;
·(3)对于任意a∈R,关于x的方程f(x)=a都有解;
·(4)f(x)存在反函数f﹣1(x),且对于任意x∈R,总有f(x)=f﹣1(x)成立.
11. (1分) (2019高二上·上海月考) 在数列中,如果对任意,都有(
为常数),则称数列为比等差数列,称为比公差,现给出以下命题:
①若数列满足,则该数列不是比等差数列;
②若数列满足,则该数列是比等差数列,且比公差;
③等比数列一定是比等差数列,等差数列一定不是比等差数列;
④若是等差数列,是等比数列,则数列是比等差数列。
其中所有正确的序号是________;
12. (1分) (2015高一上·莆田期末) 向量,,在正方形网格中的位置如图所示,若
,则λ+μ=________.
13. (1分) (2016高二上·普陀期中) 设Sn是数列{an}的前n项和,a1=﹣1,an+1=SnSn+1 ,则Sn=________
14. (1分) (2016高一上·淄博期中) y=﹣x2+2ax+3在区间[2,6]上为减函数.则a的取值范围为________.
15. (1分) (2020高二上·天津月考) 直线与圆相切,且在轴、轴上的截距相等,则直线的方程为________.
16. (1分)(2020·江苏) 已知,则的最小值是________.
三、解答题 (共5题;共60分)
17. (10分) (2019高二上·滁州月考) 在中,内角、、所对的边分别为,其外接圆半径为6,,
(Ⅰ)求;
(Ⅱ)求的面积的最大值.
18. (10分)(2018·内江模拟) 已知函数,曲线在点处的切线方程为: .
(1)求,的值;
(2)设,求函数在上的最大值.
19. (10分) (2019高一上·于都月考) 已知函数 ,
(1)用“五点法”(列表—描点—连线)画出的简图;
(2)写出它在的单调区间和最值;
20. (15分) (2018高二下·长春开学考) 已知椭圆的两个焦点为,,离心率
.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.
21. (15分) (2019高二上·沈阳月考) 正项数列的前项和满足 .
(1)求的值;
(2)证明:当,且时,;
(3)若对于任意的正整数,都有成立,求实数的最大值.
参考答案一、单选题 (共4题;共8分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
二、填空题 (共12题;共12分)答案:5-1、
考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共5题;共60分)
答案:17-1、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、
答案:19-2、考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、答案:21-2、
答案:21-3、考点:
解析:。